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To any Op *-algebra (1 of unbounded operators thede 
corresponds a rigged Hi 1 bert space ~[ t(11-+ J{ .... ~'[ t 1 
so that all operators A~ ~are continuous with respect 
to the topologies t(j, t . This leads to different topo­
logies of uniformly bounded convergence on the operator 
algebra C1 , which are investigated in this paper. Particu­
larly consistent results are obtained if~[ t(j] is a ref­
lexive space. 
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1. INTRODUCTION 

In a previous paper 121 we have investigated rigged Hil-
(j 

bert spaces :i:[t (!] .... }{ .... ~ '[ t ] associated with algebras (! 

of operators on a dense domain~ of a Hilbert space H. In 

this paper we show that the so-called quasi-uniform topolo­

gies on algebras of unbounded operators 15·61 are related to 

this rigged Hilbert space structure. These quasi-uniform 

topologies on operator agrebras have found different appli­

cati ons in the algebraic approach to quantum field theory 

and statistics (see, e.g., 13 •7•8•121 ) • Particularly consis­

tent results are ontained if ~[t~ is a reflexive space. The 

problem of reflexity of !t[ t (1 ] is regarded in the last sec­

tion, where especially a counterexample is given and some 

open questions are formulated. 

Let us recall some basic definitions of ref / 21 . For 

a dense linear subspace ~ of a Hilbert space J{ over the 

field C of complex numbers with the scalar product < • , • > 

we denote by ~+(~ ) the set of all linear operators A~ End~. 
+ + 

for which an A ~End~ exists with <¢, AI/I > = < A ¢,1/1 ·> 

for all ¢ , 1/J ~ ~. ~ +( ~ ) is a * -algebra with respect to 

the usual algebraic operations with operators and the in­

volution A--+ A+. A * -subalgebra (! containing the identity 

operator is called Op * -algebra. An Op * -algebra (! over ~ 

generates in a natural way a topology t(j on ~ by all semi-
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norms llc/>llcc-IIA¢11, cpr;; .CJJ , where A runs over all operators 

of Cf. Cj)[ t (1] is continuously imbedded into 1{. The strong dua l 
(i 

space of CJ)[ t (1] is denoted by CJJ'[ t ] . We write the linea r 

functionals F ~ CJJ' on cf> r;; CJJ in the form <F,cf>> and equip CJJ ' 

with the (anti-) linear structure defined by <AF +fLG, cf>> 2 

=X < F.cf> > +ji. <G,cf> > . Then ljl-+ Fiji , < Fiji ,cf> >= <ljl,cf> > for ljl r;;J(, 

defines a linear imbedding of}( into CJJ'. So we get in depen­

dence on Cf the rigged Hilbert space 

CJ)[ t (1 ] c }( c CJ)' [ t (1 ] • 

An Op *-algebra (i is called closed if CJ)[ t (1] is a complete space . 

CJ) is called a closed domain if f+(CJ) ) is closed on CJ). Then 

· / 2 / I ll / we have the follow1ng Lemma ( Lemma 7,8 ) . 

Lemma 1.1 

Let CJJ be a closed domain and C! a closed Op *-algebra on CJJ . 

i) Cj)[ t cr] is semi-reflexive. 

ii) Ifd1 is yet another closed Op * -algebra on CJJ , then t(j 

and t(t have the same bounded sets. 

topolo~ies t cr. t (1 1 coincide on CJJ[t(i]' 

it by t ' = t (i = t (11 . 

Therefore, the dual 

CJJ[tcr]~ and we denote 
1 

2. TOPOLOGIES OF UNIFORMLY BOUNDED CONVERGENCE ON Cf 

For two locally convex spaces E, F the topology of uni­

formly bounded convergence ( 1 10 ~ ch. I I I , 3) on the space 

f(E,F) of continuous linear mappings of E into F is defined 

by all semi-norms 

q M (A)= sup p a (A cf> ) , 
a, cj>t;, M 
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where Pa runs over all semi-norms defining the topology 

o f F and M runs over all bounded sets in E . 

If Cf is an Op * -algebra over the domain CJJ, then we have 

o n CJJ three topologies tee~ II· 11 ~ t cr in correspondence with 

the rigged Hilbert space defined by Cf.The system of tee­
bounded sets will be denoted by m(i and the system of t(i 

bounded sets by md. 

Lemma 2.1 

An Op * -algebra Cf is a subspace of the following five 

linear spaces of continuous linear mappings with the cor­

responding topologies of uniformly bounded convergence, 

defined by the given seminorms: 

f (CJJ [ t (j ], Cj) [ t (1]) [r Cj) ] : IIA II M,B 2 sup II BA cf> II • B r;;(1 ' M r;; m (1 

f(CJ)[ t (j] , CJ)[ 11· 11 ])[r (CJ)) ]: 

(j 
f (CJJ [ t (1 ] , CJJ [ t ]) {r Cj) ] : 

cf>~M 

!lA II M = sup II A¢ II . M r;; m (i 
cp r;;M 

II A II M = sup I < cf> • A ljl > I • M ~ m (1 
cf>,lji~M 

f(T[II·IILCJJ[tct])(r(CJJ)], IIAIIM =sup IIA+¢11. Mr;;mct 
+ . + cpr;; M 

f (CJ) [ t (j ], Cj) [ t (j ] )[ r 
0
Cj) ] : 

M (1 
I!AIIj( =sup l <cf>.Aiji > I.Mr;;mcr.:nr;;m 

cf>~M . Ijlr;;j( 

It can be proven by -simple calculations that d is a subset 
Q (j (j 

of o1.. ( CJ) [ t (j ], CJ) [ t (j ] ) and of f ( CJ)[ t ]. CJ) [ t ] ) . 

For the other three spaces it is then a consequence of the 

relation between the topologies t(j ~II· II ~ t (j If r 
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is a locally convex topology given by the semi-norms JJ A JJa , 

I a l a set of indices, on an Op * -algebra C1 , then by r + 

we denote the topology on (j defined by the semi-norms 

IJ A + ll a = JJ A JJ~ The involution A ... A+ is then a continuous 

mapping ofC1[r] onto a[r+]. With the help of this notation 

we get as a consequence of Lemma 2.1 the following relations 

between the topologies on (1, 

Lemma 2.2 

T (~) .$ T :I) 

i) r~ ..5 
T (~) ~ T :I) 

+ 0 

ii) 'T =Tm 
~m .v 

iii)(r(:I.J))+ = r (~) 
+ 

The second and the fourth topology ,(:D) and r~:D) of Lemma 2.1 

are connected by the continuity of the involution. For the 

case that ~[ tcrJ is a reflexive space we have also such a .re­

lation between the first and the fifth topology r ~ and r t 
as we shall see below. In general this symmetry is broken. 

In what follows we shall study this situation. First we 

state the following Lemma: 

Lemma 2.3 

Let C1(:D) be an arbitrary Op *-algebra and K-I<P~ ~.IJ<PII ~ll 

the unit ball in :D. Then all subsets of the form A (K) , A ~ (1, 

are t (j -bounded in ~. 
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Proof: Every t (j -semi-norm on A(K) is bounded. In fact: 

+ 
sup p (A</J)= sup J< A </J,!f> l = sup 1<</J ,A .P>I = 

cp ~ K M cpr;, K ,l/f ~M ; cp~K.I/f~M 

sup II X ll .S C + < oo 
X~ A +M A M ' 

since for M c; m (j it is A +M~ m (j for all A ~ C1. The inversion 

of this Lemma is not true even in the case of closed algeb­

ras. To it we refer to example ~ of ref. 121
• 

Example: 

Let J{ 0 J{ 1•'" be a sequence of Hilbert spaces, and let 

in every J{n be given an unbounded selfadjoint operator T,~l. 

We define :Dn • ~ (T k) and form 
k~O n 

J{= I eJ{n 
n >...O 

(Hilbert direct sum) and 

:D ~ I ~n 
n ~0 

(algebraic direct sum). 

Then :D is dense in J<. Every vector <P~~, <P• I rPn .<Pn ~ ~n' 
n >...0 

has only a finite number of components which are different 

from zero. For an arbitrary sequence Ian ln.O,l, .. of complex 

numbers and an arbitrary sequence lk n l n=O , l, .. of non-negative 

integer numbers we define by 

A</J • 

the operator 

I a T kn 
n2:_0nnrPn 

k 
A-IaTn onX. 

n ~0 n n 

The sum of this definition breaks off for every 

Now we consider 

C1 1 -IA= 
kn 

I a T , Ia l. 
n2:0 n n n 

I k n l arbitrary 

<P c; ~. 

(1 2 =1 A 
k 

I anTnn.lanlarbitrary,lknl with kn~N(A)l, 
n ~ 0 
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where N(A) is a bound for the grads kr , which depends on A. 

C1 1 C12 are closed Op * -algebras over ~- They generate 

on :D :il' the same strong topologyt'. But for an operator A
1 
~ 

I; (11' C12 we can forms the setA1 (K) which cannot be absorbed 

by any set A 2 (K). A 2 I; C1 2 . 

Lemma 2.4 

For an arbitrary Op*-algebra C1 the following is true: 
~ + ~ (i) (r ) s: r 0 

(ii)(r!)'+~r~ 

The equalities hold, if the sets A(K), A~;; C!, form a basis of 

the t(!-bounded subsets in ~-

Proof: If every t (1 -bounded set Jl is contained in a set B (k) 

then we have 

M 
IIAII:n = sup 

<f>i;;M,ljfi;;Jl 
1<</>,Al/f>l..$ sup 1<</>.Al/f>l~sup l<<f>,ABx>l· 

<f>i;;M,ljfi;; a(K) <f>i;;M, Xi; K 

M a+ M a+ 
- sup I<B+ A+¢ .x>l"' sup II s+A+¢ II,. II A+ll ' - II A II ' 
~M,~K <f>~M + 

for a suitable B~ C1 and every M I; m (1 I Jt~;; m <1. So . we can estimate 

every rt seminorn by a suitable (rT)+-Seruinorm. On the other 

hand, r0T is not coarser than (r ~ )+ in consequence of the 

foregoing Lemma. (ii) can be proved analogously. Thus we can 

complete the assertion (i) in Lemma 2.2 as follows: 

( * ) r ~ S: 
r<T> srT s (r

0
:D{ 

(il) 
r+ S (r T {~ r T 

0 
Now we are going to show that for reflexive T[t(!] the topo­

logies (r ~)+and rt coincide. First we prove the following 

Lemma: 
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Lemma 2 . 5 

Let C1 be an Op*-algebra and K the unit ball in~. For 

any A~; C1 we regard the set A(K) as a subset of ~- and form 

the bipolar A(K) 00in ~- with respect to the dual pair (~', ~). 

Then the sets A(K)0~ Ai;; a, form a basis of the t a-equiconti­

nuous subsets in ~ '. 

Proof: In the dual pair(~',~) we consider the sets A(K) , 

Ai;; C1 , as subsets of ~- and their polars in ~: 

~ .::o A (K) 0 = { ¢;; ~: sup l<l/I , ¢ > 1..5 1 l = { ¢ ~ ~: sup I< Ax , ¢ > 1..~ 1 l • 
l/fi;;A(K) X' K 

={¢~;;:IJ, supl<x.A+¢>1..s1l=!¢~;;~, IIA+¢11.S1l-l¢i;;~:ll<t>ll s1l. 
xc; K A+ 

Consequently, the sets A (K)~ A~C1. form a t(! -neighbourhood 

base of zero. The t(j -equicontinuous subsets in :Il' are those 

subsets A', for which exists a t(! -neighbourhood of 0 U C ~ 

with A'C u0 in~' ( 191
, ch. !!,4). Therefore, the setsA(K)0? 

AI; <1, form a basis of the t(! -equicontinuous subsets in~-. 

Lemma 2.6 

Let C1 be a closed Op * -algebra and K the unit ball in ~­

Then the bipolars A(K)00,A~; C!, form a basis of the bounded 

subsets in :n- if and only if the domain :Il[ tal is reflexive. 

Proof: :n[t(j] is reflexive if and only if it is barrelled 

ref. / 2/ Lemma 13). The barrels in :D are exactly the polars 

of the a(:Il)-bounded subsets in il' (ref.
191 

ch. IV, prep. 1). 

On account of the semi-reflexivity of ~t(j] the weakly and 
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the strongly bounded subsets in ~- coincide. Therefore, 

every barrel absorbs a t (j -neighbourhood of 0 if and only 

if every bounded subset in ~- is absorbed from a t(j -equicon­

tinuous subset. By Lemma 2.5 this is exactly the case if 

the sets A(K)
00 

form a basis of the bounded subsets in !D'. 

Corollary 2.7 

Let <1 be a closed Op *-algebra and suppose ~[ t (j] is 

reflexive. Then the t' -closures in 11 of the sets A(K) ,A~ <1, 

form a basis of the t' -bounded subsets in 11. 

Proof: topology t' is consistent with the duality (11,~') 

since by Lemma 1.1 T[ t (j] is semireflexive, and ~ is dense 

in 11'[ t'] (ref!21
, Folgerung 12). The sets A(K), A ~ <1

1 
are 

00 -- T: T:) -- ' convex, therefore, A(K) IT: xA(K)a( • -A(K) t 

Corollary 2.8 

Let <1 be a closed Op * -algebra and suppose fJ [ t (j] is 

reflexive. Then the topologies r f) and r~ are dual to each 

other, consequently, the lines in(*)break off. 

Proof: The setsA(K)t' form a basis of the t'-bounded subsets 

inT:. Since every operator A~ <1 is (t ', t' ) -continuous (Lem-

ma 2. 1) , we have for every r T: semi-norm I lA 11: • sup 1<¢ ,At/J>I= 
M 0 (j Jl ¢~M.i/J•j[ 

-IIAII t' for all M ~ m(j and :J1 ~ m , and the Corollary 
1t 

follows by analogous considerations as in the proof of 

Lemma 2.4. 
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Finally we consider the maximal Op* -algebra ~+(~). 

We write t = t ~ + . Let ~ (S) , fJ') be the linear space of 

all continuous linear mappings of ~[t] into ~'[t']. Further 

we write ~(~) ~ ~(9),~) and ~(~')~~(~'.~'). In the case 

that fJ[t] is reflexive we can give an interesting descrip­

tion of ~+(T:) by the following Lemma 18 1 : 

Lemma 2.9 

Let 11[t] be a reflexive space. Then 

(i) if A~~(~ .~') then the adjoint operator A+G ~(~.~') 

is uniquely defined by < A¢,!/J > • <A+ if! ,¢>and A ... A+ is an 

involution on ~ (~, T:'), 

(ii)~(1J) , ~(1J')C~(1J,1J') and ~ (11) + • ~ ( T:' ) , 

(iii) ~+(T) is a subspace of ~(T) and it is 

~+<11>- ~<T> n~ <T'). 

3 . THE PROBLEH OF REFLEXIVITY OF THE DOMAIN fJ [ t (j] 

Till now we have stated that in the case of a closed 

Op* -algebra <1 the domain f;[ t(j] is always complete and 

semireflexive, whereas the strong dual 11'[ t' ] is barrelled 

and bornological (ref.121 , Folg. 9, 11). The example 3 of 

ref.
121 

shows that for sufficient meagre closed algebras (1 

T:[ t(j1 does not need to be barrelled and, therefore, ref­

lexive, and T:'[t'] must not be semireflexive. There arises 

the question, whether at the very last for the maximum Op*­

algebra ~+(~) ~[t] becomes a reflexive space. We show by 

a counterexample that even this in general is not true. 
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Example: 

LetH be the non-separable Hilbert space o f all quadratic 

summable number-sequences which potency is more than coun ­

table, and~ the subspace of all finite number-sequences: 

H .. e2
- h/t; t/1,. ~ xacf>a. ~ l xJ 2 <oo . 

. a~ I a~ I 
card I - ' > ~ 0 ; 

(¢a ) a G. I is a complete orthonormal basis I 

~ .. d .. I t/1 ; t/1 "' ~ Xa cf>a I • ~ Ka , Ka -C . 
Cini te a~I 

Then the maximum Op * -algebra f +(d) is isomorphic wi th the 

set of all matrices whose rows and columns have the potency 

'P· but in each row and column only a finite number of e l e­

ments different from zero. Obviously, d is a closed domain . 

f+(d) generates on d the algebra-topology which is given 

by the seminorms 
2 112 + 

llt/111 -(~I~ !L f3xf31 ) • t/J~d. A=(!laf3)a{j;I~f (d). 
A aG-I {3~I a 

It is easy to see that the topology t is given already by the 

diagonal-operators: 
2 2 1/A . II t/111 = ( ~ I b I I xa I ) • "' t/1 ~ d • B = ( b a ) a~ I · 

B a~ I a 
Furthermore we consider on d the topologies of the locally 

convex direct sum r <ll and of the topological direct sum r. 

Let IU~ I be a neighbourhood base of 0 in every 

is defined by the base of neighbourhoods 1 aco uf3a 

1\z, then r <ll 

l,r on the 
14 1 a~I 

other hand by I ~ <llUaf31 (ref. §18, 5). We have r ~ r , 
a~I <ll 

and in the countable case both topologies coincide. But in 

our example r<ll is different from r (ref / 41 .§18, 5(8)). 

Since the sets u~ =I xf3 ~c .= I xf31.s £{3, f {3> 0! form a neighbour­

hood base of zero in every one-dimensional space Ka -C, the 

topology r <ll is given by 

P, (t/1)• ~ lA l l x 1. 
("a) a~ I a a 

t/1 ~ d, 
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where the (Aa)a~I are elements of the space of all number­

sequences with the patency 'P d ' . It is easily t o show that 

r<ll coincides with the strongest locally convex topology 

{3(d ,d ' ).The topolo gyr of the topological direct sum has the 

seminorms 

p ( t/1 ) "' sup I p a II X a I • 
(pa ) a~I 

t/1 r; d. (pa )a~ I~ d '. 

Lemma 3.1 

We have r <ll > t > r on d. 

Proof: By (ref. 111 Lemma 3.3) in the contable case the t-

semi norms 

P(b )(t/1)= ( ~ I ba l2 1 xa 1 2 )~ 12 (ba)a~I~d ' 
a a~I 

define the topology of the locally convex direct sum, 

otherwise not . Clearly, the topology t is stronger than r : 

lt/1 -(xa)~d; sup 1Pa 11 xa 1S 11 ::) lt/J-(xa)~d; ( ~ 1 Pa1 2 1xa 1 2 )~11 
a~I at;I 

On the other hand, the t -neighbourhood U~ :lt/J= (xa)~d; 

~ at;. I 

2 
lxa I ~ 1 I. does not contain any . r -neighbourhood 

u(pr ~ I t/1 = (x ) r; d · 
a J a ' 

sup IP llxaldl. (p )r;d '. In fact, we have 
a~ I a a 

p a ,tO for all a~ I. Since card ! > ~. we can find real 

numbers £
1 

> £0 > 0 such that £i > 1Pa 1> £0 holds for more 

than countable many indices a ~I. Therefore, in U~a) always 

elements t/1 -(xa) exists with an arbitrary great ~ I xa 12 
, 

a~ I 
i.e. 1 t/1 ~ u~ 

Now we can formulate the main result of this section. 

Lemma 3.2 

The domain d[t] is not reflexive. 
13 



Proof: It is sufficient to show that the topology t is dif­

ferent from f3 (d, d[t]' ).We show that this strong topology 

coincides with r e . The dual space of d [ r e] is the space d' of 

all number-sequences of the potency ', but the dual space of 

d [ r ] is the subspace d '0 of all number-sequences with only 

countable many components different from zero (ref. 141, 

§22,5 (5)). Furthermore, we can state that the dual space of 

d[t] coincides with d' too. The bounded subsets in the dual 

spaces d ', resp. d 0 are the 'sets of number-sequences which 

components are bounded. Therefore, the bounded subsets of d' 

are contained in the weak completions of bounded subsets 

of d 0. Consequently, we have 

r al • f3 (d , d') ,. f3 ( d , d 0 ) ,. f3 ( d , d [ t] ' ) > t , 

i.e., d[tlis not reflexive. 

Moreover, the example shows that the strong dual of 

a semireflexive space must not be quasi-complete, since we 

have 
d[tl, ,.d 0;, d 0 =do a =d'. 

(We denote by d 0 , resp., ~a the quasi-complete, resp., 

weakly quasi-complete hull of d0 ) • 

Corollary 3.3 

In the non-separable case closed domains ~ exist with 

(i) 1) [ t] is not reflexive (and not barrelled, not bornolo-

gical either), 

(ii) ~'[t'] is not semireflexive and even not quasi-complete. 

The problem is unsolved, whether for separable Hilbert 

spaces any closed domain 1}[ t] becomes reflexive. 
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Finally we investigate the situation which we had in our 

example 3 for arbitrary closed domains. We denote by r(~') 

the Mackey topology on 1l with respect to the dual pair 

(1l,1l').Then by (ref!
41 

§23,8 (1)) the following holds: 

Let ~ [ r ] be semireflexi ve and ·~' 1 
the quasi -complete 

hull of the strong dual space~'[{3(1l)l.Thenfll:r(!lf")] is semi-

reflexive too, and its strong dual space is the quasi-comp­

lete hull of the strong dual of 1l[r]. 

Therefore, we can always increase the topology of an 

arbitrary semi-reflexive space so much that the space remains 

semireflexive, but its strong dual space becomes quasi­

complete (or even complete) . If we demand besides that the 

quasi-complete hull of the strong dual space is weakly 

quasi-complete too: 

(A) ~,:~:a 

then 1J[rBf')] even is reflexive (ref/2 1 Lemma 1.13). Conse­

quently, if ~[r] is semireflexive, but not reflexive, r 

is the Mackey topology, and if (A) holds, than we obtain 

for the dual spaces the sequences 

~ ,. 1)" = 1) IV • ... "' 1)2N = .. . 

~- ~ 1l"' ~ Tv~ ... ~ g;2N+t_ ... ~~ 

and an increasing sequence of topologies 

{3(1J,1J,)' f3 (1J,9J '") , ... 'f3 (1J,9J 2N+1, ... ' f3 ( ~ '~). 
' for which 1l is semireflexive (ref/41 §23,8). Just now we 

have seen that the topology {3(~.~) even is reflexive. In 

our example we had 

d[tJ'~d0 ;, d'"=(d 0)"=d[rE!> J',.d'=~· 
i.e., d[t"],.d[f3(d[t]')) is already reflexive, and these­

quences break off. It is an open problem, whether these 

sequences break off always, and it is unknown, whether spaces 
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exist at all, for which only a higher dual space than the 

third coincides with the quasi-complete hull of the strong 
r:::-1 

dual. Sufficient for :D"'-~' is the following condition 

(B) Every J3 (:D '*,:D)-bounded subset ~ C :D "' is contained 

in the completi<;!!....of "!., J3(:D ',:C)-bounded subset 

~ 1 c :iJ': ~ c ~1 [J3(:D)]. 

Then these sets have the same polars, and the topologies 

J3(:C,:C') andj3(:iJ,:D'") coincide. Therefore, they are already 

reflexive. Finally we give some positive statements con­

cerning the reflexivity in the case of a closed domain. 

If ~[ t ] is not reflexive, i.e., t < J3 (:D, :iJ') =: t" 

holds, then we have :D' \: :D "'. 

Lemma 3.4 

Let :D be a closed domain and t "' the strong topology 

J3 (:D '", :D).Then t '"I =-t' holds 
:i)' 

Proof: t'", resp., t' are the topologies of uniform conver- · 

gence on all t "- , resp. , t - bounded subsets in :D. :D [ t ] is se­

quentially complete, therefore, the bounded and the strongly 

bounded sUbsets coincide (ref. 141 §20, 11 (8)). 

Lemma 3.5 

Let:D be closed with the property(A). Then :D[t"] is 

semireflexive. 

Proof: The quasi-complete hull~~ contains (:iJ')" (ref.
141

, 

§23,2 (3)). The assertion follows by the mentioned statement 

16 

1::"1 
by 1 4 ~ since besides (:iJ,:D') the dual pair (T, :D' ) is semi-

reflexive, too. Therefore, (:iJ,:iJ'") is semireflexive. 

Lemma 3.6 

Let :D be closed with the properties (A) and (B). Then 

:D[t"] is reflexive. 

Proof: On account of Lemma 3.5 it is sufficient to show 

that the strong topology t (4
): •J3 (:iJ ,:D "') coincides with 

t,- J3 (:iJ, :i)' ). But this follows by (B) . 
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