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To any Op *-algebra (1 of unbounded operators thede 
corresponds a rigged Hi 1 bert space ~[ t(11-+ J{ .... ~'[ t 1 
so that all operators A~ ~are continuous with respect 
to the topologies t(j, t . This leads to different topo
logies of uniformly bounded convergence on the operator 
algebra C1 , which are investigated in this paper. Particu
larly consistent results are obtained if~[ t(j] is a ref
lexive space. 
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1. INTRODUCTION 

In a previous paper 121 we have investigated rigged Hil-
(j 

bert spaces :i:[t (!] .... }{ .... ~ '[ t ] associated with algebras (! 

of operators on a dense domain~ of a Hilbert space H. In 

this paper we show that the so-called quasi-uniform topolo

gies on algebras of unbounded operators 15·61 are related to 

this rigged Hilbert space structure. These quasi-uniform 

topologies on operator agrebras have found different appli

cati ons in the algebraic approach to quantum field theory 

and statistics (see, e.g., 13 •7•8•121 ) • Particularly consis

tent results are ontained if ~[t~ is a reflexive space. The 

problem of reflexity of !t[ t (1 ] is regarded in the last sec

tion, where especially a counterexample is given and some 

open questions are formulated. 

Let us recall some basic definitions of ref / 21 . For 

a dense linear subspace ~ of a Hilbert space J{ over the 

field C of complex numbers with the scalar product < • , • > 

we denote by ~+(~ ) the set of all linear operators A~ End~. 
+ + 

for which an A ~End~ exists with <¢, AI/I > = < A ¢,1/1 ·> 

for all ¢ , 1/J ~ ~. ~ +( ~ ) is a * -algebra with respect to 

the usual algebraic operations with operators and the in

volution A--+ A+. A * -subalgebra (! containing the identity 

operator is called Op * -algebra. An Op * -algebra (! over ~ 

generates in a natural way a topology t(j on ~ by all semi-
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norms llc/>llcc-IIA¢11, cpr;; .CJJ , where A runs over all operators 

of Cf. Cj)[ t (1] is continuously imbedded into 1{. The strong dua l 
(i 

space of CJ)[ t (1] is denoted by CJJ'[ t ] . We write the linea r 

functionals F ~ CJJ' on cf> r;; CJJ in the form <F,cf>> and equip CJJ ' 

with the (anti-) linear structure defined by <AF +fLG, cf>> 2 

=X < F.cf> > +ji. <G,cf> > . Then ljl-+ Fiji , < Fiji ,cf> >= <ljl,cf> > for ljl r;;J(, 

defines a linear imbedding of}( into CJJ'. So we get in depen

dence on Cf the rigged Hilbert space 

CJ)[ t (1 ] c }( c CJ)' [ t (1 ] • 

An Op *-algebra (i is called closed if CJ)[ t (1] is a complete space . 

CJ) is called a closed domain if f+(CJ) ) is closed on CJ). Then 

· / 2 / I ll / we have the follow1ng Lemma ( Lemma 7,8 ) . 

Lemma 1.1 

Let CJJ be a closed domain and C! a closed Op *-algebra on CJJ . 

i) Cj)[ t cr] is semi-reflexive. 

ii) Ifd1 is yet another closed Op * -algebra on CJJ , then t(j 

and t(t have the same bounded sets. 

topolo~ies t cr. t (1 1 coincide on CJJ[t(i]' 

it by t ' = t (i = t (11 . 

Therefore, the dual 

CJJ[tcr]~ and we denote 
1 

2. TOPOLOGIES OF UNIFORMLY BOUNDED CONVERGENCE ON Cf 

For two locally convex spaces E, F the topology of uni

formly bounded convergence ( 1 10 ~ ch. I I I , 3) on the space 

f(E,F) of continuous linear mappings of E into F is defined 

by all semi-norms 

q M (A)= sup p a (A cf> ) , 
a, cj>t;, M 
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where Pa runs over all semi-norms defining the topology 

o f F and M runs over all bounded sets in E . 

If Cf is an Op * -algebra over the domain CJJ, then we have 

o n CJJ three topologies tee~ II· 11 ~ t cr in correspondence with 

the rigged Hilbert space defined by Cf.The system of tee
bounded sets will be denoted by m(i and the system of t(i 

bounded sets by md. 

Lemma 2.1 

An Op * -algebra Cf is a subspace of the following five 

linear spaces of continuous linear mappings with the cor

responding topologies of uniformly bounded convergence, 

defined by the given seminorms: 

f (CJJ [ t (j ], Cj) [ t (1]) [r Cj) ] : IIA II M,B 2 sup II BA cf> II • B r;;(1 ' M r;; m (1 

f(CJ)[ t (j] , CJ)[ 11· 11 ])[r (CJ)) ]: 

(j 
f (CJJ [ t (1 ] , CJJ [ t ]) {r Cj) ] : 

cf>~M 

!lA II M = sup II A¢ II . M r;; m (i 
cp r;;M 

II A II M = sup I < cf> • A ljl > I • M ~ m (1 
cf>,lji~M 

f(T[II·IILCJJ[tct])(r(CJJ)], IIAIIM =sup IIA+¢11. Mr;;mct 
+ . + cpr;; M 

f (CJ) [ t (j ], Cj) [ t (j ] )[ r 
0
Cj) ] : 

M (1 
I!AIIj( =sup l <cf>.Aiji > I.Mr;;mcr.:nr;;m 

cf>~M . Ijlr;;j( 

It can be proven by -simple calculations that d is a subset 
Q (j (j 

of o1.. ( CJ) [ t (j ], CJ) [ t (j ] ) and of f ( CJ)[ t ]. CJ) [ t ] ) . 

For the other three spaces it is then a consequence of the 

relation between the topologies t(j ~II· II ~ t (j If r 
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is a locally convex topology given by the semi-norms JJ A JJa , 

I a l a set of indices, on an Op * -algebra C1 , then by r + 

we denote the topology on (j defined by the semi-norms 

IJ A + ll a = JJ A JJ~ The involution A ... A+ is then a continuous 

mapping ofC1[r] onto a[r+]. With the help of this notation 

we get as a consequence of Lemma 2.1 the following relations 

between the topologies on (1, 

Lemma 2.2 

T (~) .$ T :I) 

i) r~ ..5 
T (~) ~ T :I) 

+ 0 

ii) 'T =Tm 
~m .v 

iii)(r(:I.J))+ = r (~) 
+ 

The second and the fourth topology ,(:D) and r~:D) of Lemma 2.1 

are connected by the continuity of the involution. For the 

case that ~[ tcrJ is a reflexive space we have also such a .re

lation between the first and the fifth topology r ~ and r t 
as we shall see below. In general this symmetry is broken. 

In what follows we shall study this situation. First we 

state the following Lemma: 

Lemma 2.3 

Let C1(:D) be an arbitrary Op *-algebra and K-I<P~ ~.IJ<PII ~ll 

the unit ball in :D. Then all subsets of the form A (K) , A ~ (1, 

are t (j -bounded in ~. 
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Proof: Every t (j -semi-norm on A(K) is bounded. In fact: 

+ 
sup p (A</J)= sup J< A </J,!f> l = sup 1<</J ,A .P>I = 

cp ~ K M cpr;, K ,l/f ~M ; cp~K.I/f~M 

sup II X ll .S C + < oo 
X~ A +M A M ' 

since for M c; m (j it is A +M~ m (j for all A ~ C1. The inversion 

of this Lemma is not true even in the case of closed algeb

ras. To it we refer to example ~ of ref. 121
• 

Example: 

Let J{ 0 J{ 1•'" be a sequence of Hilbert spaces, and let 

in every J{n be given an unbounded selfadjoint operator T,~l. 

We define :Dn • ~ (T k) and form 
k~O n 

J{= I eJ{n 
n >...O 

(Hilbert direct sum) and 

:D ~ I ~n 
n ~0 

(algebraic direct sum). 

Then :D is dense in J<. Every vector <P~~, <P• I rPn .<Pn ~ ~n' 
n >...0 

has only a finite number of components which are different 

from zero. For an arbitrary sequence Ian ln.O,l, .. of complex 

numbers and an arbitrary sequence lk n l n=O , l, .. of non-negative 

integer numbers we define by 

A</J • 

the operator 

I a T kn 
n2:_0nnrPn 

k 
A-IaTn onX. 

n ~0 n n 

The sum of this definition breaks off for every 

Now we consider 

C1 1 -IA= 
kn 

I a T , Ia l. 
n2:0 n n n 

I k n l arbitrary 

<P c; ~. 

(1 2 =1 A 
k 

I anTnn.lanlarbitrary,lknl with kn~N(A)l, 
n ~ 0 
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where N(A) is a bound for the grads kr , which depends on A. 

C1 1 C12 are closed Op * -algebras over ~- They generate 

on :D :il' the same strong topologyt'. But for an operator A
1 
~ 

I; (11' C12 we can forms the setA1 (K) which cannot be absorbed 

by any set A 2 (K). A 2 I; C1 2 . 

Lemma 2.4 

For an arbitrary Op*-algebra C1 the following is true: 
~ + ~ (i) (r ) s: r 0 

(ii)(r!)'+~r~ 

The equalities hold, if the sets A(K), A~;; C!, form a basis of 

the t(!-bounded subsets in ~-

Proof: If every t (1 -bounded set Jl is contained in a set B (k) 

then we have 

M 
IIAII:n = sup 

<f>i;;M,ljfi;;Jl 
1<</>,Al/f>l..$ sup 1<</>.Al/f>l~sup l<<f>,ABx>l· 

<f>i;;M,ljfi;; a(K) <f>i;;M, Xi; K 

M a+ M a+ 
- sup I<B+ A+¢ .x>l"' sup II s+A+¢ II,. II A+ll ' - II A II ' 
~M,~K <f>~M + 

for a suitable B~ C1 and every M I; m (1 I Jt~;; m <1. So . we can estimate 

every rt seminorn by a suitable (rT)+-Seruinorm. On the other 

hand, r0T is not coarser than (r ~ )+ in consequence of the 

foregoing Lemma. (ii) can be proved analogously. Thus we can 

complete the assertion (i) in Lemma 2.2 as follows: 

( * ) r ~ S: 
r<T> srT s (r

0
:D{ 

(il) 
r+ S (r T {~ r T 

0 
Now we are going to show that for reflexive T[t(!] the topo

logies (r ~)+and rt coincide. First we prove the following 

Lemma: 
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Lemma 2 . 5 

Let C1 be an Op*-algebra and K the unit ball in~. For 

any A~; C1 we regard the set A(K) as a subset of ~- and form 

the bipolar A(K) 00in ~- with respect to the dual pair (~', ~). 

Then the sets A(K)0~ Ai;; a, form a basis of the t a-equiconti

nuous subsets in ~ '. 

Proof: In the dual pair(~',~) we consider the sets A(K) , 

Ai;; C1 , as subsets of ~- and their polars in ~: 

~ .::o A (K) 0 = { ¢;; ~: sup l<l/I , ¢ > 1..5 1 l = { ¢ ~ ~: sup I< Ax , ¢ > 1..~ 1 l • 
l/fi;;A(K) X' K 

={¢~;;:IJ, supl<x.A+¢>1..s1l=!¢~;;~, IIA+¢11.S1l-l¢i;;~:ll<t>ll s1l. 
xc; K A+ 

Consequently, the sets A (K)~ A~C1. form a t(! -neighbourhood 

base of zero. The t(j -equicontinuous subsets in :Il' are those 

subsets A', for which exists a t(! -neighbourhood of 0 U C ~ 

with A'C u0 in~' ( 191
, ch. !!,4). Therefore, the setsA(K)0? 

AI; <1, form a basis of the t(! -equicontinuous subsets in~-. 

Lemma 2.6 

Let C1 be a closed Op * -algebra and K the unit ball in ~

Then the bipolars A(K)00,A~; C!, form a basis of the bounded 

subsets in :n- if and only if the domain :Il[ tal is reflexive. 

Proof: :n[t(j] is reflexive if and only if it is barrelled 

ref. / 2/ Lemma 13). The barrels in :D are exactly the polars 

of the a(:Il)-bounded subsets in il' (ref.
191 

ch. IV, prep. 1). 

On account of the semi-reflexivity of ~t(j] the weakly and 

9 



the strongly bounded subsets in ~- coincide. Therefore, 

every barrel absorbs a t (j -neighbourhood of 0 if and only 

if every bounded subset in ~- is absorbed from a t(j -equicon

tinuous subset. By Lemma 2.5 this is exactly the case if 

the sets A(K)
00 

form a basis of the bounded subsets in !D'. 

Corollary 2.7 

Let <1 be a closed Op *-algebra and suppose ~[ t (j] is 

reflexive. Then the t' -closures in 11 of the sets A(K) ,A~ <1, 

form a basis of the t' -bounded subsets in 11. 

Proof: topology t' is consistent with the duality (11,~') 

since by Lemma 1.1 T[ t (j] is semireflexive, and ~ is dense 

in 11'[ t'] (ref!21
, Folgerung 12). The sets A(K), A ~ <1

1 
are 

00 -- T: T:) -- ' convex, therefore, A(K) IT: xA(K)a( • -A(K) t 

Corollary 2.8 

Let <1 be a closed Op * -algebra and suppose fJ [ t (j] is 

reflexive. Then the topologies r f) and r~ are dual to each 

other, consequently, the lines in(*)break off. 

Proof: The setsA(K)t' form a basis of the t'-bounded subsets 

inT:. Since every operator A~ <1 is (t ', t' ) -continuous (Lem-

ma 2. 1) , we have for every r T: semi-norm I lA 11: • sup 1<¢ ,At/J>I= 
M 0 (j Jl ¢~M.i/J•j[ 

-IIAII t' for all M ~ m(j and :J1 ~ m , and the Corollary 
1t 

follows by analogous considerations as in the proof of 

Lemma 2.4. 
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Finally we consider the maximal Op* -algebra ~+(~). 

We write t = t ~ + . Let ~ (S) , fJ') be the linear space of 

all continuous linear mappings of ~[t] into ~'[t']. Further 

we write ~(~) ~ ~(9),~) and ~(~')~~(~'.~'). In the case 

that fJ[t] is reflexive we can give an interesting descrip

tion of ~+(T:) by the following Lemma 18 1 : 

Lemma 2.9 

Let 11[t] be a reflexive space. Then 

(i) if A~~(~ .~') then the adjoint operator A+G ~(~.~') 

is uniquely defined by < A¢,!/J > • <A+ if! ,¢>and A ... A+ is an 

involution on ~ (~, T:'), 

(ii)~(1J) , ~(1J')C~(1J,1J') and ~ (11) + • ~ ( T:' ) , 

(iii) ~+(T) is a subspace of ~(T) and it is 

~+<11>- ~<T> n~ <T'). 

3 . THE PROBLEH OF REFLEXIVITY OF THE DOMAIN fJ [ t (j] 

Till now we have stated that in the case of a closed 

Op* -algebra <1 the domain f;[ t(j] is always complete and 

semireflexive, whereas the strong dual 11'[ t' ] is barrelled 

and bornological (ref.121 , Folg. 9, 11). The example 3 of 

ref.
121 

shows that for sufficient meagre closed algebras (1 

T:[ t(j1 does not need to be barrelled and, therefore, ref

lexive, and T:'[t'] must not be semireflexive. There arises 

the question, whether at the very last for the maximum Op*

algebra ~+(~) ~[t] becomes a reflexive space. We show by 

a counterexample that even this in general is not true. 
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Example: 

LetH be the non-separable Hilbert space o f all quadratic 

summable number-sequences which potency is more than coun 

table, and~ the subspace of all finite number-sequences: 

H .. e2
- h/t; t/1,. ~ xacf>a. ~ l xJ 2 <oo . 

. a~ I a~ I 
card I - ' > ~ 0 ; 

(¢a ) a G. I is a complete orthonormal basis I 

~ .. d .. I t/1 ; t/1 "' ~ Xa cf>a I • ~ Ka , Ka -C . 
Cini te a~I 

Then the maximum Op * -algebra f +(d) is isomorphic wi th the 

set of all matrices whose rows and columns have the potency 

'P· but in each row and column only a finite number of e l e

ments different from zero. Obviously, d is a closed domain . 

f+(d) generates on d the algebra-topology which is given 

by the seminorms 
2 112 + 

llt/111 -(~I~ !L f3xf31 ) • t/J~d. A=(!laf3)a{j;I~f (d). 
A aG-I {3~I a 

It is easy to see that the topology t is given already by the 

diagonal-operators: 
2 2 1/A . II t/111 = ( ~ I b I I xa I ) • "' t/1 ~ d • B = ( b a ) a~ I · 

B a~ I a 
Furthermore we consider on d the topologies of the locally 

convex direct sum r <ll and of the topological direct sum r. 

Let IU~ I be a neighbourhood base of 0 in every 

is defined by the base of neighbourhoods 1 aco uf3a 

1\z, then r <ll 

l,r on the 
14 1 a~I 

other hand by I ~ <llUaf31 (ref. §18, 5). We have r ~ r , 
a~I <ll 

and in the countable case both topologies coincide. But in 

our example r<ll is different from r (ref / 41 .§18, 5(8)). 

Since the sets u~ =I xf3 ~c .= I xf31.s £{3, f {3> 0! form a neighbour

hood base of zero in every one-dimensional space Ka -C, the 

topology r <ll is given by 

P, (t/1)• ~ lA l l x 1. 
("a) a~ I a a 

t/1 ~ d, 
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where the (Aa)a~I are elements of the space of all number

sequences with the patency 'P d ' . It is easily t o show that 

r<ll coincides with the strongest locally convex topology 

{3(d ,d ' ).The topolo gyr of the topological direct sum has the 

seminorms 

p ( t/1 ) "' sup I p a II X a I • 
(pa ) a~I 

t/1 r; d. (pa )a~ I~ d '. 

Lemma 3.1 

We have r <ll > t > r on d. 

Proof: By (ref. 111 Lemma 3.3) in the contable case the t-

semi norms 

P(b )(t/1)= ( ~ I ba l2 1 xa 1 2 )~ 12 (ba)a~I~d ' 
a a~I 

define the topology of the locally convex direct sum, 

otherwise not . Clearly, the topology t is stronger than r : 

lt/1 -(xa)~d; sup 1Pa 11 xa 1S 11 ::) lt/J-(xa)~d; ( ~ 1 Pa1 2 1xa 1 2 )~11 
a~I at;I 

On the other hand, the t -neighbourhood U~ :lt/J= (xa)~d; 

~ at;. I 

2 
lxa I ~ 1 I. does not contain any . r -neighbourhood 

u(pr ~ I t/1 = (x ) r; d · 
a J a ' 

sup IP llxaldl. (p )r;d '. In fact, we have 
a~ I a a 

p a ,tO for all a~ I. Since card ! > ~. we can find real 

numbers £
1 

> £0 > 0 such that £i > 1Pa 1> £0 holds for more 

than countable many indices a ~I. Therefore, in U~a) always 

elements t/1 -(xa) exists with an arbitrary great ~ I xa 12 
, 

a~ I 
i.e. 1 t/1 ~ u~ 

Now we can formulate the main result of this section. 

Lemma 3.2 

The domain d[t] is not reflexive. 
13 



Proof: It is sufficient to show that the topology t is dif

ferent from f3 (d, d[t]' ).We show that this strong topology 

coincides with r e . The dual space of d [ r e] is the space d' of 

all number-sequences of the potency ', but the dual space of 

d [ r ] is the subspace d '0 of all number-sequences with only 

countable many components different from zero (ref. 141, 

§22,5 (5)). Furthermore, we can state that the dual space of 

d[t] coincides with d' too. The bounded subsets in the dual 

spaces d ', resp. d 0 are the 'sets of number-sequences which 

components are bounded. Therefore, the bounded subsets of d' 

are contained in the weak completions of bounded subsets 

of d 0. Consequently, we have 

r al • f3 (d , d') ,. f3 ( d , d 0 ) ,. f3 ( d , d [ t] ' ) > t , 

i.e., d[tlis not reflexive. 

Moreover, the example shows that the strong dual of 

a semireflexive space must not be quasi-complete, since we 

have 
d[tl, ,.d 0;, d 0 =do a =d'. 

(We denote by d 0 , resp., ~a the quasi-complete, resp., 

weakly quasi-complete hull of d0 ) • 

Corollary 3.3 

In the non-separable case closed domains ~ exist with 

(i) 1) [ t] is not reflexive (and not barrelled, not bornolo-

gical either), 

(ii) ~'[t'] is not semireflexive and even not quasi-complete. 

The problem is unsolved, whether for separable Hilbert 

spaces any closed domain 1}[ t] becomes reflexive. 
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Finally we investigate the situation which we had in our 

example 3 for arbitrary closed domains. We denote by r(~') 

the Mackey topology on 1l with respect to the dual pair 

(1l,1l').Then by (ref!
41 

§23,8 (1)) the following holds: 

Let ~ [ r ] be semireflexi ve and ·~' 1 
the quasi -complete 

hull of the strong dual space~'[{3(1l)l.Thenfll:r(!lf")] is semi-

reflexive too, and its strong dual space is the quasi-comp

lete hull of the strong dual of 1l[r]. 

Therefore, we can always increase the topology of an 

arbitrary semi-reflexive space so much that the space remains 

semireflexive, but its strong dual space becomes quasi

complete (or even complete) . If we demand besides that the 

quasi-complete hull of the strong dual space is weakly 

quasi-complete too: 

(A) ~,:~:a 

then 1J[rBf')] even is reflexive (ref/2 1 Lemma 1.13). Conse

quently, if ~[r] is semireflexive, but not reflexive, r 

is the Mackey topology, and if (A) holds, than we obtain 

for the dual spaces the sequences 

~ ,. 1)" = 1) IV • ... "' 1)2N = .. . 

~- ~ 1l"' ~ Tv~ ... ~ g;2N+t_ ... ~~ 

and an increasing sequence of topologies 

{3(1J,1J,)' f3 (1J,9J '") , ... 'f3 (1J,9J 2N+1, ... ' f3 ( ~ '~). 
' for which 1l is semireflexive (ref/41 §23,8). Just now we 

have seen that the topology {3(~.~) even is reflexive. In 

our example we had 

d[tJ'~d0 ;, d'"=(d 0)"=d[rE!> J',.d'=~· 
i.e., d[t"],.d[f3(d[t]')) is already reflexive, and these

quences break off. It is an open problem, whether these 

sequences break off always, and it is unknown, whether spaces 
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exist at all, for which only a higher dual space than the 

third coincides with the quasi-complete hull of the strong 
r:::-1 

dual. Sufficient for :D"'-~' is the following condition 

(B) Every J3 (:D '*,:D)-bounded subset ~ C :D "' is contained 

in the completi<;!!....of "!., J3(:D ',:C)-bounded subset 

~ 1 c :iJ': ~ c ~1 [J3(:D)]. 

Then these sets have the same polars, and the topologies 

J3(:C,:C') andj3(:iJ,:D'") coincide. Therefore, they are already 

reflexive. Finally we give some positive statements con

cerning the reflexivity in the case of a closed domain. 

If ~[ t ] is not reflexive, i.e., t < J3 (:D, :iJ') =: t" 

holds, then we have :D' \: :D "'. 

Lemma 3.4 

Let :D be a closed domain and t "' the strong topology 

J3 (:D '", :D).Then t '"I =-t' holds 
:i)' 

Proof: t'", resp., t' are the topologies of uniform conver- · 

gence on all t "- , resp. , t - bounded subsets in :D. :D [ t ] is se

quentially complete, therefore, the bounded and the strongly 

bounded sUbsets coincide (ref. 141 §20, 11 (8)). 

Lemma 3.5 

Let:D be closed with the property(A). Then :D[t"] is 

semireflexive. 

Proof: The quasi-complete hull~~ contains (:iJ')" (ref.
141

, 

§23,2 (3)). The assertion follows by the mentioned statement 
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1::"1 
by 1 4 ~ since besides (:iJ,:D') the dual pair (T, :D' ) is semi-

reflexive, too. Therefore, (:iJ,:iJ'") is semireflexive. 

Lemma 3.6 

Let :D be closed with the properties (A) and (B). Then 

:D[t"] is reflexive. 

Proof: On account of Lemma 3.5 it is sufficient to show 

that the strong topology t (4
): •J3 (:iJ ,:D "') coincides with 

t,- J3 (:iJ, :i)' ). But this follows by (B) . 
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