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Wmwaren K. E5 - 12282

F'pagynpoBaHHble H (H/ILTPOBAHHbIE TONONOTHYECKHE
* —anre6pbl. 3aMblKaHHe NONOXHTENbLHOI'O KOHyCa

B pafore nokasaHo, 4TO MIfi HEKOTOPBIX JIOKA/bHO—BBITYKILIX TOMOMOTHI
Ha GHILTPOBAHHBIX  —anre6pax KOHYC BCeX (MHHTHBIX CyMM KBAADATOB
coBrnanaeT C KOHYCOM BceX GeCKOHEeYHBIX CXOAAIHXCH CyMM KBAAPATOB, NO—
006HO Cilyqal0 anre6pol Sg OCHOBHBIX (yHKUMH. PesynbraThl npHMeHeHB
K TeH3OpHBIM anrebpaM ¥ CHMMETPH3OBAHHLIM airebpaM Had SAEPHBIMH IpPO—
CTpaHCcTBamMu ®Ppemwe C HHBOMOUHEH H K KOHEeUHONOPOXKACHHBIM * —anre6pam
TaxuM, kak anrefpa mHorouneHos Bejing m o6peprhiBawwas anre6pa.

Pa6ora suinmonuena B J/laGoparopuu TeopeTnueckoii pusmka OUFAU.

Mpenpuur O6venHHEHHOrO HHCTHTYTA fdepHHIX HcclefopahHi, [y6ma 1978

Schmiidgen K, E5 - 12282

Graded and Filtrated Topological * -Algebras,
The Closure of the Positive Cone

It is shown that for certain graded locally convex topologies
on a filtrated » —algebra the closure of the cone of all finite sums
of squares is precisely the cone of all infinite {convergent) sums
of squares, similar to the case of the test function algebra 'S@ .
The result applies to tensor algebras and symmetrized tensor alge-
bras over involutive nuclear Frechet spaces and to some finitely
generated * —algebras such as polynomial algebras, the Weyl
algebra and enveloping algebras,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1. Introduction

This paper 1s a continuation of /6 /. We shall use some of the
results,definitions and notations from / 6/. In order to make the
paper as self-contained as possible we repeat the essential defi-
nitions below.

The main object of this note is to prove that for certain
graded locally convex topologles T on a filtrated #-algebra A4 the

closure of the cone ?(&)::{g xi+xi,x164,rsN} of all finite

oo
+
sums of squares coincides with the cone ?m(d)rze{izo xixi,xi€.4}

of all T -convergent infinite sums of squares, similar to the
case of the test function algebra Cfo (/1/,/2/). The proof

will be given hy two steps. Firstly, we show that

J’(J)t/] "42n =2P(UdINAK . ¥ neN. This allows to reduce
the problem to .,42n[r] . Secondly, we prove that each element

xe P(AINAT "

can he represented as an infinite sum of
squares. The first step will he done in Sec.. 2, For this part
we only assume that the topology T 1s a graded locally convex
topology generated by seminorms which satisfy condition (a). In
Sec. 3 we carry out the second step. Here we use the main idea
from 3orchers’proof of the corresponding result for -:-,0 . For the

n
second step we assume among others that A [r] is a nuclear

Frechet space.



lfow we collect the basic definitions and notations.

juppose a x-algebra A with unit element 1 is the direct sum of
¥-invariant vector spaces s‘k,keﬂ, vhere -40:= C-1. Let .An= iio"k'
Te say A 1s a graded [filtrated] ¥#-algebra if An"‘lc [=4 ‘An+k
[\An'4k c 4 n+k] ¥ n,kel. Denote by x, =P, x the canonical pro-
jection of xed into '4}: Concerning the notation of elements
(for example x;"J ) we adopt the following convention throughout

the paper. Upper letters such as i are-always indices. They
nowhere refer to powers of elements. Lower letters such as n are
elither indices (in Sec. 3) or the components of the elements (in
Sec. 2).

Let {qi,je:}} be a family of seminorms on the filtrated ¥ -algebra

A =Z“k Put q;‘(x):=ma.x(q"(x),q’.(x+)). The locally convex topo-
logy (briefly, l.c.t.) on 4 defined by the seminorms

qfu}’ (x):= % qu*".(rkx) , 36} = {J’k} an arbitrary positive
real sequence, 1s called the graded l.c.t. generated by {q,-_, 36}}
Je say a seminorm aj satisfies condition (2) or (b) if there are

constants C.,}c resp. Ci'r so that

»TyS

+ + 3 1/2
(a) q}( it;ork(xi' xé) ) < Cj,k,r,s q?( ;:—; I,21'(]"):!. x;) )

m 1/2
it 4
) qt( EP.?s(xs xs) )
m+n
1t 1+ 1
(b) qi< i—: P, (xi'xl)) € O r qj-( E Py (xi’xl) )
for all xii#r, x;eds, r,s,k,m,nel, jeF .

m
— T —
We denote by M or simply by M the closure of the set w.r.t.

the topology v .

5. The Proof of P(A)n A" = P(AINAD

PROPOSITION 1: Tet & = }: '41: be a filtrated #-algebra and
{q’} a family of seminorms on A which satisfy
condition (a). Let T be the graded l.c.t. on A
generated by {qj}.
Then f-P(—J')rn.fn = 2A)N AT T ¥nen.
We start with a technical lemna about quadratic forms stated in
a convenient form.
I_,};h_m__A_?._:_ Let Q1(t) be a real quadratic form in the finite real
sequence t=(to,t1,...) so that Q1(t)=0 if tn+1=tn+2=

...=0. Let p= »l(zo,...,zn) be a real function of n+1l

real variables and I'k,r,s real numbers with I‘k,r,s

I’k,s,r'

Then there exists a sequence {ka,keN} of positive

numbers such that the quadratic form
2 t.t, )
e T b T st
= =t N Ty o
r+s 22k

-0 (1) g (dgpeeerdon)
is positive definite in the finite real sequence
t=(t°,t1,...).
Proof:
The lemma will be shown by a slight modification of the induction
argument used in the proof of lemma 3.2 in /6 /. Putting Qo(t)=0

we begin just as in lemma 3.2 and construct positive numbers J;,

2
«eeyd,, such that the form Zk'{zx( e - (r,s):(k#)lk'r’s trts)

r+8 # 2k .
is positive definite in t=(tystyses-tpysOs-e .). Then we se

i i edure with the
n=1 (fo, ey f2n) and continue the induction proc

quadratic form Qo(t):= 7 Q(1). / /



Proof of Proposition 1°

. — e
It suffices to prove that P (.4) nNA n P (A4) N4 necause
the converse inclnsion is trivial. Let x e P(4) N A N ana £€>0

Con. a
sider a fixed seminorm q whereby q,}» satisfies (a). Without

3y
loss of seaerality we may assume that § =1 ¥ en ’ q1-=qf and
4

. We put L_ =C, s z:z(zo,...,zn)=

M 0t
Iy =C .,

L, r,3 !
795 T, HC S, T Ky T3 §,,T,8

n
ax (1, 2= 4/¢ - 22 (%) ) and

u® = e e o g + ° bt
4 FoK,T,8°T’s r+3 2 iC Fryl,r,s’r’s
r,s z n+l ngs,rzn+l
According to lemma 1 +there is a positive sequence (J,, ke€lifso that
ZL(t -
=, s)*(k % I’k r,s Tty ) 2 Z(‘fo:---- f2n)Q1(t) (1)
T+3 ¥ 2

for all finite real sequences t.

Jince the topology Tis graded, the seminorn qé J-(a):=
]

T {okqj’,(&gk) is T-continuous. Since x € P(A4) , there is an

lement y = A
element y loy y' € P (4) such that qay(x-y) £/° and

‘13[(1‘3’) £/4. Let a‘—(yo,...,y y0,...) and c:= y- = ai+ai.

Let us assume for a moment that we have shown qa y(c) €/2. Then

(x Za a) < o (X=y)+a, y<°)‘ . Since Za+i 14211

this 1m“11es that x ¢ J’M) n ,42"

Thus it remains to prove that a4.p (¢) < E/

Fi
Tstly, putting ¢, = a1y (Z P2k<y2k y2k)) ¥ ke and using (a)

we obtain

qf.)’<c) = % q,”' (P c) =

2 9, (2 __» k(yi* D MRS We% S Ly
= 18 2K Tes 3k KT8 U8 r
nzs,r rn+l

k1,8 4 (2 T Por(vy L) g, (ZP05<3’3 v

§ T [L
k > n+1 T+sZ k ?’
r,s 2 n+1

i+ i)112 it i\y12
20, 0 (2, vy v (B (vg vg) ]
+ ST ik, T,8 1(1 2r*’r r) 3<i 2s8'’s s)
nzs,r zn+l
2 Q(%).
By the triangle inequality and (a),(1) it follows that

qd“(y) =}——k. 12 4(Po¥) —z kq (: Zng(yr e ) e
qg-():iPQr(yli. yiyf°

(2)

A

it i

r+s 2 2k

h (Zi Py (vl y;)) i ]

2
a; J-21(“:1{ - — Cj k,r,strts) (2) Z(J-O’“'ffgn)Q—](t)- (3)
Jombining (2) and (3) and taklng into account that by construction
Z(:fo,..., 2n)- < 1 and Z(fo,..., )'1 Z f2kq (x5) < €/4,

we get
(e) $ '1'1614.;(3') ES 2'1qM(x)+ z"1q’..‘-(x-y) £ E/4+qa',f(x_Y)‘< €/2.

This completes the proof of proposition 1. i

The following corollary is an immediate consequence of proposition

1.
COROLLARY 3: Tet =Z‘4k and ¢ as in prop. 1. Suppose in
addition that ‘An[‘t‘] is a metrizahle space for each

nell.
Then 2 (4) v coincides with the t -sequence

closure of P(4).
llote that this corollary is not trivial , since the topology T 1is

not metrizable on A4 .



3. The Proof of P(A4) = Po(d)

The main result of this paper 1is

THEOREM 1: Let 4 = Z ‘4'}: be a filtrated ¥-algebra and {qi}
a family of seminorms on # satisfying (a) and (b). et
T be the graded l.c.t. generated by (q,} . Suppose
‘,l.n[l'] is a nuclear Frechet space for each neN.Suppose
that the multiplication A7[2]3 y —sxye U°P[2] 1s
continuous for all xed™. -
Then we have m?’a P (A) 7 -

Our proof is based on the following lemma which seems to be of

interest in itself. This lemma was advised to the author by K.-D.

Kiirsten.

LEMMA 2: Tet E [t‘] be a metrizable locally convex space with a

+

continuous involution x—asx" and EsE the completion of

E®E w.r.t. the g-topology T9 T . Let
P= {_Z ioxi, x, €E, rch and 2P, {Z xoxi,xieE} where

the convergence is meant in the ¢-topology.

Then 2, 1s the T® T -closure of ? inEéE.
Proof:
First let us recall the concept of the ultra product of Hilbert
spaces (see e.g./3 /). Let {’J(n,neN}be a sequenoe of Hllbert spaces
and W an ultra filter on N containing all sets Nk:={neN:n>k}
Let ¥ ={(xn):xné -kn’ ﬂ(xn)ﬂ : =sup HHU < 00} and

néN

W:{(H)e L: lim IEN =0}. The factor space (?fn)u_ 1=
endowed with the scalar product <(xn),(yn)> t= 11ji.m (Xpp¥,> 18 &
Hilbert space which is called the ultra product of the family {In}
w,r.t. the ultra filter WU .

Suppose now that x¢E®E is the T, T -limit of y, = 2 Vit @Yy
i=0

Y,1€E. et 'JC =1, and e = { i(,keN} be the unit vector hase
of ?Cn. ™arther, let E‘n(f) = §=o f(yni)eni é?n for each feE’.

: r
3ince sup ﬂE‘n(f)ﬂ2 = sup ﬁ ‘f(yni)lz = sup (f+of)(yn) <o,
n n i=o n !

this induces a map E3%f — F(f)=(Fn(f))e (Tn)u for which

<FO, 7)Y = U (D), B Utn T 23, i) =
r =

. — - 2

lim go £y 4)e(yy) =(87® £)(x). since | #(£)-F(2)

n-—»>x

(), F() Y - {B(£),7(=) ) - {P(g),7(£) ) + {F(g),P(g) >, this
implies that the map E'[0]3 £ —P(f) € ( In) " is norm-conti-
nuous. Here G is the weak topology w.r.t. the dual pair (E,E’).
Let {pn,neN} he a sequence of ¥ -invariant seminorms on E which
define the topology T . By the Almoglu-Bourbaki Theorem the

(o] ’
polars U. are compact subsets of E‘[¢]. Because the map f—>»PF(f)

Pn
o
is continuous, the image of each set Up is norm-compact in the
Hilbert space (’J{n)u . Therefore the set () L./ F(f)}
neN féU

is contained in a separable closed subspace ¥ of (’J[n)u_ . Let
{ei,ieN} be an orthobase of ¥ and x,(£):= {F(f),e;> . By the
continuity of the map £ — F(f), xi(f) is a 6" -continuous linear

functional on E’ , that 1s, x;eE.
%0

It remains to prove that x = Z xi+¢xi. We have
i=0

K x
p, 9.0, (x- gx;OIQ = sup | got(x) - g g(x))e(x;) | =

o
£, geUp

sup [<n(£),7(g*) Zf(xi)g (xp) | = sup IE £(x,) & (x) |

$ o % (: l2(x)12)" (Z la(x)12) "

f, g€



Jince {?(f),fEUg } is a compact set in the Hilbert space ¥ , the
n

rigth-hand side can be made arbitrary small by taking k large

enough. This proves lemma 2. / /

Proof of Theoren 1:

I3 o)
A o
Statement I: The map A" @ 47 [‘t'or‘l’]3 Zi—xi T Zi xiyie.A [x]

is continuous.

>roof: It is sufficient to show the continuity for finite sums.
Tet q be a T-continuous seminorm on 4. Jince the right multipli-
cations (by agssumption) and the involution (by definition) are

T -continuous, the left multiplications are 7 -continuous. Since
V(.gn['r] is a frechet space, the multiplication is a continuous
map of ‘An[r] X A4 n[r] into .42n[r], that is, there exists a

T -continuous seminorm p on 4 so that q(xy) < p(x)p(y) ¥ X,yévf-l
If u=¥xio,‘/i =§_‘. ajobj, then v =§xiyi = Zj ajbj. Further,

a(v) €2_ p(x;)p(yy) which implies q(v) & P ®yP(u). /7
i

T
2
Statment I1: If {un:= iﬁi xnI-xni,neN} is bounded in 4 n[r] ,
=0

n n
then vn‘—'{é an‘”‘nfn‘n} is hounded in 4 @ 4 [z-oE‘t'l

1=0
Proof: 3ince the seminorms {qg} satisfy (a) and (b), T is a
normal topology on 4 by theorem 3.1 of /6 /. Therefore T can he

given by seminorms of the form pm(a) = sup |f(a)| where M is a
fem
certain weakly bounded set of continuous linear functionals f on

A[t]. Using lemma 3.2 of / &/ and the Cauchy-3chwarz inequality,

we get r -
+ —-—

p_e_p_(v,) = sup = |f(xni)I2 £ sup ﬁ flx yx )EC1) =

ot rem 1°° fem 1=°

P (P o (uy) - /7

10

‘e now coriplete the proof of the theorem. 3y proposition 1 of the

— T
- - P } ’n
‘receding iection, it suffices to show that P(U)n k" ¢ ?m('4)r'
_ 2
et {un= go xni+xni} he a sequence of F(A4)n 41 conver~ing +t

on il
1€ 4“2, Then the set V= ;:—2 XnI@Xni’neﬂ.} is bounded in

Al o4" [TOETJ by statement II. 3ince A"[t] was assumed to be a
auclear Frechet space, it follows that 2’0&2' = Z'o.,'r on AT odn
nd that 47 & A1 [7052'] is again a nuclear Frechet space (/4 /).
Furthermore, the bounded subset of this nuclear space has a con-

vergent subsequence V>V et G,(n {/4/). How, by lemma 2,

v can he renresented as a T@Er -convergent sum é x;oxi,xiedn .
By the continuity of I, we see that u,, =M(vn, ) — u=M(v), that
is, u e Pold), - /7

Remarks:

1. Suppose the locally convex space E in lemma 2 is finite dimen-
sional. By choosing a base for the linear space E,consisting of
hermitian vectors, the elements of P are in one-to-one corres-
pondence with the positive semi-definite matrices. Hence Z = yoo .
In fact, each element of ?m can be represented as a sum : xi+xi
with n+1 £ din E. =e

2. If in theorem 1 all vector spaces 14n of the filtrated #-algebra
W:Z#k are finite dimensional, then, of course, the graded
l.c.t. T coincides with the strongest l.c.t. T'st on 4 . In this’

case, P(A4) is 'L"st—closed. This follows immediately from the

above proof combined with the preceding remark.



4. Apnlications

THEORE. 1: Tet E[t] be a nuclear Frechet space with continuous
involution x—x* and let 4 = _E_)z % ={Gn}, the
graded %-algebra defined in /6/,5ec. 5.1let j be a
l.c.t, on ¥ so that T & §£ 7
Then :P(‘A,)j = ?M(A)ro,, i.e, the j-closure of
P (E%) is precisely the set of all T’-convergent in-
finite sums E x; xi, X eEz . In particular, this

i=o

is true for the completed tensor algebra @0 .

Proof:

Note first that R (.A)T = ? ("4')7 , since the topologies Too

and Tg have the same convergent sequences. Because P (94),.‘ &
:'!’(.,At)j , it is sufficient to prove that J’(d) =2 (.,4)7”,

According to theorem 5.1 of / 6/, Ty is generated by seminorms

Fulfilling (a) and (b). Now theorem 3.1 applies. / /

THEOREM 2: Supnose 4 is one of the following #¥-algebras:
- the free polynomial algebra in n hermitian indeter-
minants,
- the polynomial algebra in n commuting hermitian
indeterminants,
- the Weyl algebra, i.e. the x-algebra generated by the
canonical commutation relations,
- the universal enveloping algebra of a fintte dimen-
sional lie algebra.
Then JP(4) is closed in the strongest l.c.t. on 4 .
Proof:
Each of these #-algebras has a natural filtration y 2 =Z_-4'k for
which all vector spaces 'A’n are finite dimensional. In / ¥/ it

was shown that P (4) is normal w.r.t, the strongest l.c.t. Tgy

12

on 4. from these proofs one can see that the topolory . is
zenerated hy seminorms which satisfy (a) and (»). Thus the

agsertion follows from theorem 3.1 and remarkx 3.2. / /

Concluding Remarks:

1. The case of the tensor algebra j& over the 3chwartz space :f(nd)
was already treated in /4 / (the second step in the terminology of
our paper) and in /2 / (the first step). In this special case, our
proof seems to he simpler. For enveloping algebras the assertion
of theorem 2 was shown in / #/.

2, Without the assumption that T can be defined by seminorms

{q} which satisfy (a) and (B) (hence, P(A4) is T -normal) the
assertions of theorems 3.1 and 4.2 are no longer true. We include
a simple counter-example. Let A4 be the #-algebra of all poly-
nomials in a generator x for which x=x* and x2=0. 0f course,
A 1s a graded #-algebra. The norm topology T of the two dimensional
vector space 4 is a graded l.c.t, fulfilling all other assumptions
of theorems 3.1 and 4.2. P #)qy can be identified with the set
{(J. +8 YeRy: o> 0} v {(0,0)} . Clearly, P (.4) is not z-normal and
F(Ah) &8 Py +7(AT 5{(«L,p )ERy: o 2 0}.

3., Wor topologies T weaker than graded topologies (for example,
when the seminorms Q4 are not continuous for all positive
sequences p ) m)r= \?w(.A-')-ris false. Tet 4 be the poly-
A :={p£-4:p(t1,t2) 20

¥ (t1,t2)eR2} and ‘l" the topology of uniform converPence on com-

nomial algebra in two real variables,

pact subsets of the real plane. Then we have 2 (-4) Jf+ /*+/,
P. ). Since there exist polynomials pe.l+ which are not infinite

sums of squares in the pointwise convergence, 1t follows that

P (A)p + P (A = A,
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