

Объединенный институт ядерных исследований

дубна

8/10 - 79 E5 - 12420

M.Friedrich, G.Lassner

RIGGED HILBERT SPACES AND TOPOLOGIES ON OPERATOR ALGEBRAS

E5 - 12420

M.Friedrich,* G.Lassner

RIGGED HILBERT SPACES AND TOPOLOGIES ON OPERATOR ALGEBRAS

Submitted to "Reports on Math.Phys."

* Sektion Mathematik, Karl-Marx-Universität, Leipzig DDR.

> объединенный институт паврных вогледований БИБ ИР/ОТЕКА

Фридрих М., Ласснер Г.

E5 - 12420

Оснащенные гильбертовы пространства и топологии в операторных алгебрах

Любой Ор*-алгебре d неограниченных операторов соответствует оснащенное гильбертово пространство

 $\mathfrak{D}[\mathfrak{t}_{\mathfrak{Q}}] \to \mathfrak{H} \to \mathfrak{D}'[\mathfrak{t}^{\mathfrak{Q}}]$ такое, что все операторы A G \mathfrak{Q} являются непрерывными относительно топологий $\mathfrak{t}_{\mathfrak{Q}}$ и $\mathfrak{t}^{\mathfrak{Q}}$. Это приводит к различным топологиям равномерной сходимости на каждом ограниченном множестве в операторной алгебре \mathfrak{Q} , которые исследованы в этой статье. В частности, полные результаты получены, если $\mathfrak{D}[\mathfrak{t}_{\mathfrak{Q}}]$ является рефлексивным пространством.

Работа выполнена в Лаборатории теоретической физики, ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1979

Friedrich M., Lassner G.

E5 - 12420

Rigged Hilbert Spaces and Topologies on Operator Algebras

To any Op *-algebra \mathfrak{A} of unbounded operators there corresponds a rigged Hilbert space $\mathfrak{D}[t_{\mathfrak{A}}] \to \mathfrak{H} \to \mathfrak{D}'[t^{\mathfrak{A}}]$ so that all operators $A \in \mathfrak{A}$ are continuous with respect to the topologies $t_{\mathfrak{A}}$, $t^{\mathfrak{A}}$. This leads to different topologies of uniformly bounded convergence on the operator algebra \mathfrak{A} , which are investigated in this paper. Particularly consistent results are obtained if $\mathfrak{D}[t_{\mathfrak{A}}]$ is a reflexive space.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

1. INTRODUCTION

In a previous paper ${}^{2/}$ we have investigated rigged Hilbert spaces $\mathfrak{I}[\mathfrak{t}_{\mathfrak{Q}}] \rightarrow \mathfrak{H} + \mathfrak{L} \mathfrak{I}[\mathfrak{t}^{\mathfrak{Q}}]$ associated with algebras \mathfrak{A} of operators on a dense domain \mathfrak{D} of a Hilbert space \mathfrak{H} . In this paper we show that the so-called quasi-uniform topologies on algebras of unbounded operators ${}^{/5,6/}$ are related to this rigged Hilbert space structure. These quasi-uniform topologies on operator agrebras have found different applications in the algebraic approach to quantum field theory and statistics (see, e.g., ${}^{/3,7,8,12/}$). Particularly consistent results are ontained if $\mathfrak{D}[\mathfrak{t}_{\mathfrak{Q}}]$ is a reflexive space. The problem of reflexity of $\mathfrak{S}[\mathfrak{t}_{\mathfrak{Q}}]$ is regarded in the last section, where especially a counterexample is given and some open questions are formulated.

Let us recall some basic definitions of ref.⁽²⁾. For a dense linear subspace \mathfrak{D} of a Hilbert space \mathbb{H} over the field \mathbb{C} of complex numbers with the scalar product $\langle \cdot, \cdot \rangle$ we denote by $\mathfrak{L}^{+}(\mathfrak{D})$ the set of all linear operators $A \in \operatorname{End} \mathfrak{D}$, for which an $A^{+} \in \operatorname{End} \mathfrak{D}$ exists with $\langle \phi, A\psi \rangle = \langle A^{+}\phi, \psi \rangle$ for all $\phi, \psi \in \mathfrak{D}$. $\mathfrak{L}^{+}(\mathfrak{D})$ is a *-algebra with respect to the usual algebraic operations with operators and the involution $A \longrightarrow A^{+}$. A *-subalgebra \mathfrak{A} containing the identity operator is called Op *-algebra. An Op * -algebra \mathfrak{A} over \mathfrak{D} generates in a natural way a topology $t_{\mathfrak{A}}$ on \mathfrak{D} by all seminorms $||\phi||_{\hat{\mathbf{C}}} = ||\mathbf{A}\phi||, \phi \in \mathfrak{D}$, where A runs over all operators of $\hat{\mathbf{C}}$. $\mathfrak{D}[\mathbf{t}_{\hat{\mathbf{C}}}]$ is continuously imbedded into \mathcal{H} . The strong dual space of $\mathfrak{D}[\mathbf{t}_{\hat{\mathbf{C}}}]$ is denoted by $\mathfrak{D}'[\mathbf{t}^{\hat{\mathbf{C}}}]$. We write the linear functionals $\mathbf{F} \in \mathfrak{D}'$ on $\phi \in \mathfrak{D}$ in the form $\langle \mathbf{F}, \phi \rangle$ and equip \mathfrak{D}' with the (anti-) linear structure defined by $\langle \lambda \mathbf{F} + \mu \mathbf{G}, \phi \rangle =$ $= \mathcal{I} \langle \mathbf{F}, \phi \rangle + \overline{\mu} \langle \mathbf{G}, \phi \rangle$. Then $\psi \rightarrow \mathbf{F}_{\psi}$, $\langle \mathbf{F}_{\psi}, \phi \rangle = \langle \psi, \phi \rangle$ for $\psi \in \mathcal{H}$, defines a linear imbedding of \mathcal{H} into \mathfrak{D}' . So we get in dependence on $\hat{\mathbf{C}}$ the rigged Hilbert space

D[t a] CH CD'[ta].

An Op *-algebra \mathfrak{A} is called closed if $\mathfrak{M}\mathfrak{t}_{\mathfrak{A}}$ is a complete space. \mathfrak{D} is called a closed domain if $\mathfrak{L}^+(\mathfrak{D})$ is closed on \mathfrak{D} . Then we have the following Lemma (²² Lemma 7,8^{/11/}).

Lemma 1.1

Let \mathfrak{D} be a closed domain and \mathfrak{A} a closed Op*-algebra on \mathfrak{D} . i) $\mathfrak{D}[\mathfrak{t}_{\mathfrak{Q}}]$ is semi-reflexive.

ii) If \mathfrak{A}_1 is yet another closed Op*-algebra on \mathfrak{D} , then $\mathfrak{t}_{\mathfrak{A}}$ and $\mathfrak{t}_{\mathfrak{A}_1}$ have the same bounded sets. Therefore, the dual topologies $\mathfrak{t}^{\mathfrak{A}}, \mathfrak{t}^{\mathfrak{A}_1}$ coincide on $\mathfrak{D}[\mathfrak{t}_{\mathfrak{A}}]' = \mathfrak{D}[\mathfrak{t}_{\mathfrak{A}_1}]'$, and we denote it by $\mathfrak{t}' = \mathfrak{t}^{\mathfrak{A}} = \mathfrak{t}^{\mathfrak{A}_1}$.

2. TOPOLOGIES OF UNIFORMLY BOUNDED CONVERGENCE ON (

For two locally convex spaces E, F the topology of uniformly bounded convergence (10 , ch. III, 3) on the space $\mathfrak{L}(E,F)$ of continuous linear mappings of E into F is defined by all semi-norms

$$q_{\alpha, M} (A) = \sup_{\phi \subseteq M} p_{\alpha} (A \phi),$$

where p_{α} runs over all semi-norms defining the topology of F and M runs over all bounded sets in E.

If \mathfrak{A} is an $Op *-algebra over the domain <math>\mathfrak{D}$, then we have on \mathfrak{D} three topologies $\mathfrak{A} \geq || \cdot || \geq t^{\mathfrak{A}}$ in correspondence with the rigged Hilbert space defined by \mathfrak{A} . The system of $t^{\mathfrak{A}}_{\mathfrak{A}}$ bounded sets will be denoted by $\mathfrak{M}_{\mathfrak{A}}$ and the system of $t^{\mathfrak{A}}_{\mathfrak{A}}$ bounded sets by $\mathfrak{M}^{\mathfrak{A}}$.

Lemma 2.1

An Op *-algebra (is a subspace of the following five linear spaces of continuous linear mappings with the corresponding topologies of uniformly bounded convergence, defined by the given seminorms:

$$\begin{split} & \mathfrak{L}(\mathfrak{D}[\mathfrak{t} \ \mathfrak{q} \ 1, \mathfrak{D}[\mathfrak{t} \ \mathfrak{q} \ 1)[r^{\mathfrak{D}}]: \quad ||A||^{M,B} = \sup ||BA\phi||, \ B \in \mathfrak{A}, \ M \in \mathfrak{M}_{\mathfrak{A}} \\ & \phi \in M \\ \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t} \ \mathfrak{q} \ 1, \mathfrak{D}[||\cdot||])[r^{\mathfrak{D}}]: \quad ||A||^{M} = \sup ||A\phi||, \ M \in \mathfrak{M}_{\mathfrak{A}} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t} \ \mathfrak{q} \ 1, \mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}])[r^{\mathfrak{D}}]: \quad ||A||^{M} = \sup ||A\phi||, \ M \in \mathfrak{M}_{\mathfrak{A}} \\ \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t} \ \mathfrak{q} \ 1, \mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}])[r^{\mathfrak{D}}]: \quad ||A||^{M} = \sup ||A\phi||, \ M \in \mathfrak{M}_{\mathfrak{A}} \\ \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t} \ \mathfrak{q} \ 1, \mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}])[r^{\mathfrak{D}}]: \quad ||A||^{M} = \sup ||A^{+}\phi||, \ M \in \mathfrak{M}_{\mathfrak{A}} \\ \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}], \mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}])[r^{\mathfrak{D}}_{\mathfrak{D}}]: \quad ||A||^{M} = \sup ||A^{+}\phi||, \ M \in \mathfrak{M}_{\mathfrak{A}} \\ \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}], \mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}])[r^{\mathfrak{D}}_{\mathfrak{D}}]: \quad ||A||^{M} = \sup ||A^{+}\phi||, \ M \in \mathfrak{M}_{\mathfrak{A}}, \mathfrak{M} \in \mathfrak{M}_{\mathfrak{A}} \\ \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}], \mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}])[r^{\mathfrak{D}}_{\mathfrak{D}}]: \quad ||A||^{M} = \sup ||A^{+}\phi||, \ M \in \mathfrak{M}_{\mathfrak{A}}, \mathfrak{M} \in \mathfrak{M}_{\mathfrak{A}} \\ \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}], \mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}])[r^{\mathfrak{D}}_{\mathfrak{D}}]: \quad ||A||^{M} = \sup ||A^{+}\phi||, \ M \in \mathfrak{M}_{\mathfrak{A}} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{t}^{\mathfrak{A}}], \mathfrak{L}[\mathfrak{L}^{\mathfrak{A}}])[r^{\mathfrak{D}}]: \quad ||A||^{M} = \mathfrak{L}(\mathfrak{D}[\mathfrak{A}], \mathfrak{L}[\mathfrak{A}])[r^{\mathfrak{D}}] \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}], \mathfrak{L}[\mathfrak{A}])[r^{\mathfrak{D}}] \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}]} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}], \mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}]} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}]} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}] \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}]} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}]} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}]} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}] \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}]} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}]} \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}] \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}] \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}] \\ & \mathfrak{L}(\mathfrak{D}[\mathfrak{A}])[r^{\mathfrak{D}] \\ & \mathfrak{L}$$

It can be proven by simple calculations that \mathfrak{A} is a subset of $\mathfrak{L}(\mathfrak{D}[\mathfrak{t}_{\mathfrak{A}}], \mathfrak{D}[\mathfrak{t}_{\mathfrak{A}}])$ and of $\mathfrak{L}(\mathfrak{D}[\mathfrak{t}_{\mathfrak{A}}], \mathfrak{D}[\mathfrak{t}_{\mathfrak{A}}])$. For the other three spaces it is then a consequence of the relation between the topologies $\mathfrak{t}_{\mathfrak{A}} \geq || \cdot || \geq \mathfrak{t}^{\mathfrak{A}}$. If r

is a locally convex topology given by the semi-norms $||A||^{\alpha}$, {a} a set of indices, on an Op * -algebra \mathfrak{A} , then by r^+ we denote the topology on \mathfrak{A} defined by the semi-norms $||A^+||^{\alpha} = ||A||_{+}^{\alpha}$. The involution $A \rightarrow A^+$ is then a continuous mapping of $\mathfrak{A}[r]$ onto $\mathfrak{A}[r^+]$. With the help of this notation we get as a consequence of Lemma 2.1 the following relations between the topologies on \mathfrak{A} :

$$\frac{\text{Lemma 2.2}}{r^{(\mathfrak{D})} \leq r^{\mathfrak{D}}}$$
i) $r_{\mathfrak{D}} \leq r^{(\mathfrak{D})} \leq r_{\mathfrak{D}}$

$$r_{\mathfrak{D}} \leq r_{\mathfrak{D}}$$
ii) $r_{\mathfrak{D}}^{+} = r_{\mathfrak{D}}$

$$iii)(r^{(\mathfrak{D})})^{+} = r^{(\mathfrak{D})}$$

The second and the fourth topology $r^{(\mathfrak{D})}$ and $r^{(\mathfrak{D})}_{+}$ of Lemma 2.1 are connected by the continuity of the involution. For the case that $\mathfrak{D}[\mathfrak{t}_{\mathcal{O}}]$ is a reflexive space we have also such a relation between the first and the fifth topology $r^{\mathfrak{D}}$ and $r^{\mathfrak{D}}_{0}$, as we shall see below. In general this symmetry is broken. In what follows we shall study this situation. First we state the following Lemma:

Lemma 2.3

Let $\mathcal{C}(\mathfrak{D})$ be an arbitrary Op *-algebra and $K = \{\phi \in \mathfrak{D}, ||\phi|| \le 1\}$ the unit ball in \mathfrak{D} . Then all subsets of the form $A(K), A \in \mathfrak{C}$, are t \mathcal{C} -bounded in \mathfrak{D} . Proof: Every $t^{(1)}$ -semi-norm on A(K) is bounded. In fact: $\sup_{\phi \in K} p_{M} (A\phi) = \sup_{\phi \in K, \psi \in M} |\langle A \phi, \psi \rangle| = \sup_{\phi \in K, \psi \in M} |\langle \phi, A^{+}\psi \rangle| = d\phi \in K, \psi \in M$ $= \sup_{\chi \in A^{+}M} ||\chi|| \le C_{A^{+}M} < \infty,$

since for $M \subseteq \mathbb{M}_{\widehat{\mathbb{C}}}$ it is $A^{\dagger}M \subseteq \mathbb{M}_{\widehat{\mathbb{C}}}$ for all $A \subseteq \widehat{\mathbb{C}}$. The inversion of this Lemma is not true even in the case of closed algebras. To it we refer to example 3 of ref.^{2/}. Example:

Let \mathcal{H}_0 , \mathcal{H}_1 ,... be a sequence of Hilbert spaces, and let in every \mathcal{H}_n be given an unbounded selfadjoint operator $T_m \ge 1$. We define $\mathfrak{D}_n = \mathfrak{D}(T_n^k)$ and form $k \ge 0$

 $\mathcal{H} = \sum_{n \ge 0} \mathcal{H}_n$ (Hilbert direct sum) and

 $\mathfrak{D} = \sum_{n \ge 0} \mathfrak{D}_n \qquad (algebraic direct sum).$

Then \mathfrak{D} is dense in \mathfrak{H} . Every vector $\phi \in \mathfrak{D}$, $\phi = \sum \phi_n, \phi_n \in \mathfrak{D}_n$, has only a finite number of components which are different from zero. For an arbitrary sequence $\{a_n\}_{n=0,1,..}$ of complex numbers and an arbitrary sequence $\{k_n\}_{n=0,1,..}$ of non-negative integer numbers we define by

$$\mathbf{A}\phi = \sum_{\substack{n \ge 0}} a_n T_n^{\mathbf{A}_n} \phi_n$$

the operator

$$\mathbf{A} = \sum_{n \ge 0}^{\infty} a_n \mathbf{T}_n^{\mathbf{K}_n} \quad \text{on } \mathcal{L},$$

The sum of this definition breaks off for every $\phi \in \Omega$. Now we consider

$$\begin{aligned} \mathbf{\hat{G}}_1 &= \{ \mathbf{A} = \sum_{n \ge 0} \alpha_n \mathbf{T}_n^{\mathbf{k}_n}, \{\alpha_n\}, \{\mathbf{k}_n\} \text{ arbitrary} \\ \mathbf{\hat{G}}_2 &= \{ \mathbf{A} = \sum_{n \ge 0} \alpha_n \mathbf{T}_n^{\mathbf{k}_n}, \{\alpha_n\} \text{ arbitrary}, \{\mathbf{k}_n\} \text{ with } \mathbf{k}_n \le \mathbf{N}(\mathbf{A}) \}, \end{aligned}$$

6

where N(A) is a bound for the grads k_r , which depends on A. $\mathfrak{A}_1 \quad \mathfrak{A}_2$ are closed Op * -algebras over D. They generate on D D' the same strong topologyt'. But for an operator $A_1 \in \mathfrak{A}_1 \setminus \mathfrak{A}_2$ we can forms the set $A_1(K)$ which cannot be absorbed by any set $A_2(K)$, $A_2 \in \mathfrak{A}_2$.

Lemma 2.4

For an arbitrary $Op *-algebra \ 0 \ the following is true:$ $(i) <math>(r \)^+ \leq r_0^{\ }$ (ii) $(r_0^{\ })^+ \geq r^{\ }$

The equalities hold, if the sets A(K), $A \in \mathcal{C}$, form a basis of the t-bounded subsets in \mathfrak{D} .

Proof: If every t^{Ω} -bounded set \Re is contained in a set B(k) then we have

$$||A||_{\mathfrak{N}}^{m} = \sup_{\substack{\phi \in M, \psi \in \mathfrak{N} \\ \phi \in M, \psi \in \mathfrak{N}}} |\langle \phi, A\psi \rangle| \leq \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M, \psi \in B(K) \\ \phi \in M, \chi \in K}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M, \chi \in K \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in M, \psi \in B(K) \\ \phi \in M}} |\langle \phi, A\psi \rangle| = \sup_{\substack{\phi \in M, \psi \in B(K) \\ \phi \in B(K) \\ \phi \in M, \psi \in B(K) \\ \phi \in B(K$$

for a suitable $B \in \mathbb{C}$ and every $M \in \mathbb{M}_{\mathbb{C}}$, $\mathcal{N} \in \mathbb{M}^{\mathbb{C}}$. So we can estimate every $r_0^{\mathfrak{D}}$ seminorn by a suitable $(r^{\mathfrak{D}})^+$ -seminorm. On the other hand, $r_0^{\mathfrak{D}}$ is not coarser than $(r^{\mathfrak{D}})^+$ in consequence of the foregoing Lemma. (ii) can be proved analogously. Thus we can complete the assertion (i) in Lemma 2.2 as follows:

$$(*) r_{\mathfrak{D}} \leq r^{(\mathfrak{D})} \leq r^{\mathfrak{D}} \leq (r_{0}^{\mathfrak{D}})^{\dagger}$$
$$r_{+}^{(\mathfrak{D})} \leq (r^{\mathfrak{D}})^{\dagger} \leq r_{0}^{\mathfrak{D}}$$

Now we are going to show that for reflexive $\mathfrak{D}[\mathfrak{t}_{\mathfrak{A}}]$ the topologies $(r^{\mathfrak{D}})^{\dagger}$ and $r_{\mathfrak{D}}^{\mathfrak{D}}$ coincide. First we prove the following Lemma:

Lemma 2.5

Let \mathbb{G} be an Op *-algebra and K the unit ball in \mathfrak{D} . For any $A \subseteq \mathbb{G}$ we regard the set A(K) as a subset of \mathfrak{D}' and form the bipolar $A(K)^{00}$ in \mathfrak{D}' with respect to the dual pair $(\mathfrak{D}', \mathfrak{D})$. Then the sets $A(K)^{0,0}$, $A \subseteq \mathbb{G}$, form a basis of the $t_{\mathbb{G}}$ -equicontinuous subsets in \mathfrak{D}' .

Proof: In the dual pair $(\mathfrak{D}', \mathfrak{D})$ we consider the sets A(K), $A \in \mathfrak{A}$, as subsets of \mathfrak{D}' and their polars in \mathfrak{D} :

$$\begin{split} \mathfrak{D} > \mathbf{A}(\mathbf{K})^{0} = \{ \phi \in \mathfrak{D} : \sup_{\psi \in \mathbf{A}(\mathbf{K})} | < \psi, \phi > | \le 1 \} = \{ \phi \in \mathfrak{D} : \sup_{\chi \in \mathbf{K}} | < \mathbf{A}_{\chi}, \phi > | \le 1 \} = \{ \phi \in \mathfrak{D} : \sup_{\chi \in \mathbf{K}} | < \chi, \mathbf{A}^{+} \phi > | \le 1 \} = \{ \phi \in \mathfrak{D} : ||\mathbf{A}^{+} \phi || \le 1 \} = \{ \phi \in \mathfrak{D} : ||\phi|| \ge 1 \} = \{ \phi \in \mathfrak{D} : ||\phi|| \ge 1 \} = \{ \phi \in \mathfrak{$$

Consequently, the sets $A(K)^0$, $A \in \mathcal{C}$, form at \mathcal{C} -neighbourhood base of zero. Thet \mathcal{C} -equicontinuous subsets in \mathcal{D}' are those subsets A', for which exists a t \mathcal{C} -neighbourhood of 0 $U \subset \mathcal{D}$ with $A' \subset U^0$ in \mathcal{D}' (^{'9'}, ch. II,4). Therefore, the sets $A(K)^{00}$, $A \in \mathcal{C}$, form a basis of the t \mathcal{C} -equicontinuous subsets in \mathcal{D}' .

Lemma 2.6

Let \mathfrak{A} be a closed Op * -algebra and K the unit ball in \mathfrak{D} . Then the bipolars $A(K)^{00}$, $A \in \mathfrak{A}$, form a basis of the bounded subsets in \mathfrak{D}' if and only if the domain $\mathfrak{D}[t_{\mathfrak{A}}]$ is reflexive.

Proof: $\mathfrak{D}[\mathfrak{t}_{\widehat{\mathfrak{A}}}]$ is reflexive if and only if it is barrelled ref.^{2/} Lemma 13). The barrels in \mathfrak{D} are exactly the polars of the $\sigma(\mathfrak{D})$ -bounded subsets in \mathfrak{D}' (ref.^{9/} ch. IV, prep. 1). On account of the semi-reflexivity of $\mathfrak{N}[\mathfrak{t}_{\widehat{\mathfrak{A}}}]$ the weakly and

8

the strongly bounded subsets in \mathfrak{D}' coincide. Therefore, every barrel absorbs a $t_{\mathfrak{Q}}$ -neighbourhood of 0 if and only if every bounded subset in \mathfrak{D}' is absorbed from a $t_{\mathfrak{Q}}$ -equicontinuous subset. By Lemma 2.5 this is exactly the case if the sets $A(K)^{00}$ form a basis of the bounded subsets in \mathfrak{D}' .

Corollary 2.7

Let \mathfrak{A} be a closed Op *-algebra and suppose $\mathfrak{D}[t_{\mathfrak{A}}]$ is reflexive. Then the t'-closures in \mathfrak{D} of the sets A(K), $A \in \mathfrak{A}$, form a basis of the t'-bounded subsets in \mathfrak{D} .

Proof: topology t'is consistent with the duality $(\mathfrak{D}, \mathfrak{D}')$ since by Lemma 1.1 $\mathfrak{P}[t_{\widehat{\mathbf{C}}}]$ is semireflexive, and \mathfrak{D} is dense in $\mathfrak{D}'[t']$ (ref.^{2/}, Folgerung 12). The sets $\mathbf{A}(\mathbf{K}), \mathbf{A} \in \widehat{\mathbf{C}}$, are convex, therefore, $\mathbf{A}(\mathbf{K})^{00}|_{\widehat{\mathbf{O}}} = \overline{\mathbf{A}(\mathbf{K})} \sigma(\widehat{\mathcal{D}}, \widehat{\mathcal{D}}) = \overline{\mathbf{A}(\mathbf{K})} t'$.

Corollary 2.8

Let \mathfrak{A} be a closed $Op*-algebra and suppose <math>\mathfrak{P}[\mathfrak{t}_{\mathfrak{A}}]$ is reflexive. Then the topologies $r^{\mathfrak{P}}$ and $r_{\mathfrak{O}}^{\mathfrak{P}}$ are dual to each other, consequently, the lines in(*) break off.

Proof: The sets $\overline{A(K)}^{t}$ form a basis of the t'-bounded subsets in \mathfrak{D} . Since every operator $A \in \mathfrak{A}$ is (t', t')-continuous (Lemma 2.1), we have for every $r_{\mathfrak{D}}^{\mathfrak{D}}$ semi-norm $||A||_{\mathfrak{N}}^{\mathfrak{M}} = \sup_{\mathfrak{G} \in \mathfrak{M}, \psi = \mathfrak{N}} |\langle \phi, A\psi \rangle| =$ $= ||A||_{\mathfrak{N}}^{\mathfrak{M}}$ for all $\mathfrak{M} \in \mathfrak{M}_{\mathfrak{A}}$ and $\mathfrak{N} \in \mathfrak{M}^{\mathfrak{A}}$, and the Corollary follows by analogous considerations as in the proof of Lemma 2.4. Finally we consider the maximal Op* -algebra $\mathfrak{L}^{+}(\mathfrak{D})$. We write $t = t_{\mathfrak{L}^{+}}$. Let $\mathfrak{L}(\mathfrak{D}, \mathfrak{D}')$ be the linear space of all continuous linear mappings of $\mathfrak{D}[t]$ into $\mathfrak{D}'[t']$. Further we write $\mathfrak{L}(\mathfrak{D}) = \mathfrak{L}(\mathfrak{D}, \mathfrak{D})$ and $\mathfrak{L}(\mathfrak{D}') = \mathfrak{L}(\mathfrak{D}', \mathfrak{D}')$. In the case that $\mathfrak{D}[t]$ is reflexive we can give an interesting description of $\mathfrak{L}^{+}(\mathfrak{D})$ by the following Lemma ^{/8/}:

Lemma 2.9

Let $\mathfrak{D}[\mathfrak{t}]$ be a reflexive space. Then (i) if $A \in \mathfrak{L}(\mathfrak{D}, \mathfrak{D}')$ then the adjoint operator $A^+ \in \mathfrak{L}(\mathfrak{D}, \mathfrak{D}')$ is uniquely defined by $\langle A \phi, \psi \rangle = \langle \overline{A^+ \psi}, \phi \rangle$ and $A \to A^+$ is an involution on $\mathfrak{L}(\mathfrak{D}, \mathfrak{D}')$, (ii) $\mathfrak{L}(\mathfrak{D})$, $\mathfrak{L}(\mathfrak{D}') \subset \mathfrak{L}(\mathfrak{D}, \mathfrak{D}')$ and $\mathfrak{L}(\mathfrak{D})^+ = \mathfrak{L}(\mathfrak{D}')$, (iii) $\mathfrak{L}^+(\mathfrak{T})$ is a subspace of $\mathfrak{L}(\mathfrak{T})$ and it is $\mathfrak{L}^+(\mathfrak{D}) = \mathfrak{L}(\mathfrak{T}) \bigcap \mathfrak{L}(\mathfrak{T}')$.

3. THE PROBLEM OF REFLEXIVITY OF THE DOMAIN $\mathfrak{D}[t_{\mathcal{O}}]$

Till now we have stated that in the case of a closed Op*-algebra (1 the domain $\mathfrak{P}[\mathfrak{t}_{\mathfrak{A}}]$ is always complete and semireflexive, whereas the strong dual $\mathfrak{P}'[\mathfrak{t}']$ is barrelled and bornological (ref.^{2/}, Folg. 9, 11). The example 3 of ref.^{2/} shows that for sufficient meagre closed algebras (1 $\mathfrak{P}[\mathfrak{t}_{\mathfrak{A}}]$ does not need to be barrelled and, therefore, reflexive, and $\mathfrak{P}'[\mathfrak{t}']$ must not be semireflexive. There arises the question, whether at the very last for the maximum Op*algebra $\mathfrak{L}^+(\mathfrak{P})$ $\mathfrak{P}[\mathfrak{t}]$ becomes a reflexive space. We show by a counterexample that even this in general is not true.

Example:

Let \mathcal{H} be the non-separable Hilbert space of all quadratic summable number-sequences which potency is more than countable, and \mathfrak{D} the subspace of all finite number-sequences: $\mathcal{H} = \ell^2 = \{\psi : \psi = \sum_{\alpha \in \mathbf{I}} \mathbf{x}_{\alpha} \phi_{\alpha}, \sum_{\alpha \in \mathbf{I}} |\mathbf{x}_{\alpha}|^2 < \infty, \text{ card } \mathbf{I} = \mathbf{\varphi} > \mathfrak{L}_0;$ $(\phi_{\alpha})_{\alpha \in \mathbf{I}}$ is a complete orthonormal basis $\{\psi = \mathbf{x}_{\alpha} \phi_{\alpha}\} = \sum_{\alpha \in \mathbf{I}} \mathbf{K}_{\alpha}, \mathbf{K}_{\alpha} = \mathbf{C}.$

Then the maximum Op *-algebra $\mathfrak{L}^+(d)$ is isomorphic with the set of all matrices whose rows and columns have the potency φ , but in each row and column only a finite number of elements different from zero. Obviously, d is a closed domain. $\mathfrak{L}^+(d)$ generates on d the algebra-topology t which is given by the seminorms

$$\left\|\psi\right\|_{A} = \left(\sum_{\alpha \in I} \left|\sum_{\beta \in I} \mu_{\alpha\beta} x_{\beta}\right|^{2}\right)^{1/2}, \ \psi \in d, \ A = (\mu_{\alpha\beta})_{\alpha\beta \in I} \in \mathcal{L}^{+}(d).$$

It is easy to see that the topology t is given already by the diagonal-operators:

$$\begin{split} ||\psi||_{B} &= (\sum_{\alpha \in I} |b_{\alpha}|^{2} |x_{\alpha}|^{2})^{1/2} \quad \psi \in d , \quad B = (b_{\alpha})_{\alpha \in I} \\ \text{Furthermore we consider on d the topologies of the locally} \\ \text{convex direct sum } r_{\oplus} \quad \text{and of the topological direct sum } r. \\ \text{Let } \{U_{\beta}^{\alpha}\} \quad \text{be a neighbourhood base of 0 in every } K_{\alpha}, \text{then } r_{\oplus} \\ \text{ is defined by the base of neighbourhoods } \{ \underset{\alpha \in I}{\text{aco}} U_{\beta}^{\alpha} \}, r \text{ on the} \\ \text{other hand by } \{ \sum_{\alpha \in I} \oplus U_{\beta}^{\alpha} \} \text{ (ref.}^{/4/} \text{ §18, 5). We have } r_{\oplus} \geq r \text{,} \\ \text{ and in the countable case both topologies coincide. But in} \\ \text{our example } r_{\oplus} \text{ is different from } r \text{ (ref.}^{/4/}, \text{§18, 5(8)).} \\ \text{Since the sets } U_{\beta}^{\alpha} = \{x_{\beta} \in C : |x_{\beta}| \leq \epsilon_{\beta}, \epsilon_{\beta} > 0 \} \text{ form a neighbour-hood base of zero in every one-dimensional space } K_{\alpha} = C, \text{ the} \\ \text{topology } r_{\oplus} \text{ is given by} \end{split}$$

$$P_{(\lambda_{\alpha})}(\psi) = \sum_{\alpha \in I} |\lambda_{\alpha}| |\mathbf{x}_{\alpha}|, \quad \psi \in \mathbf{d},$$

where the $(\lambda_a)_{a \in I}$ are elements of the space of all numbersequences with the potency φ d'. It is easily to show that r_{\oplus} coincides with the strongest locally convex topology $\beta(d,d')$. The topology r of the topological direct sum has the seminorms

$$p_{(\varphi_{\alpha})}(\psi) = \sup_{\alpha \in I} |\rho_{\alpha}| |\mathbf{x}_{\alpha}|, \quad \psi \in \mathbf{d}, \quad (\rho_{\alpha})_{\alpha \in I} \in \mathbf{d}'.$$

Lemma 3.1

We have $r_{\phi} > t > r$ on d.

Proof: By (ref. $^{1/}$ Lemma 3.3) in the contable case the t-seminorms

 $\mathbf{p}_{(\mathbf{b}_a)}(\psi) = \left(\sum_{a \in \mathbf{I}} |\mathbf{b}_a|^2 |\mathbf{x}_a|^2\right)^{1/2} (\mathbf{b}_a)_{a \in \mathbf{I}} \in \mathbf{d}'$

define the topology of the locally convex direct sum, otherwise not. Clearly, the topology t is stronger than r: $|\psi = (\mathbf{x}_a) \in \mathbf{d}$; $\sup_{a \in \mathbf{I}} |\rho_a| |\mathbf{x}_a| \leq 1 \} \supset \{\psi = (\mathbf{x}_a) \in \mathbf{d}; (\sum_{a \in \mathbf{I}} |\rho_a|^2 |\mathbf{x}_a|^2) \leq 1\}$ on the other hand, the t-neighbourhood $\mathbf{U}_1^t = \{\psi = (\mathbf{x}_a) \in \mathbf{d}; \sum_{\substack{a \in \mathbf{I} \\ a \in \mathbf{I}}} |\mathbf{x}_a|^2 \leq 1\}$, does not contain any r-neighbourhood $\mathbf{U}_{(\rho_a)}^r = \{\psi = (\mathbf{x}_a) \in \mathbf{d}; \sup_{a \in \mathbf{I}} |\rho_a| |\mathbf{x}_a| \leq 1\}, (\rho_a) \in \mathbf{d}'$. In fact, we have $\rho_a \neq 0$ for all $a \in \mathbf{I}$. Since card $\mathbf{I} > \mathbf{X}_{\bullet}$ we can find real numbers $\epsilon_1 > \epsilon_0 > 0$ such that $\epsilon_1 > |\rho_a| > \epsilon_0$ holds for more than countable many indices $a \in \mathbf{I}$. Therefore, in $\mathbf{U}_{(\rho_a)}^r$ always elements $\psi = (\mathbf{x}_a)$ exists with an arbitrary great $\sum_{a \in \mathbf{I}} |\mathbf{x}_a|^2$. i.e., $\psi \notin \mathbf{U}_1^t$.

Now we can formulate the main result of this section.

Lemma 3.2

The domain d[t] is not reflexive.

Proof: It is sufficient to show that the topology t is different from $\beta(d, d[t]')$. We show that this strong topology coincides with r_{\oplus} . The dual space of $d[r_{\oplus}]$ is the space d' of all number-sequences of the potency φ , but the dual space of d[r] is the subspace d'_0 of all number-sequences with only countable many components different from zero (ref. ^{/4/}, §22,5 (5)). Furthermore, we can state that the dual space of d[t] coincides with d' too. The bounded subsets in the dual spaces d', resp. d'_0 are the sets of number-sequences which components are bounded. Therefore, the bounded subsets of d' are contained in the weak completions of bounded subsets of d'_0 . Consequently, we have

 $r_{\oplus} = \beta (\mathbf{d}, \mathbf{d}') = \beta (\mathbf{d}, \mathbf{d}'_0) = \beta (\mathbf{d}, \mathbf{d}[\mathbf{t}]') > \mathbf{t},$

i.e., d[t] is not reflexive.

Moreover, the example shows that the strong dual of a semireflexive space must not be quasi-complete, since we have

 $d[t]' = d'_0 \neq d'_0 = d'_0^\sigma = d'.$ (We denote by d'_0 , resp., d'_0^σ the quasi-complete, resp.,

weakly quasi-complete hull of d_0').

Corollary 3.3

In the non-separable case closed domains \mathfrak{D} exist with (i) $\mathfrak{D}[t]$ is not reflexive (and not barrelled, not bornological either),

(ii) $\mathfrak{D}'[t']$ is not semireflexive and even not quasi-complete.

The problem is unsolved, whether for separable Hilbert spaces any closed domain $\mathfrak{D}[t]$ becomes reflexive.

Finally we investigate the situation which we had in our example 3 for arbitrary closed domains. We denote by $r(\mathfrak{D}')$ the Mackey topology on \mathfrak{D} with respect to the dual pair $(\mathfrak{D},\mathfrak{D}')$. Then by (ref. $\frac{4}{523,8}$ (1)) the following holds:

Let $\mathfrak{D}[r]$ be semireflexive and \mathfrak{D}^r the quasi-complete hull of the strong dual space $\mathfrak{D}[\beta(\mathfrak{D})]$. Then $\mathfrak{N}[r(\mathfrak{D}^r)]$ is semireflexive too, and its strong dual space is the quasi-complete hull of the strong dual of $\mathfrak{D}[r]$.

Therefore, we can always increase the topology of an arbitrary semi-reflexive space so much that the space remains semireflexive, but its strong dual space becomes quasicomplete (or even complete). If we demand besides that the quasi-complete hull of the strong dual space is weakly quasi-complete too:

(A) D'=D'^o

then $\mathfrak{D}[r(\mathfrak{D}^{*})]$ even is reflexive (ref.² Lemma 1.13). Consequently, if $\mathfrak{D}[r]$ is semireflexive, but not reflexive, r is the Mackey topology, and if (A) holds, than we obtain for the dual spaces the sequences

$$\begin{split} & \mathfrak{D} = \mathfrak{D}^{\prime\prime} = \mathfrak{D}^{\mathsf{IV}} = \dots = \mathfrak{D}^{\mathsf{2N}} = \dots \\ & \mathfrak{D}^{\prime} \subseteq \mathfrak{D}^{\prime\prime\prime} \subseteq \mathfrak{D}^{\mathsf{V}} \subseteq \dots \subseteq \mathfrak{D}^{\mathsf{2N+1}} \subseteq \dots \subseteq \mathfrak{D}^{\mathsf{2}}. \end{split}$$

and an increasing sequence of topologies

 $\beta(\mathfrak{D},\mathfrak{D}'),\beta(\mathfrak{D},\mathfrak{D}'''),\ldots,\beta(\mathfrak{D},\mathfrak{D}^{2N+1}),\ldots,\beta(\mathfrak{D},\mathfrak{D}'),$ for which \mathfrak{D} is semireflexive (ref.^{4/} §23,8). Just now we have seen that the topology $\beta(\mathfrak{D},\mathfrak{D}')$ even is reflexive. In

our example we had

 $\mathbf{d}[\mathbf{t}]' = \mathbf{d}_0' \neq \mathbf{d}''' = (\mathbf{d}_0')'' = \mathbf{d}[r_{\oplus}]' = \mathbf{d}' = \mathbf{d}_0'.$

i.e., $d[t''] = d[\beta(d[t]')]$ is already reflexive, and the sequences break off. It is an open problem, whether these sequences break off always, and it is unknown, whether spaces exist at all, for which only a higher dual space than the third coincides with the quasi-complete hull of the strong dual. Sufficient for $\mathfrak{D}^{\prime\prime\prime}$ is the following condition

(B) Every $\beta(\mathfrak{D}^{\prime\prime},\mathfrak{D})$ -bounded subset $\mathfrak{B} \subset \mathfrak{D}^{\prime\prime\prime}$ is contained in the completion of a $\beta(\mathfrak{D}^{\prime},\mathfrak{D})$ -bounded subset $\mathfrak{B}_1 \subset \mathfrak{D}^{\prime}$: $\mathfrak{B} \subset \mathfrak{B}_1[\beta(\mathfrak{D})]$.

Then these sets have the same polars, and the topologies $\beta(\mathfrak{D},\mathfrak{D}')$ and $\beta(\mathfrak{D},\mathfrak{D}''')$ coincide. Therefore, they are already reflexive. Finally we give some positive statements concerning the reflexivity in the case of a closed domain. If $\mathfrak{D}[t]$ is not reflexive, i.e., $t < \beta(\mathfrak{D}, \mathfrak{D}') = :t''$ holds, then we have $\mathfrak{D}' \subseteq \mathfrak{D}'''$.

Lemma 3.4

Let $\hat{\mathbb{T}}$ be a closed domain and t'' the strong topology $\beta(\hat{\mathbb{T}}'',\hat{\mathbb{T}}).\text{Then } t'''|_{\hat{\mathbb{T}}} = t' \text{ holds}$

Proof: t''', resp.,t' are the topologies of uniform convergence on all t''-, resp.,t-bounded subsets in \mathfrak{D} . $\mathfrak{D}[t]$ is sequentially complete, therefore, the bounded and the strongly bounded subsets coincide (ref.^{4/} §20, 11 (8)).

Lemma 3.5

Let \mathfrak{D} be closed with the property (A). Then $\mathfrak{D}[t'']$ is semireflexive.

Proof: The quasi-complete hull \mathfrak{D}' contains $(\mathfrak{D}')''$ (ref.^{4/}, §23,2 (3)). The assertion follows by the mentioned statement by $^{/4'}$, since besides $(\mathfrak{D}, \mathfrak{D}')$ the dual pair $(\mathfrak{D}, \mathfrak{D}')$ is semireflexive, too. Therefore, $(\mathfrak{D}, \mathfrak{D}''')$ is semireflexive.

Lemma 3.6

Let \mathfrak{D} be closed with the properties (A) and (B). Then $\mathfrak{D}[t^{\prime\prime}]$ is reflexive.

Proof: On account of Lemma 3.5 it is sufficient to show that the strong topology $t^{(4)} = \beta(\mathfrak{D}, \mathfrak{D}''')$ coincides with $t'' = \beta(\mathfrak{D}, \mathfrak{D}')$. But this follows by (B).

REFERENCES

- Brooks R.M. Some Algebras of Unbounded Operators. Preprint of the University of Utah (1976).
- Friedrich M., Lassner G. Angereicherte Hilbert-Räume, die zu Operatorenalgebren assoziiert sind. Wiss. Z. Karl-Marx-Univ.Math. Naturw.R., 1978, 27,3, p.245-251.
- 3. Hofmann G. JINR, E2-10763, Dubna, 1977.
- Kothe G. Topologische Lineare Raume I. Springer-Verlag, 1966.
- 5. Lassner G. Rep. Math. Phys., 1972, p.279-293.
- Lassner G. Topologien auf Op*-Algebren. Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R., 1975, 24, Jg., H.5.
- Lassner G. O*-Topologies on the Test Function Algebra. Publ. Dep. Math. Lyon, 1975, 12.1, p.25-38.
- 8. Lassner G. JINR, E17-11408, Dubna, 1978.
- 9. Робертсон А.П., Робертсон В.Д. Топологические векторные пространства. "Мир", М., 1967.
- Schaefer H.H. Topological Vector Spaces. Springer-Verlag, 1971.
- Schmudgen K. Uber einige Klassen topologischer *-Algebren unbeschrankter Operatoren im Hilbert-Raum. Dissertation B, Leipzig, Karl-Marx-Univ., 1976.

 Yngvason I. On the Algebra of Test Functions for Field Operators. Comm.Math.Phys., 1973, 34, p.315-333.

> Received by Publishing Department on April 24 1979.