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EaKn~AOB~e nonR: KBUHTOBaHH~e ~ cny4a~H~e nonA 

PaccMarpHaaercR cao6oAHOe nonepe4Hoe aeKTOpHoe none 4acr~4 Mace~ 
m ~ 0. MOAenb OTHOC~TCR K o6~4HOH T80PHH KBaHTOBaHH~X none~ CBo60A­
HOrO 88KTOPHOrO M830HHOfO nonR H CBo60AHOfO 3neKTpOMafHHTHOfO nonA 
nOCP8ACTBOM paCWHpeHHR OT nonepe4H~X K npOH3BOnbH~M npo6H~M ~YHK4HRM. 
M~ BBOAHM KBaHroaaHH~e nonA a KanH6poaKe Wr~KKenb6epra H nonA F~v 

COOTBeTCTB8HHO H AOKa3~BaeM B03MO*HOCTb nepeXOAa K nonepe4H~M noTeH-
4HanaM. M~ OTHOCHM eBKnHAOB~e OAHo¢oToHH~e COCTORHHR K CTaTH4eCKHM no­
TOKaM B KnaCCH4eCKOH MarHHTOCTaTHKe H AaeM anbTepHaTHBHOe AOKa3aTenb­

CTBO AnA CBOHCTBa ~H3H48CKOH nonO*HTenbHOCTH, HCnOnb3YR annpOKCHMa4H~ 
noroKoa MarH~TH~M~ A~nonRM~. KoHCTpy~pyeTcR nonepe4Hoe caMOAeHcTB~e. 

Pa6oTa B~nonHeHa 8 na6opaTop~~ TeopeT~4eCKO~ ¢~3~K~ OHRH. 
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Euclidean Fields: Quantum and Random Fields 

We study free transverse vector fields of mass m~ 0. The model 
is related to the usual free .vector meson and · electromagnetic quantum 
field theories by extension of the field operators from transverse to 
arbitrary test functions. We introduce quantum fields in Stuckelberg 
gauge and in terms of F~v. respectively, and show how to pass to the 
transverse potentials. We ~elate the one photon to steady currents of 
classical magnetostatics and give an alternative proof of reflexion 
positivity. We discuss transverse self-interactions with spatial cut­
-off. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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Introduction 

Nelson proposed a reconstruction of Bose quantum fields 
from Euclidean Markoff fields via the following idea: Given 
a random field Ill with underlying probability space (Q,B,B) 
one introduces a localization b;v the 6"-subalgebras B@' <::. B, 
<Y" open in Rd+ 1 , which are generated by all i!l('f), i' e. S(~). 

In particular, let 
hyperplane x0=0. If 

1\ = Jx=(x0 ,x): x0 ~ 0~ and S the + 2 - 0 
¢ is a Markoff field and it satisfies 

reflexivity with respect to the above localization, then 
L2 (Q,B8 ,B) is identified with the physical Hilbert space H 
for 0 the related Q.F.T. in Minkowski space-time. 

Our paper gives two generalizations: The first is due to 
Hegerfeldt and will be applied to the free Euclidean trans­
versal vector field of mass m;-0. Using reflection po~ivity 

we find a canonical map 

' 
(1(W): L 2 (Q, B/\ ,Bm) 

+ 
~ Hm 

to the fock space of non-interacting vector mesons. For the 
Euclidean photon field in terms of transverse potentials l 
which is the formal limit m f 0, we recover Nelsons procedure. 
However, by the dilatation invariance of the measure dBm, m=O, 

we can reconstruct a model of Q.F.T. in curved space-time 
2 0 ~ 1. d+1 in L (Q,B5R,B ), where SR= Lx: /x/=R; is a sphere in R • 

We shall exploit this idea in a forthcoming paper. 
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1. Vector meson field in the Stlickelberg 
gauge and the photon field in terms of F~v 

The starting point for the construction of the one-particle 
Hilbert space Mm for the free vector meson quantum field of 
mass m;>O is the two-point Wightman function 

( 1) <..J'I(x)~ (y >> 
0

= (g"IV_ ~ i01m2 ) 1 li D!(x-y), 

N 
which is the Fourier transform of the measure P~11dwm with 

m + 
support on Tp' pE V+ • We observe that in the sense of a 
positive-definite matrix 

(2) J'~J lvm >o, 
+ 

where Jh = (O,h) denotes the embedding J: c3 ~ c4 . 
The projection JJ~: Tp ~ c 3 - which is different from 
is non-zero for all pE v:. 
Figure 1 

\ 
Po / 

~ht.. Tp' 

(I' 

c3 

pEVm 
+ 

'\1 2 "'~II m Hence elements h€Mm= L (P dw+) are completely given 

c -

by their spatial components h . Conversely, there are canonical 
mappings to the Stlickelberg and to the transverse gauges 

(3) JTh = (h0 h) and J 8h - ,_ - PJQ. 

Then 

(4) r = fktJ 
2 

QG>(i) .9.-:- t!6=b0o'B+pl:l'p61m2 for ~.B=1,2,3 

is an unbounded self-adjoint operator in 
_J,(f) 
L L2(d3pl2w). 

4' 

SIT ±112 
II J hll s/T= Ill. ~/1 ~ <±> 2 3 , 

~ ~ L (d pl2w) 
(5) 

hence the Hilbert spaces MSIT are dual to each other as 
m --

remarked by Gross. The reconstruction of the Euclidean Green's 
functions via analytic continuation of (1) by the procedure 
of Osterwalder and Schrader gives 

(6) s2 •/W (x,y)= (D,.IIv_ J7f'v1m2 ) Gm(x-y), 

where Gm is the Green's function for -6 +m2 with 
free boundary conditions. This result was found independently 
by Gross, Yao, Vela and Ginibre. 

Passing to the momentum r 'epresentation (6) defines a 
Hilbert space N

8 = L2(~2 ), where 
P +m 

( 7 l y~.V< p l = S~v+,lfrf' I m2 

is uniquely defined by /'YJ 1 and Euclidean covariance. 

Lemma 1 For m> 0, there is an isometric embedding of N 
S m 

into N • Then 

s 2 s <l!,Q h> =IIE
0
flls, f= h@ g e. N. 

0 N N + 
m 

(8) 

Proof: It was argued by Karwowski that for an~ model 
showing reflectaon positivity, the operator E+QoE+ :> 0 
extends to a projection with the same structure in some 
larger Hilbert space. For the model of the free Euclidean 
vector meson field this is true, and we have to pass from 
the transverse to the Stlickelberg gauge, to recover the 
Markoff property. 

By the ultra-locality in N8G N, for real g= 'Vu 
supp u c II+ 

(9) <g,Qog> 
Ns 

# v. ) =0. M.VI 2(\7 u, \7 Qou L2(d4x) g m 
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Yao proved that the free Euclidean vector meson field 
in the StUckelberg gauge B~(x) with two-ooint function (6) 
satisfies reflexivity and the Markoff property. With the 
remark that in NS the refledaon operator 9

0 
commutes with 

the projection E: N5 ~ N , the proof is complete. Q.E.D. m 

* The projection ES can be exPressed in the form JSJS = Cses , 
s s s 0 s - 0 0 

where J : M ~ N and C denotes the sy~metrization of C 0 

o m S 
in the scalar product of N , explicitely 

0/VO 
N jl_f · ~2 

(O,f+£ -;z ), w= VE~+m • ( 10) cs; 

Note that for m"'=O 
which is different from 

the two-point function ~m(x-y) -
s 2 ·~v(x,y) -does not satisfy the 

Osterwalder-Schrader-positivity, however, for transverse 
test functions the non-local projection cancels and by the 
reflection positivity in Nm in the sense of a vector-valued 
positive-definite function 

(11) g~llGm(x-90y) ~0 in ST(,.\). 

The free electromagnetic field - we say shortly "photon field" -
in terms of F~v is given by the two-point Wightman function 

( 12) <'FCl1"(x)~JJ (y)>o= (g"'f'¢"i7~ ••• )1/i D~(x-y), 

where+ ..• contains the other permutations of the indices 
~.~.~.v=0,1,2,3 so that the resulting expression is anti­
symmetric for exchanges ~~a and ;w~v . The corresponding 
one-photon Hilbert space in the momentum representation is 

( 1 3) MFh= L 2 ( P hdw0 
) , p p + 

~6/f"W ) 0 . where ~h '· (p , pECV+, denotes t he Four1er transform of 
that expression. By the map 

( 14) (If),M = ip//'(f/1'"-f'fi) 

we can pass to tne Lorentz gauge , and by C to Coulomb gauge. 

6 

2 
The relations f.Pphf = /If/ and ran I(p)= Tp' p~V~, 

show that I is a unitary map, and we arrive at the following 
commutative diagram: 

( 15) MF 
ph 

I ~Mh 
..........-- ' p 

c ~ 
c~Mc 

ph (Coulomb gauge). 

Via analytic continuation of (12) to the Euclidean region 
we find the two-point function 

< eq a e I"V > ~"'t'nl3nv F (x)F (y) = ( . v v + • •• ) ---~ 
o c /x-y/n-2 ' 

n 

( 16) 

e 
where F~v(x) is the free Euclidean electromagnetic field 

in space-time of dimension n~J, studied first by Yao. 
en is the area of the unit sphere in Rn, so that the expression 
outside the brackets is just the normalized Green's function 
for the Laplacean with free boundary conditions. 

F 2 e -2 
We denote by N = L (P h/p/ dnp) the corresponding one-

particle Hilbert space, where PphoiB~v (p), pERn, is the 
Fourier transform of the antisymmetric expression inside the 
brackets of the r.l..s. of (16). 

Lemma 2 The Euclideanization ~ of the map I defined in 
formula (14) is a local unitary map from NF onto N, m=O. 

Proof: The relation 
isometric from NF to 
The formal adjoint of 

e e 2 
f.P hf = /If/ implies that 
N1 .PUsing i'i = E we get 

~ is 

( 17) 
et- -2 v 
I : f ~ -i/p/ (pvff"-pMf ) , f €: N1 

e 
I is e 
ran I= N. 

and has no relativistic counterpart since p2 fvo =0. 
A proof for the locality of i has been anounced+ by Guerra, 
in particular for localization in A± and S

0 
it has been 

discussed by Yao. 
We give here only an argument for the case n=J. 
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Of course, for any open region (!'c. RJ, f~f: ff'l" €:: S(e') ~ 
is a dense set in N(e). Conversely, any transverse he N(e') 

is a limit of smooth curls localized in ~. Using the 
Hodge duality 7f : f ·~ (-'ff )!""' = cr'13 f 13 

( 18) e J3 
h = V xf = HH) , f 6 s ( \9') • Q.E.D. 

2. Second quantization 

Let us introduce for m~O the Fock representation of 
the CCR Cr,Mr,A), where r denotes the functor of second 
quantization, M stands for the real part of M and M h 

r T --m p 
and _ _{)_ is the Fock vacuum. Let be A (0,.) the associated 
free Hermitean field. 

Lemma J For m/>0, the restriction of the free vector meson 
quantum field to transverse test functions coincides with the 
transverse potentials, i.e. for ht=~8h, ti~s;cv:> 

itH T "' -itH 
(19) A(ht)= e 0 A (O,h)e 0 

Proof: < A(ht)A(g )/= gf'lvj~ /w(s-t)~')l'-f'1g""v 
s o 2w • Q.E.D. 

RJ 

For m=O we can pass from the transverse potentials in 
Coulomb gauge to the F~'s as follows: As operators in Fock 

space PCM;h,r) 

(20) 
-1 

r( CI)F(ft)r(CI) 
itHC N -itHC 

e 0 AC(O,Cif)e 0 
f0'

13e Sr(R3), 

where we have used SC(V0 )~ ST(RJ). The well known 
formula Ftlfv=V,MAT~ \lJ)A'J;II+relates the Ft*?J),s with the 
Lorentz gauge. 

For the photon field , gauge invariance 
to the following algebraic result. Let us 

( 21) D 
ph 

fine n z ST(XV~). 
n~O 

8 

is equivalent 
define 

Lemma 4 Dph can be equipped with the structure of a 
topological *-tensor algebra. The Coulomb projection C 
the extends to a continuous *-homomorohism rcc) with 

the image ran P(C)= D~h· The kernel Lph is a Lt­
invariant closed two-sided ideal, i.e. 

(22) DC tV 
ph 

D 
ph; 

ker rcc). 

Proof: p(0)=1 and for n>-1, p(n)(C)= C® ••• QIC, hence 

L his algebraicaly spanned by 1= (l(n)) :> with p n_o 

(23) 1(0)=0, 

1
(n)= ipa(s)u13 C1).~(s~.a(n) 

s for some 1 ~ s~n. Q.E.D. 

3xpanding AC(O,.) in the ~·ourier coefficients aA(E,), 
where ;) = ±.1 denotes the helici t :v index and p,.; R3 the 
momentum variable, we find 

(24) 
~ * ~I }.,~/ 

<a (p) a (.9.)>
0

= 6 1 83 Cp-_g)/2w' W=+/p/. 

Hence the a~(p)'s commute and act irreducibely in the 

Fock space rcM;h,r). In the Schrodinger reoresentation 
we redefine them as coordinate functions on the probability 
space (Q

0
,B

0
,J3

0
), where Q

0
= X R and B

0 
is the er-algebra 

of measurable sets w.r.t. A,£. 

1( 
- :!!q~ (£.)2 

e 2 o ~ 
.~ dqo(J2.). 

•E. yZir/w 

(25) dJ3o= 

In this picture the a~(E,) are Gaussian random variables 
with the covariances (24). 

Now we are prepared to relate the time-zero potentials 
of the photon field in Coulomb gauge AC(O,.) with the free 

e 
Euclidean electromagnetic field. Let be A the real 
Gaussian random field indexed by s; with mean zero and 

covariance 
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(26) A(h)A(g) dB = f
e e 

<h,g/N, m=O, 

Q 
and we denote by (Q,B,dB) the underlying probability space. 

The lemma 2 tells us that for any l(h), heSrT' there is a 
e r F e e unique F(f)E (Nr)' If =h • We call A transverse potentials 

of the free Euclidean electromagnetic field. 
As a consequence of lemma 4 of part I we have the following 

result: 

e 
Lemma 5 The transverse potential field A is a Markoff field 
and satisfies reflexivity, with respect to the local structure 
introduced ih B via sub-6'-algebras Bg c B, \o/c:::. R4 open 
generated by all X(h) with h~S~(e') , that ish with V.h=O 
and supp he:: 6'. 

To have a full set of random variables with respect to B, we 
regard the basis vectors on the Euclidean transverse plan~ ~p 

(27) 

Then 

(28) 

e 
v t: Tc 

±1 E and 
e 
vo= (1,-_EPo/k2)_!!_ 

P
0 +ik 

e e 3 -w/s-t/ 
<A))(t,_E)A5(s,s)>13 = ~A~ ~(_E-.9,)e 2w , A1 ~=0,;t1 

e e e 1\1 
where A~(t,_E)= A(TtvA~). Comparing the covariances (24) with 

(28) we can identify the Fourier coefficients a+ 1 (_E) of the 
C e -potentials A (0,.) with A±1 (0,_E). Moreover, 

(29) QC= X R 
t,_E 

~=±1 

N X Q 
t 0 

is just the path space 
in Coulomb gauge. For any 

r(Jt) of the Fock space 
for the one-photon states 

over the photon quantum field theory 
t€ R, there 

r(MCh ) in p ,r 
we get 

is an isometric embedding 
L2(dJ3), in particular 

(30) r(1)(J ): AC(O,h)JZ.~ l(J h), h G. ST(R3), 
o - o- - r 

10 

.. 

We generalize the definition of a random field 
e 
A by (26) 

to the massive case m:>O, 

As above we can realize !(h), h€S~, as coordinate functions 
on a probability space (Q,~,Bm) - where 13m is the formal 
Gaussian measure 

1 ll 2 

dBm= l e 
- ~(q,(- +m )q) 

(31) dq, qEQ= X R 
zm 

ft. _E; -~=0, ± ,5 
Then 

e 
(32) A±1(0,_E)(q)= q±1(0,£), 

+Oc.l 

!0 co,_E)(q)= i£.£.( 0 ,£)/k +jfdt e 

-kt 

{q0 (t,p)+i£·.9.(t,£)/k\, 

0 e 
where k=+/_E/. Hence A~(O,_E)- when smearedein _E€R3-

are ~-measurable functions. In particular A+ 1(0,_E) can be 
identified with the Fourier coefficients of the free vector 
meson quantum field, of momentum E and helicity.n=+1. 

~ -
Smearing with h, h(p)~T~, we get 

(33) 
T e C m 

A (O,h)= A(J
0
h), ht_Sr(V+). 

e Jo However, Q
0

A0 (o,.)Q
0

= ••• + dt ••. ,and for m~O the 
Markoff property breakes -00 down to reflection positivity. 
Using (56) of part I we find the conditional expectation 

(34) 
m ~ -wt e 

E(90i0 (t,_£)Q0/~)= {W+k.) e A0 (0,_E), t:=::o. 

6 o (Aint) Lemma Let l(s)= v.u(s)' u(s)=l(s)es "+ ; s=1,2, .. ,n. 
Then for t 1~t2 ••• ~tn holds 

J e e 
(35) dBm A(Tt 1(1)),,A(Tt l(n))= 

1 n 
Q 

(Jl.,AT( O Wl ) -(t2-t1 )dr(Ho) 
' ( 1) e 

-(tn-tn_1 )dr(H
0

) 

• A'J{ 0, Wl ( 2 ) ) ••• e AT ( 0, Wl ( n) )..(1.) , 

II 



e e e 2 Proof: Identifying A(h( 1 ))A(h( 2 )) ••• A(h(n)~L (dBm) 
with 'V[h( 1 )~ ••• ~hcn0 in the Fock space f(Nm,r), we can 
rewrite the l.h.s. of (35) in t he form 

(36) <i, f'(Q )1\'[Tt 1 Ill . • ,@Tt 1 J 1/ • 
0 

1 (1) n (n) P(N ) 
m,r 

Sinc e Wl(s) G ST(V~) (\ kerC are smooth elements in 1\n• 
(35) is nothing than the generalization of the free Feynman­
Kac-Nelson formula (53) of part I (JINR E5-I2780) to Fock space. 

Q.E.D. 

Due to Hegerfeldt there is another possible reconstruction 
of the quantum field operators at time zero AT(O,l), which for 
1€ ST(V~)O kerC describe the degrees of freedom of the free 
vector meson field with helicity ~=0. 

In the lemma 6 we have used 1= v.u e Nm with supp l~C A~nt. 
We remark that for m;;>O and 

(37) 1= v(d
0
Sf), fGS(R J ), 

·s 2 4 lr(p)l ~ 2 
(p +m ) 

-Jv 2 
~ 2Jl: Ilk <f II 3 < oo , 

L2(.!!:..P.) 
2w 

supp 1111 c: S
0 

and 11'J!t11 <-~ Hence we can define fields 
e -2 A(l) at sharp time as forms. But we atop here. 

Figure 2 
e 

coordinate functionS A(l): 

o c ill B I B-v 
i) 1 =0

0
8f, 1 =-o0~ip 'f; 8=1,2,3 

0 
o -kxiV B 

Q(x )e u(£),1 =··. 

q€Q 

t 
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), Transversal self-interaction 

We ask the question whether for m~ O reflexion 
positivity as a property of the restriction dBm~~ of the 
free measure for the Euclidean vector meson field X is 
stable with respect to transversal pertuba tions. 

First a negative result: 

Lemma 7 It is not possible to give the f ormal exnression 
1 - 2 q.Eq 

(38) F= e q.Eq= JJdxdy q~(x)EM~x-y )qy'(y) 

R4xR4 
the precise meaning of a multiplicative functional 

on (~,Bm,Bm), This means that for a given disjoint covering 
£~i\ of Euclidean space-time R4 , we cannot express F as 

a product of ~-measurable random variables Fi' 
i 

Proof: With suitable normalization holds F dB0= dBm, m=1. 
Then by a theorem of Nelson F cannot be multiplicative 
even with respect to the decomposition R4= A uA · -because 

+ -X is not a Markoff field , except in the case m=O. 
Q.E.D .• 

Intuitively, the non-local project i on E causes that 
q.Eq is not additive. Note that .fq(t,J1): t6R, h ~ S~(R3 )5 
is not a full set of random variables. 

Below we construct functionals on ( Q,Bm,Bm) multiplicative 
with respect to the crucial hyperplane S

0
= fx=(t,:!f): t=Os 

yieldin·g a space cut-off. Hence there will be no Euclidean 
covariance. 

Given a real measurable function V on the real line 
bounded 
Q-space 

(39) 

where 
(40) 

from below 
function 

'II T m and h~O, hC:::Sr(V+), we define the 

F+ 
h 

f
+.:<l 

- v [q ( J~h >] d t 
e 0 

N 'V 2 
~(t @1)= (O,Hili) + (1,-E_P0 1k) 

13 
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By J~ we denote the inverse of the restriction of the 
canonical map W to the physical subspace NM , which for 
m=O coincides with the embedding J

0
: ~;h~m N. 

Then F= ~.Q0~ is multiplicative with respect to S
0

, 

and with a suitable normalization FdBm becomes a probabi­
lity measure. We have reflstion positivity, i.e. for all 
~-measurable functions r 
( 41) i(.QoY' F dBm J ¥-

? o. 

Q 
Lemma 8 For m=O X is a Markoff field on (Q,B0 ,F dB0 ) 
with respect to any disjoint covering R4= U ~ by the 
Euclidean time strips ffi= ~ x: t. L t ~ti 1 t . 

'- 1 + _,1 

Proof: For m=O, q [v<Jt.!:!)J , !i'.::s;(R.3), are 
Moreover, Q

0
JtQ

0
= J_t• Hence F=J?: Fi' where 

B~ -measurable. 
t 

(42) 
_ji+1vBJt.!:!Ddt ~ 

t Fi= e i Q.E.D. 

We remark that the cut-off function .!:!. ~·.!:!=0, is needed 
to make F transversal, hence B0-measurable. Our definition 
(.39)of the Euclidean action from the very beginning avoids 
the troubles with products of fields in coinciding points. 

If V= V(q2 ) we can study q®q W( 2 )Jth), for test 
functions h~ r< 2 ) <s';:<v!>) with h2'0 J or more singular. 

(4.3) 
/ll UJI. N r:::r1tV II v 
hr-·<.~.g)= x (£._g).(o _1L-9. ); ;.v=1,2,.3 

6 £·S 

is a pathological example, since for finite ~ (4.3) is 
not transversal and as D! R3 , we obtain the very singular 
expression q. Cq ( t, . ) . 

We can generalize our method in the case m=O to construct 

for given V and heNS , where S = £x: /x/ =r3 , r= 1 and 
r r 

h~O, the functional 

14 
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+.:>O 

J V [q (Trh)J <l:') (r) 
(44) G = e 0 , d~(r)=/Sr/dr, 

where r~Tr is the unitary group of dilatations inN described 
in the section 2 of part I. (JINR E5-I2780) Then i is a Markoff 
field on (Q,B0 ,GdB0 ) with respect to any covering U ~ by 

the shells e'i= Jx: ri < /x/-:; ri+ 1 ~ • Since /Sr/<<~:J, the 
function his not needed for ' a cut-off but to make G transversal. 
The derivation of corresponding Feynman-Kac-Nelson formulas 
is straightforward. 
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