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0, INTRODUCTION

Given an unbounded operator algebra (Opx-algebra) on a dense in-
variant domain in a Hilbert space, it is possible to define in a
"natural way" various locally convex topologles gemeralizing the
operatornorm topology of C*-algebras. In this paper, we consider
the topologles 'L'z, t-‘m, f and A . The topologles Ty and p are

related to basic concepts in the theory of ordered vector spaces.
TD 18 connected with the notion of normality of a cone because
the cone of all positive operators in the algebra 1s T.Z) -normal,
If we regard the hermitian part of an Op¥-algebra as an ordered
vector space, then J is just the order topology.

Our aim is to study the following problem:
Under what conditions to an Opx-algebra v on a domain QD the
topologles 7’:0 and p resp. ’tw)e.nd A coincide on & 2

In section 3 we prove that for certain Op¥-algebras A which are
"rich enough® (for example, the algebra L'(2 ) ) on domains of the

form D = nfe} D(sD) , S a self-adjoint operator, the question has

an affirmative answer, that is, 7, =y and @2 A on # . Section
4 contains three examples., We include an example of a closed Op¥-
algebra on a domain of the form D = /) D(sS?) for which the posi-
tive cone is not normal with respect to the order topologvj (in
particular, Tz) #§ ). By another example we see that there are
Prechet domains @d such that T, kS and Z“m# A onIY2).
Section 1 collects some definitions about unbounded operator
algebras., Section 2 gives some elementary facts about bounded sets

in Op¥-algebras,

1, DEFINITIORS
Let D be a dense domain in a Hilbert space & . Let

1M(D):={a€Bndd : adsD ,a"ds ’.b} . I'(2) 18 a x-algebra with
the usual multplication and the involution a—->a+:=a*(‘3 .




An Op#-algebra 1s a *-subalgebra of YD) containing the identity
map I=ID . The locally convex topology 4\’{ on P generated by the
family of seminorma [l ¢ | a::ﬂau?” ,acA , 060 , is called the

graph topology. If # = (2 ), then we write 4+ instead of 4¢t .

Let 2(.,4_) = /-\A.D(E) where a means the closure of the operator
ae

a. The operators §:=§.f~§ form an Op¥-gzlgebra 4 on@ =J(A).
2[44] is the completion of 3[—4-A]. A 1s saild to be closed on D

it A=A , 1.e.D=D(AR).
Let us define ﬁh:={aeﬁ :a+=a} . ﬁ+:={a€ﬁ {ap,p> 2 0 ‘V¢éw}

and a2b 1ff a-be 4 for a,bedﬁh. A linear functional f an A
is called strongly positive 1f - 'f(a)zo0 V¥ aeﬁ+.

Now we turn to the topologlzation of Op¥-algebras:
RPor each bounded set M of 'Df/&l we define
D, (8):= svp Ka¢,ypl and p™(a):=sup lapl .

borem pem
The topologies Tz) and Z"mgenerated by the seminoms{pm} resp.
{pm} were introdueced by lassner (/4/,/5/). T, is called the
uniform topology on A . vi[%] is a topologlical ¥-algebra. Since

Tz can be given also by the equivalent system of gseminorms
‘ t= - 1 .
P, (&) 21611;'2 [Ka$,p>I , A, is T, -normal(/3/)

Further, for a,x¢ A we define
2
Ho-{acd: [Cag pdl & Cp o Uxpll® ¥oe2f,
My={acd: fagll < ¢, lIx¢l ¥ ¢ed],
Keg ¢
(&):= sup ———=—
LA AT
€»0 and &= o.
§ and A denote. the inductive toplogies on Jt with respect to
the normed spaces {(Mx,fx),xed} resp. {( dfx,lx),xe ﬂ} . In
this form § and A are introduced by Arnal and Jurzak (/1/).
Since the inductive 1limit of normed spaces is bornological, A[j]
and A[A] are bornological locally convex spaces. The topology ¢
on the hermitian part ./th of A is the order topology of the vector
space ‘/Lh ordered by the positive cone A+. This follows from /§/,
p.232,6.3, because the norm ¢ is just the order unit norm. Por
simplicity, we say that J is the order topology on A .

’ /lx(a):= ;l?;)b :—:% where % =4 o for

Suppose [[¢ I , xne./l,neN, is a directed system of seminorms gene-
n

rating 4& on D . Then a zero-neighbourhood base for ¢ and A is
given by the families of sets u‘ 1= a:::o(anUx ,nEN) resp.
n

\a:—- aco( aLann,neH) where o« ={dh,n£N} is an arbitrary sequence

of positive numbers oL pe Ux and Vx denote the unit balls in the

n (2)
normed spaces (qun,jxn) resp. (Mxn, /lxn).We have rnsj and T € A,
D wo(S) means the (dense) domain defined by Doo(S):= Iy D
whereby S is a self-adjoint operator in Hilbert space. For a
domain D= DyS) we define

G4(2 ):={te£(2): ta 1is of trace class for all aeL*’(,ﬂ)} and
G1(D),:={te0(D): t 2 0} .Since D= Dy(S), 1t follows that

tHSD for teG,(D) (see for example /M /,lemma 1.1,(1) ).
By F we denote the set of all linear functionals f£(a) = Tr ta ,
acAh, te(,(D),, on A . Tet ¢? and o F be the strong operator

topologies on vt given by the families of seminorms{llaﬂ'p::ﬂawj s

¢e'1)} Teep. {qf(a):= f(a+a)1/2,fe 3'} .

Pinally, Tst always denotes the strongest locally convex topology
on A .

Por the remainder of this paper we assume that the graph topologies
of all Opx¥-algebras are metrizable.

2, BOUNDED SETS

Let A be an Opx-algebra on D with metrizable graph topology 4, -
Since the family of seminorms [I§fy, aed , is directed, there are
operators x €4t , T =I, neN, so that Fx plislix, 4 ¢l ¥$ed ,neN,
and that the seminorms ﬂ“xn,nm, define the topology 4-/2 .

LEMMA 1: For each subset @ of v/l the following assertions are
equivalent:
(1) N is T, ~-bounded.
(i1) There are a constant C2 0 and a nel such that
[<a §,67] € chx ¢l ° ¥ ¢eD,aell .
(1i1) 7 1is J ~bounded.
Proof:
(1) —(11):
Assume that (ii) is not true. Then there are vectors ¢ne:D and
operators a € i such that [<a ¢ o0 @ n)[ 2 nlx ¢ nllz . By
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normalizing the vectors we get [lan)nuz 1. The set @ :={¢ ,N€R
. n
is 4,-bounded because :éllg Mﬂxk < Mex(fx, ¢ 1U= coosk byl 1)

<+w, On the other side, one has sup p, (a) 2 [{a Zn
] aen m n¢an n)‘ 7

for all neN which is a contradiction to (1i).
(11) ey (111):
Clear, because (1ii) means that the set N 18 bounded in the nor-
med space (& ).
xn’ 5 X,
(1ii) ——=>(1): .
Trivial because T, & ¢ . /7
Similarly, we have
LEMMA 2: The following properties of a set A€ A are equivalent:
(1) 0 1s *?-bounded.
(11) There exist a constant C >0 and a number neN such

that la ¢l < Clx ¢l ¥ ¢eD ,aed .
(ii) Nis A -bounded.

Since .ﬂfﬂ and A[1] are bornological spaces, we obtain the follo-
wing corollery.

COROLLARY 3: Suppose A is an Op¥-algebra on J with metrizable
graph topology. Then:
(1) Jl[Z},] [./l[r‘”’]] is the bornological space asso-
clated with ~ Al] [ 4“]] .
(2) Alt;] 18 bornological if and only if TLEg -

(3) .)‘l[tm]is bornological if and only if t%=

3. THE MAIN RESULTS

THEORFM 1: TLet S ,53I, be a self-adjoint operator in a Hilbert

m—

®
gpace with spectral resolution 8 = S+ dE(t) .
1

Let {Mn,neN_} be a monotonic sequence with M1=1 and

Jim M_ =+ o0,
n e

Suppose A is an Opx-algebra on @ = D(S) such that
g ed and E(M_4)-E(1-0)e 4 ¥ nen.

Then we have T, = ¢ and P A on A .

defors giving the proof of the theorem, we mention some corolleries.

COROLLARY 2: Tet A and d as in theorem 1. Then:
@D] A[Z;,’] and A[r?']are bornological spaces.

(2) The cone -/l+ is normal for the order topology ¢f.
(3) Suppose in addition that S is the inverse of a
completely continuous operator in X .
Then each g-continuous linear functional f on
A is a trace functional, i.e. f(a) = Ir ta,
a € A whereby te()"1(2).
Proof:
Since the topologies j and )\ are bornological, (1) follows from
theorem 1. Ty = y implies (2) because A is 7, -normal /8/).
We prove (3). Since sV 18 compact, '2)[4,‘] is a Prechet Montel
space(see / /,section 3,remark 2)., £ 1is 7.'3 -continuous because
7.'9 =y on A by theorem 1. Now the assertion follows from
/M /,section 4,theorem 4. //

In the case v =L*(2 ) theorem 1 gives
COROLLARY 3: If D= D(8), 8 a self-adjoint operator in a Hilbert
space, then T, = ¢ and @@= 1 on 1Y),

COROLIARY 4: Suppose A 1s an Op¥-algebra on the domain :Doo(S).
Suppose that Se A .
Then each strongly positive linear functional f on
is 'E‘D -continuous.

Proof:

By the closed graph theorem, we get 4.4’ 4+ on J . Hence A 1s

cofinal in ILY(D ) and £ can be extended to a strongly positive
linear functional fon L"'(ﬁ ). Since strongly positive linear
functionals are always continuous in the order topology f and
T, =§ on 1*(2 ) by corollary 3, f is 73 ~-continuous on 1*(2).
Because 4d= 4+ , the uniform topology of A agrees with the topolo-
Zy 1nduced by the uniform topolcgy of 1*(2 ). Therefore, f is % -

continuous on 4. / /

Now we pass to some preliminaries for the proof of theorem 1.
Let y ={yk,km} be a sequence of real numbers y, with 0<y, & 1/kt
¥ keN. We define a real function hy (z) by
= k
hx(z).— fclelﬁ Y2 for zeRy, z21.




LEMMA 5: Let 5={,Bk,k6N} be a sequence of positive real numbers.
Then there exist monotonic sequences {nk,keﬂ}‘{mk,kﬂl_}
of natural numbers 0y, Wy where m1=1 and a real sequence
¥ = {71 r¥eN} such that:

(1) 0<J§ By and yy & 1/kt ¥ ken.

(11) hy(z) = znk for £ z5 M keN.
ALY A W

Moreover, (i) and (11) imply

(1i1) sup zkh), (z)'1 < + %0 for each keN.

z21
Proof:

Let f={¢{k,keN} be an arbitrary real sequence satisfying 0< fk

£ 1/k! ¥ keN. Since lim szk = 0, for each z 21 the supremum
k—»x

in the definition of h p(2z) will be attained for some keN (de-
pending on %). Purther, the set of all keN such that h 4 (z)= J'kzk

is a finite set for each (fixed) z z1. Prom this facts 1t follows
the existence of a monotonlc sequence {rk,keN} of natural numbers
and of a real sequence {Lk;Lk(d‘),keN} (both depending on d !)

T,
such that 1$ Iy < Iy,,,L,=1, and h (2)= frkz £ for L, <zsT,,.

After these preliminary observations we shall inductively define

the sequences {nk_}l{mk}-{Yk} .
Pirst let J'k=Min( pk,1/k!). Since lim K, =+ o0, there is an index

k—»w

m, so that Mm1 2 L,( ). Suppose that %15 [Li1,Li1+1]. By
making dp,.ee, fr sufficiently small we can get M =L1(cf').
1

+1
Put .= §; and ny= 1'1(51'1([) ). We continue this procedure with
the new sequence d . Take m, such that Mm2-*-!L2(d'). Let
d

M < l1, ,L .Fow we change d 4.

m, [ 12’ i2+1] 2! 4 212+1

that M =Ly ( d) and define y,= J'z, n, = r,. By induction this
2

in such a way

construction proves the first part of lemma 5.
Next we show (iii). Pix ke¢N. We take a 16N such that ny 2 k.

k
Then we have hy(z) Z yy? for all zZMmi . Hence

zkh},(z)'1 € ¢ ' for all z 2 M . Since the continuous
1
function b , (z)"'2% on [1,4, ] 1s bounded, this implies (1ii).
1

8

Proof of Theorem 1:
We want to show that T, =y on A . Since always T, sy , 1t is

enough to prove that fc 7 . Let u-L = aco( aLkUsk,keN) sk >0
¥ keN, be a fixed O-neighbourhood for ¢ in A .
Pirat we inductively define a new sequence p = {ﬁk,keN} by

By= 234, , pk=mn(2‘(k+2) akpf,z'(k*”dk [ LR

-1
o~ (k+k) i Pyy ’]/2-(2k+1)°‘k' ).

- < N.
Then we have B, B € &, 2 (ktme1) ¥ k & m, k,me (1

Next we take sequences {Yk} ,{nk},{mk} having the properties
described in lemma 5. Por simplicity we write h{z) instead of

h,(2). Iet m= n(s)~'B  where B denotes the unit ball of the

Hilbert space. X
Since D =D, (S) and SeAk , the seminorms u‘tusk ={s ¢l ,kew,

already generate the topology 4A°n D . Hence we conclude from
lemma 5,(1ii), that & is a bounded subset of 2)[/1"4].

= : . i lete if we
Now let ufm {x €A :p m (x) € 1} our proof is comple

have shown "ufm @ udL. Take an element a EUM . Then

P o(2) = 8up y [Ka§,970 ¢ 1 and so !<aj.z?!$ Iy Iyl
Jnen(s)™'s

¥ §iqen(s)7 K . Putting IO p=n(s) 'y we got

[Ka ¢,¥> € In(s)¢ll Un(s) ¢l ¥ g4€d (R(5)). (2)

Let Pk=E(Mmk+1)-E(M -0) and let I!'k=I’,|+...+1>k for keN. Our
assumptions imply that PkEv‘L and P, € A ¥ ken.
-(nk+nr+1 )
. k N.
STATEMENT I: PyaP, €2 ‘nr Usnr for ks, k,r€

Proof: Por k < r, $e? , we have :
|<B 2B, §,47 1= a2, 9,2 #2 € lin(s)2 Al Il n(sye, ¢l

n, 2
v 1572t yads mtl € pa mlo el Q)

&nr 2-(IL1.+D1:+1) i s‘&-¢ i 2 which proves the atatement.

(11)



We assumed that S 2> I. Therefore vi= U/ W X * Hence there is a
keN S

number 1€¥ such that a e JV]_. We choose an index my such that
S
M, 7 24 p(a) a5 (3)
8
which is “osolble because lim Mm =+ 00 . For brevity let us
k> k

write _yi(a) and Uy instead of fsi(a) resp. Usi ,1€N.

STATEMENT TI: (I-Fs)a(I-Fs)+Fsa(I-FB)+(I-FB)BJ?B € 1/2 d1+1 U1+1.
Proof: By the spectral theorem, it follows that
I s™(1-r )¢ I < ‘11131*1(19)4»/[ ¥ $ed . (4)

Clearly, [<a¢ 9] < jl{a) I st ol 2 implies [{a ¢, 'y)[
‘rjl > kstel st +ll ¥ ¢yeD by polarization. Moreover,

1 d(ﬂ < Sl+1¢ it because S 2I. Using this facts, we obtain
[<F a(X-2 )¢ ,47] =|<al(I-P) ¢ P9 < ag (a)lst(z-ry)¢llste )
- 1 2
S 45a® A ER S BEY sl 5,/ % It
and

I{(r-p)a(T-2) ¢ 42 < go(a) st (i-p)gl 2 s

sl+1 ¢u 2

2 g 14 2
35 (2) o, I ia-rp)¢l” < /64y, .

Therefors, Fea(I-Fs) €1/6cy g Uy, qs (I-Fs)a(I-Fs) € V5°‘1+1“1+1

and similarly, (I-Fs)an c 1/6 L U1+.1 . This completes the
proof of statement II.

By statementes I and II, we conclude that
s
e 5 Byab, + (I-Fg)a(I-Fy)+Fya(I-F )+(I-P )af; is in

, T=1
8 -(n, +n_+1)
W = eco(a, U k,keN) because 2____ 2 it +1/2 < 1.
a4 I, r=1
Thuz we proved that "C = e
In & similer way, it can be shown that T @_ A on A . / /
10

The preceding arguments can be used to get further results about

the comparison of topologies. We mention an example.

PROPOSITION 6: Let A ,D= Dy(5) and {M,} as in theorem 1.
Suppose in addition that D[4,]1s a nuclear space.
Then the topologies % and 1 coincide on A.

Proof:

We first prove that A & 0"?.

Since 3[401] is a nuclear space and S ¢ &, a certain power S'2r,

reéN, is a nuclear operator. We can choose an orthonormal base

{Qk,keNj of { consisting of eigenvectors of S. Let {/uk,ken}

be the sequence of the corresponding eigenvalues. Since 3521,

M2 ¥ keN.

Consider an arbitrary 0-neighbourhood V = aco( eLkV X? keN) of

A whereby &, >0 ¥ ken.

o0
oo VoA ,k-T ) L-or
Tet §={yg= Yc'2 Ly kCN} where C:= E s
Notice that C < w0 by the nuclearity of g2t
We define t:= X(S)'Q.
STATEMERT I1: te6(D),
Proof: Let a€Ll' (D). By the closed graph theorem, there is a neN

such that Jladll < ¢ ”Sn¢u ¥ ¢ €D, Then we have
11_1 Lt ¢, 1% ¢y 'z:usnh (@74 l? = Z/ﬁn B ()2

o
- -2r 2n+2r
=Cq 2 Mx k hy (/“k)-Q] <+ ® pecause kZ /11;21' <+
=1

and sup /Aim-?r hg’ (/u.k)'2<+°° by lemma 5,(1i1i). Therefore,
keEN
aft is a Hilbert-Schmidt operator. Putting a=I, we see that 0

is of Hilbert-Schmidt class. Hence, the closure of at = aft [t
is of trace class, that is, t66"1(3)+. / /

Tet f(a) = Tr ta for aeA.

STATEMENT II: If f(a*a) < 1 for a € A, then ac Vd- .
o0

Proof: Suppose that f(a‘ta) 50 h -2 2
=y () Vagd

Let ae¢ M 1+ Fow we repeat some arguments used in the proof of
3

1



theorem 1. Let P, =E( ) -E( -0) and let P =P,+...+P, .
WEMy Yo F1 X

We choose m, s0 large that nm’ > 2 Al(a) °Li11' Then

I a(z-r,) 4t A (a) Istr-rel < 7" Ay (a) stV (1-r) ¢l <
8

141
1/2d I8 4L, toe. a(I-Bg)€1/249,q ¥ g4q - (5)
et N, be the set of all 1 N with uy ¢ [M"'k'u"‘kn]' Then
+
PkQ = 126——;1: <¢ ,{31)#1. Using lemma 5,(11), and f£(a a) £ 1, we
get

2 2 -27 227 2
la2, ¢l° < <g]l<¢-h>l"=hﬂ> < (E‘{“‘ ><i€ZNkI<+,¢1>l,u1 flag, %)

< cfi_;km,m‘?h In, () ¢, = gkgks@,%){e/‘inenk

2 | gl < 2T £ s Egl?

L < mony '
&Pk €2 dr+nk vsr+nk (6)
8
Since a = o aPy. + a(I-FB) , (5) and (6) together give us
k=1
3’
a¢ V . Thus, we proved that A ¢ .

It remains to show that c'?s A . Tet te@’(:b) . We have
Tr tx = Z. [ {x¥,,¥,> wheredy {'yi} is an orthonormal system
of eigenvectors corresponding to the positive eigenvalues ‘fi of t.
Notice that , = t( '{i "fi) €D bvecause t ¥ € D .
Now let a ¢ M ;. Then

S

£(a*s) = Tr ta*a = Z G hav,? < }i: faq(a)2 Isty P

=3 (a)2 £(s?1l), since A 1s the inductive topology on A with

respect to the family of normed spaces {( M k' k) keN} this

implies that ¢ ¥s A , completing the proof oi' proposition 6.
//
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4. THREE EXAMPLES

In this section we examine three examples. Examples 2 and 3 may be
regarded as counter-examples to our main problem.
EXAMPIE 1:
OQur first examples gives two classes of Opx-algebras for which our
question has an affirmative answer. To see this, we reformulate
the main results of /f0/.
THEOREM: Let A be a countable generated Opx-algebra on D .

(1) If T, = Tgy OF J = Ty then we have T, = p = Ty,

D
) _ D) _
(2) 12 v¥= v or A =Tgy,then T = A = Ty

(3) Suppose A is closed on D .
2 @) ~
It 6%=7,, 0T T = Tgy OF A =Ty, then
L e

Proof:

(1): According to theorem 1 in /10/, we know that T, = 'Z'st if and
only if all vector spaces \/Y )X € A , are flnite dimensional.
Since Jl[j] 18 the inductive llmit of the spaces uV
latter is equivalent to g = t;;. This proves 1).

(3): since 6257 s A s T_,, 1% 1s sufficient to show that
A= Tat implies crm = Tgt* If A = Tst’ then the vector space

‘Mx is finite dimensional for sach x¢ A because ./z.[)\] is
the inductive limit of the spaces WM ,,X eAd . In view of
theorem 2 in /10/, this is equivalent to ¢ = Tg

(2): Suppose that A = T, on A . then, 2 =‘rst on A . By (3),

> =
we get @ = Tst on 4 Hence for each seminorm p on  there
exist vectors ¢*.. ¢ €Q such that p(a) € ZH& ¢iﬂ ¥Yaed

(in / /, it was even shown that one vector suffices). Since
Qd is the completion of 'DM—], there are sequences {Qn.ne‘ﬂ}

1=1,..k phed, with b =4, -1tm 4. Mi={opf 1o a
n

’+A-bounded set. Purther, p(a) £ pm(a) =z sup Ha¢:‘1 il

consequently, v = Toye / / i,n

Qur theorem can be rephrased by saying that for countable genera-
ted "very unbounded " Opx-algebras (which means that the vector
spaces J/ resp. M are finite dimensional for all x¢€ A ) we have

(2
z—_e—rst resp. T Yo = Tgte

13



EXAMPIE 2:

Let A= E be the tensor algebra over a nuclear Frechet space

e
E [7] with a continuous involution. For example, one can take the
3chwartz space :f(an) for E[T] . A is a *-algebra in a natural
way. In /12/.it was shown that the ¥ -algebra cen be realized as
an Opx-algebra on a domain = me(S), S & certain self-adjoint

operator in a Hilbert space, such that 5=T‘D)=]=& and 4’4"44_.
For the definitions and facts about tensor algebras used in this
example we refer to /6 / or to /12/.

We claim that p = A = Tg for this realization of A as an Op¥-
algebra. Indeed, by corollary 3 in section 2 Jl[_f] is the asso-
ciated bornological space for .A[Z‘a]. Since ./ll'ra] is bornologli-
cal and Tg and Too have the same bounded sets, ‘l’z, = Ty implies
3=Tg" Similarly, we get A = To «

Suppose now that B 1'7:] is not normable (since E [T] is nuclear,
this is equivalent to the requirement that E is not finite dimen-
sional). Then we have 'CO + Ty » Consequently, p + Ta and X # T‘D).

Prom this example we can learn a little bit ‘more.

1. Because \A[T@]‘ + ‘/l[’tm]l, Aly] and Alty] have different
dual spaces and K¢ is not the Mackey topology to Tz in general.
2. In our example, the cone ﬂ+ is not normal with respect to the
order topology § . Since § = Tp , this follows from the known
fact that the smaller come P(A ):= Zi: xIxi,xifA} of all finite

sums of squares is not Ty-normal (/67/).

3, Moreover, our example can be used to give an order-bounded
linear functional which is not a linear combination of (strongly)
positive linear functionals. The only example of this kind which
the author has found in the standard literature on ordered vector
spaces is due to Hamioka (¢f./2/,p.30). Namioka’s construction

makes use of the spaces Lp, O<p<1v.°

Tet E [7] =:f(IR1). Then A = E@ = ;o E, (direct sum) where
E, = C, and E, =:f’(Rn) for neN.WWe derin'ea“z'anlinear functional f
on & by putting f(x):= x +; ,S_t:_—_,):: xn(O,...,O)

for x=(xn)edl,,xne§n. Obviously, f 18 T4 -continuous. Hence, f 1is

order-bounded because the order topology § coincides with T_ .
(-4

f is not a linear combination of .A+-positive linear functionals
because it is not in the linear hull of P(A )-positive linear
functionals (/43/,section 4,theorem 5,(1i1) ) and B(A) s A .

+

Thug, we have seen that there are Opx-algebras A with 4./!.: +
) +
on domains = Dy(S) such that 'l'a# f and ) + A4 . On the

other side, if the Opx-algebra A on D= D, S) satisfies the
assumptions of theorem 1, then Tp =p and +@ =4 on A (in
particular, this is true for L¥(D ) ). In our next example, we
cosgtruct a Prechet domain D[4 ] such that Tb # f and
v 9% A even on LY (D).

EXAMPLE 3:

Tet a®),keN, be the infinite matrix al!=(al¥))a
(y1(k),...,yk£}f);kke,k]( €,...) where ygk)=(‘l,2_k,3k,4k,...),

e=(1,1,1,...),J=1,...,k-1, keN. Writing each matrix as a sequence
a corresponds to a diagonal operator ay, in the Hilbert space

12. We use the following notations:
aﬂ n, n.
&= ak1...akr tor &alky,... k), n=(ng,...,n.), k;,neN, ref,

d |&l=k,+.., .
and |4&] ETRRE. a,—.(ai)

Tet & = Q D(a;‘1 ). Let A4 be the set of all complex matrices Y

whose elements can be estimated by the elements of a certain

v n
operator &, , i.e. ]aijl £ ¢ a(fa L a(li‘s) By  where C>0

is a constant. A corresponds to an Op#-algebra of diagonal

operators on & . Clearly, all az“ are in A .

STATEMENT: Let B be an Opx-algebra on @ with 3 2 A .
Then we have T.ﬁ ¢ and 'cw)# A on 3 .
Proof:
We prove only that ‘["2 ¥ .
Take the O-neighbourhood u¢= aco( din U m b £ ,m ) for the topo-

- &Il M 8
logy ¢ where d/t.n= Ik} . Let m be a.n‘arbitrary bounded set

e ; 2 2 (k41)2 2
of _Z),_qB]. Then 2?311 a4 ¢11° = E lcbijl a(ig ) =:Cy <t

In particular, this implies that sup l+kj‘ Jk £ Cy for each JeN.
den
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We choose J=J, so large that Ck2jk'2k $ 2-(6+1) por a1y keN.

Put a;,= 2 for (1,J)=(k,Jk) and ay,= O otherwise,
We claim that pm(a)51 and a ¢ U ~ for a=(aiJ)63 .

2 o0 2
In fact, we have pm(eo) = %lgn E 84 ‘413‘ = ::ﬁ %21‘&31{‘

-]
£ 2025 %k 3 pp-(ks1) Ty
k=1 k x =1

Now consider an arbitrary element b = i '“1b1 €U, where
=1 <

r
b, € & U q. and Z l/“ ' £ 1. The absolute values of the
i ¢ i=1 i

€ g

1]
matrix elements in the m.-row of b are not larger than

x £ |n |
E‘/‘il 4y 1

Therefore, a § u‘ .
Thus, there is no bounded subset m ot :2)[43] such that
\Jm:={x 3 :pm(x)51} < ud . This completes t1/1e/proof.

oL < 1 if we take m:w Max [£. [ .
4my 1 14,
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