СООБЩЕНИЯ
 ОБЬЕАИНЕННОГО ИНСТИТУТА
 ЯАEPHЫX
 ИССАЕАОВАНИЙ

AYБHA

E5-11523

K.Schmüdgen

SOME REMARKS ON TOPOLOGIZATION OF UNBOUNDED OPERATOR ALGEBRAS

K.Schmüidgen*

SOME REMARKS ON TOPOLOGIZATION OF UNBOUNDED OPERATOR ALGEBRAS

EWE IMSCTEHA

[^0]Шмюдген K.
Несколько замечаний о топологии алгебр неограннченных операторов
Рассматривается топологизация алгебр неограниченных операторов в гилббертовом пространстве. Цель состоит в том, чтобы исследовать соответствия между некоторыми топологиями (например, равномерная топология, порядковая топология) и дать явное описание этих топологии.

Похазано, что для определенного класса таких алгебр равномерная топология и порпдковая топология совпадают. Эти результаты получены с помощьь прямои конструкции и оценки операторов в гильбертовом пространстве. Разные примеры иллюстрируют рөзультаты и разграничивают обласъъ их применимости.

Работа выполнена в Лаборятории теоретической физики ОИяИ

Сообщение Объединенного института ядерных исследований. Дубна 1978 Schmidgen K.

E5-11523
Some Remarks on Topologization of Unbounded Operator. Algebras
The problem is studied whether on not for a given Op *-algebr A the topologies r_{D} and ρ resp. ${ }^{r}(\mathrm{D})$ and λ agree on A. It is proved that this is true for certain Op * -algebras on domains of the form $\mathrm{D}=\mathrm{n}_{\mathrm{N}} \mathrm{D}\left(\mathrm{S}^{\mathrm{n}}\right) \mathrm{S}$, a self-adjoint operator. Some examples of Op *-algebras with $r_{D} \neq \rho$ and $r^{(D)} \neq \lambda$ are discussed in detail.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1978
(С) 1878 Объеднненны инстигут ядерных нсследованнй Дубна
O. INTRODUCTION

Given an unbounded operator algebra (Op*-algebra) on a dense invariant domain in a Hilbert space, it is possible to define in a "natural way" various locally convex topologies generalizing the operatornorm topology of $C^{*}-a l g e b r a s$. In this paper, we consider the topologies $\tau_{D}, \tau^{(D)}, \rho$ and λ. The topologies τ_{D} and ρ are related to basic concepts in the theory of ordered vector spaces. τ_{D} is connected with the notion of normality of a cone because the cone of all positive operators in the algebra is τ_{3}-normal. If we regard the hermitian part of an Op*-algebra as an ordered vector space, then ρ is just the order topology.
Our aim is to study the following problem:
Under what conditions to an Op*-algebra \mathcal{A} on a domain D the topologies τ_{D} and ρ resp. $\tau^{(D)}$ and λ coincide on λ ?
In section 3 we prove that for certain Op\#-algebras \mathcal{A} which are "rich enough" (for example, the algebra $L^{+}(D)$) on domains of the form $D=\bigcap_{n \in N} D\left(S^{n}\right)$, s a self-adjoint operator, the question has an affirmative answer, that is, $\tau_{D}=\rho$ and $\tau^{(\lambda)}=\lambda$ on A. Section 4 contains three examples. We include an example of a closed op*algebra on a domain of the form $D=\cap D\left(S^{n}\right)$ for which the positive cone is not normal with respect to the order topology ρ (in particular, $\tau_{D} \neq \rho$). By another example we see that there are Frechet domains D such that $\tau_{D} \neq \rho$ and $\tau^{(D)} \neq \lambda$ on $L^{+}(D)$. Section 1 collects some definitions about unbounded operator algebras. Section 2 gives some elementary facts about bounded sets in Op*-algebras.

1. DEPINITIONS

Let D be a dense domain in a Hilbert space \mathscr{H}. Let $I^{+}(D):=\left\{a \in \operatorname{End} D: a \partial \subseteq D, a^{*} D \subseteq D\right\} . L^{+}(D)$ is a *-algebra with the usual multplication and the involution $a \longrightarrow a^{+}:=a^{*} \uparrow D$.

An $0 \mathrm{p} *-\mathrm{al}$ gebrs is a *-subalgebra of $\mathrm{L}^{+}(D)$ containing the identity map $I=I_{D}$. The locally convex topology $A_{\mathcal{A}}$ on D generated by the family of seminorma $\|\phi\|_{a}:=\|a \phi\|, a \in A, \phi \in D$, is called the graph topology. If $A=L^{+}(D)$, then we write 4_{+}instead of 4_{t} Let $\underline{D}(A)=\bigcap_{a \in \mathcal{A}} D(\vec{a})$ where \bar{a} means the closure of the operator a. The operators $\underline{a}:=\bar{a} \uparrow D$ form an $O p *-a l g e b r a ~ \mathbb{A}$ on $\underline{D}=D(\mathcal{A})$. $\underline{D}\left[A_{A}\right]$ is the completion of $D\left[A_{A}\right] . A$ is sald to be closed on D if $\bar{A}=\underline{A}$, i.e. $D=\underline{D}(A)$.
Let us define $A_{h}:=\left\{a \in \mathcal{A}: a^{+}=a\right\}, A_{+}:=\{a \in \mathcal{A}:\langle a \phi, \phi\rangle \geqslant 0 \forall \phi \in D\}$ and $a \geqslant b$ iff $a-b \in \mathcal{A}_{+}$for $a, b \in \mathcal{A}_{h}$. A linear functional f an \mathcal{A} is called gtrongly positive if $\cdot \mathbf{f}(a) \geqslant 0 \quad \forall a \in \mathcal{A}_{+}$.
Now we turn to the topologization of Op*-algebras:
For each bounded set m of $D\left[A_{A}\right]$ we define
$\left.p_{m}(a):=\sup _{\phi, \psi \in M} K_{M} \phi, \psi\right\rangle \mid$ and $p^{m}(a):=\sup _{\phi \in M Z}\|a \phi\|$,
The topolgies τ_{2} and $\tau^{(\lambda)}$ generated by the seminorms $\left\{p_{m}\right\}$ resp. $\left\{\mathrm{p}^{m}\right\}$ were introdueced by Lasaner (/4/,/5/). τ_{0} is called the unt form topology on $\mathcal{A} . \mathcal{A}\left[\tau_{\boldsymbol{p}}\right]$ is a topological $*$-algebra. Since
$\tau_{\mathfrak{p}}$ can be given also by the equivalent system of seminorms
$p_{j n}^{\prime}(a):=\sup _{\phi \in m}|\langle a \phi, \phi\rangle|, A_{+}$is τ_{Δ}-nomal $(/ g /)$.
Further, for $a, x \in A$ we define

$$
\mathscr{N}_{\mathrm{x}}:=\left\{a \in A:|\langle a \phi, \phi\rangle| \leqslant C_{a, x}\|x \phi\|^{2} \forall \phi \in D\right\},
$$

$$
M_{x}:=\left\{a \in \mathcal{A}:\|a \phi\| \leqslant c_{a, x}\|x \phi\| \forall \phi \in D\right\},
$$

$$
\rho_{x}(a):=\sup _{\phi \in \mathcal{D}} \frac{\langle a \phi, \phi\rangle \mid}{\|x \phi\|^{2}}, \quad \lambda_{x}(a):=\sup _{\phi \in D} \frac{\|a \phi\|}{\|x \phi\|} \text { where } \frac{C}{0}=+\infty \text { for }
$$

$c>0$ and $\frac{0}{0}=0$.
ρ and λ denote the inductive toplogies on A with respect to the normed spaces $\left\{\left(\mathscr{N}_{x}, \rho_{x}\right), x \in \mathcal{A}\right\}$ resp. $\left\{\left(\mathscr{M}_{x}, \lambda_{x}\right), x \in \mathcal{A}\right\}$. In this form ρ and λ are introduced by Arnal and Jurzak (/ $/ /$). Since the inductive limit of normed spaces is bornological, $\mathcal{A}[\rho]$ and $\mathcal{A}[\lambda]$ are bornological locally convex spaces. The topology ρ on the hermitian part A_{h} of A is the order topology of the vector space \mathcal{A}_{h} ordered by the positive cone \mathcal{A}_{+}. This follows from $/ 8 /$, p.232,6.3, because the nom ρ_{x} is just the order unit norm. For simplicity, we say that ρ is the order topology on A.

Suppose $\|\phi\|_{\mathbf{x}_{n}}, \mathbf{x}_{\mathrm{n}} \in \mathcal{A}, \mathrm{n} \in \mathrm{N}$, is a directed system of seminorms generating A_{A} on D. Then a zero-neighbourhood base for ρ and λ is given by the families of sets $U_{\alpha}:=\operatorname{aco}\left(\alpha_{n}{J_{I_{n}}}, n \in N\right)$ resp.
$V_{\alpha}:=\operatorname{aco}\left(\alpha_{n} \nabla_{x_{n}}, n \in N\right)$ where $\alpha=\left\{\alpha_{n}, n \in N\right\}$ is an arbitrary sequence of positive numbers $\alpha_{n} \cdot J_{x_{n}}$ and $V_{x_{n}}$ denote the unit balls in the normed spaces $\left(V_{x_{n}}, \rho_{x_{n}}\right)$ resp. $\left(\mathcal{M}_{x_{n}}, \lambda_{x_{n}}\right)$. We have $\tau_{D} \leq \rho$ and $\tau^{(\rho)} \subseteq \lambda$. $D_{\infty}(S)$ means the (dense) domain defined by $D_{\infty}(S):=\bigcap_{n \in N} D\left(S^{n}\right)$
whereby S is a self-adjoint operator in Hilbert space. For a domain $D=D_{\infty}(S)$ we define $\sigma_{1}(D):=\left\{t \in \mathscr{L}(\mathscr{Z})\right.$: $\overline{t a}$ is of trace class for all $\left.a \in L^{+}(D)\right\}$ and $\sigma_{1}(D)_{+}:=\left\{t \in \sigma_{1}(D): t \geqslant 0\right\}$. Since $D=D_{\infty}(S)$, it follows that $t \mathscr{H} \subseteq D$ for $t \in \mathcal{G}_{1}(D)$ (see for example/11/, lemma 1.1,(1)). By \mathcal{F} we denote the set of all linear functionals $f(a)=\operatorname{Tr}$ ta, $a \in \mathcal{A}, t \in \sigma_{1}(D)_{+}$, on \mathcal{A}. Let σ^{D} and $\sigma^{\mathcal{F}}$ be the atrong operator topologies on A given by the families of seminorms $\left\{\|a\|_{\phi}:=\|a \phi\|\right.$, $\phi \in D\}$ resp. $\left\{q_{f}(a):=f\left(a^{+} a\right)^{1 / 2}, f \in \mathcal{F}\right\}$.
pinally, $\tau_{g t}$ always denotes the strongest locally convex topology on \mathcal{A}.
Por the remainder of this paper we assume that the graph topologies of all Op*-algebras are metrizable.
2. BOUNDED SETS

Let A be an Op*-algebra on D with metrizable graph topology $\mathbb{A}_{\mathcal{A}} \cdot$ Since the family of seminorms $\|\phi\|_{a}$, $a \in \mathcal{A}$, is directed, there are operators $x_{n} \in \mathcal{A}, x_{1}=I, n \in N$, so that $\left\|x_{n} \phi\right\| \leqslant\left\|x_{n+1} \phi\right\| \forall \phi \in D, n \in N$, and that the seminorms $\|\phi\|_{x_{n}}, n \in N$, define the topology \mathcal{A}_{A}.
LEMMA 1: For each subset $\{$ of \mathcal{A} the following assertions are equivalent:
(i) $\quad N$ is τ_{D}-bounded.
(ii) There are a constant $C>0$ and a $n \in \mathbb{N}$ such that $|\langle a \phi, \phi\rangle| \leqslant c \mid x_{n} \phi \|^{2} \forall \phi \in D, a \in n$.
(1ii) n is ρ-bounded.
Proof:
$(1) \longrightarrow$ (ii):
Assume that (ii) is not true. Then there are vectors $\phi_{n} \in D$ and operators $a_{n} \in \Omega$ such that $\left|\left\langle a_{n} \phi_{n}, \phi_{n}\right\rangle\right| \geqslant n\left\|x_{n} \phi_{n}\right\|^{\|^{2}}$. By
normalizing the vectors we get $\left\|x_{n} \phi_{n}\right\|=1$. The set $\mathbb{R}:=\left\{\phi_{n}, n \in N\right\}$ is f_{A}-bounded because $\sup _{\phi \in M}\|\phi\|_{x_{k}} \leqslant \operatorname{Kax}\left(\left\|x_{k} \phi,\right\| ; \ldots,\left\|x_{k} \phi_{k-1}\right\|, 1\right)$ $<+\infty$. On the other side, one has $\sup _{a \in n} p_{m}(a) \geqslant\left|\left\langle a_{n} \phi_{n}, p_{n}\right\rangle\right| \geqslant n$
for all $n \in \mathbb{N}$ which is a contradiction to (1).
(ii) \longrightarrow (iii):

Clear, because (ii) means that the set η is bounded in the normed space $\left(\mathbb{N}_{x_{n}}, \rho_{x_{n}}\right)$.
(iii) $\longrightarrow(i):$

Trivial because $\tau_{D} \subseteq \rho$. //
Similarly, we have
LEMNA 2: The following properties of a set $\ell \mathcal{A} \mathcal{A}$ are equivalent:
(i) $X_{\text {is }} \tau^{(D)}$-bounded.
(ii) There exist a constant $C>0$ and a number $n \in \mathbb{N}$ such that $\|a \phi\| \leq C\left\|x_{n} \phi\right\| \quad \forall \phi \in D, a \in \eta$.
(ii) η is λ-bounded.

Since $\mathcal{A}[\rho]$ and $\mathcal{A}[\lambda]$ are bornological spaces, we obtain the following corolleary.
COROLIABY 3: Suppose \mathcal{A} is an Op*-algebra on 2 with metrizable graph topology. Then:
(1) $\mathcal{A}\left[\tau_{y}\right]\left[\mathcal{A}\left[\tau^{(3)}\right]\right]$ is the bornological space associated with $A[\rho][A[\lambda]]$ -
(2) $A\left[\tau_{\Sigma}\right]$ is bornological if and only if $\tau_{\infty}=\rho$.
(3) $A\left[\tau^{(D)}\right]_{\text {is }}$ bornologioal if and only if $\tau^{(D)}=\lambda$.

3. THE MAIN RESULTS

THROREM i: Let $S, S \geqslant I$, be a self-adjoint operator in a Hilbert space with spectral resolution $S=\int_{1}^{\infty} t d E(t)$.
Let $\left\{M_{n}, n \in \mathbb{N}\right\}$ be a monotonic sequence with $M_{1}=1$ and $\lim _{n \rightarrow \infty} M_{n}=+\infty$.
Suppose \mathcal{A} is an $O p *$-algebra on $D=\partial_{\infty}(S)$ such that $S \in \mathcal{A}$ and $E\left(M_{r+1}\right)-E(1-0) \in \mathcal{A} \quad \forall n \in N$.
Then we have $\tau_{2}=\rho$ and $\tau^{(\Delta)}=\lambda$ on \mathcal{A}.
Beicre siving the proof of the theoren, we mention some corollaries.

COROLLARY 2: Let A and D as in theorem 1. Then:
(1) $\mathcal{A}\left[\tau_{刀}\right]$ and $A\left[\tau^{(D)}\right]$ are bornological spaces.
(2) The cone \mathcal{A}_{+}is normal for the order topology ρ.
(3) Suppose in addition that S is the inverse of a completely continuous operator in \nVdash.
Then each ρ-continuous linear functional f on \mathcal{A} is a trace functional, i.e. $f(a)=T r$ ta, a $\in \mathcal{A}$ whereby $t \in \sigma_{1}(D)$.
Proof:
Since the topologies ρ and λ are bornological, (1) follows from theorem 1. $\tau_{D}=\rho$ implies (2) because \mathcal{A}_{+}is τ_{D}-normal (/9/). We prove (3). Since S^{-1} is compact, $D\left[A_{A}\right]$ is a Frechet Montel space(see / /,section 3,remark 2). f is τ_{D}-continuous because
$\tau_{j}=\rho$ on A by theorem 1. How the assertion follows from /11/,section 4, theorem 4. //

In the case $\mathcal{A}=\mathrm{I}^{+}(D)$ theorem 1 gives
COROLLARY 3: If $D=D_{\infty}(S), S$ a self-adjoint operator in a Hilbert space, then $\tau_{D}=\rho$ and $\tau^{(D)}=\lambda$ on $I^{+}(D)$.
COROLLARY 4: Suppose \mathcal{A} is an Op*-algebra on the domain $D_{\infty}(S)$. Suppose that $s \in \mathcal{A}$.
Then each strongly positive linear functional f on is τ_{D}-continuous.
Proof:
By the closed graph theorem, we get $4_{A}=A_{+}$on D. Hence A is
cofinal in $\mathrm{I}^{+}(D)$ and f can be extended to a strongly positive linear functional \tilde{f} on $\mathrm{L}^{+}(D)$. Since strongly positive linear functionals are always continuous in the order topology ρ and $\tau_{D}=\rho$ on $I^{+}(D)$ by corollary $3, \tilde{f}$ is τ_{D}-continuous on $L^{+}(D)$. Because $A_{\mathcal{A}}=A_{+}$, the uniform topology of \mathcal{A} agrees with the topology induced by the uniform topology of $\mathrm{I}^{+}(D)$. Therefore, is is τ_{D} continuous on A.
/ /
Now we pass to some preliminaries for the proof of theorem 1. Let $\gamma=\left\{\gamma_{k}, k \in \mathbb{R}\right\}$ be a sequence of real numbers γ_{k} with $0<\gamma_{k} \leqslant 1 / k$!
$\forall k \in \mathbb{N}$. We define a real function $h_{\gamma}(x)$ by
$h_{\gamma}(z):=\sup _{k \in N} \gamma_{K^{2}}{ }^{k}$ for $z \in \mathbb{R}_{1}, z \geqslant 1$.

LEMMA 5: Let $\beta=\left\{\beta_{k}, k \in \mathbb{N}\right\}$ be a sequence of positive real numbers. Then there exist monotonic sequences $\left\{n_{k}, k \in \mathbb{N}\right\},\left\{m_{k}, k \in \mathbb{N}\right\}$ of natural numbers n_{k}, m_{k} where $m_{1}=1$ and a real sequence $\gamma=\left\{\gamma_{k}, k \in N\right\}$ such that:
(1) $0<\gamma_{k} \leqslant \beta_{k}$, and $\gamma_{k} \leqslant 1 / k!\quad \forall k \in \mathbb{N}$.
(1i) $\quad h_{\gamma}(z)=\gamma_{n_{k}} z^{n_{k}}$ for $M_{m_{k}} \leqslant z \leqslant M_{m_{k+1}}$, $k \in N$.
Moreover, (i) and (ii) imply
(iii) $\sup _{z \geqslant 1} \mathrm{z}^{\mathrm{k}_{\mathrm{h}}}{ }_{\gamma}(\mathrm{z})^{-1}<+\infty$ for each $k \in \mathbb{N}$.

Proof:
Let $\delta=\left\{\delta_{k}, k \in \mathbb{N}\right\}$ be an arbitrary real sequence satisfying $0<\delta_{k}$ $\leqslant 1 / k!\forall k \in \mathbb{N}$. Since $\lim _{k \rightarrow \infty} \delta_{k^{2}} z^{k}=0$, for each $z \geqslant 1$ the supremum in the definition of $\mathrm{h}_{\boldsymbol{k}}^{\mathrm{k}} \mathrm{f}^{\infty}(\mathrm{z})$ will be attained for some $\mathrm{k} \in \mathrm{N}$ (depending on 2). Parther, the set of all $k \in \mathbb{N}$ such that $h \delta(z)=\delta_{k} z^{k}$ is a finite set for each (fized) $z \geqslant 1$. Prom this facts it follows the existence of a monotonic sequence $\left\{\mathrm{r}_{\mathrm{k}}, \mathrm{kf} \in \mathbb{N}\right\}$ of natural numbers and of a real sequence $\left\{\mathrm{I}_{\mathrm{k}} \equiv \mathrm{I}_{\mathrm{k}}(\delta), \mathrm{k} \in \mathbb{N}\right\}$ (both depending on δ !) such that $1 \leqslant I_{k}<I_{k+1}, L_{1}=1$, and $h_{\delta}(z)=\delta_{r_{k}}{ }^{2} r_{k}$ for $I_{k s} \leqslant z \leqslant I_{k_{k}+1}$.
After these preliminary observations we shall inductively define the sequences $\left\{n_{k}\right\},\left\{m_{k}\right\},\left\{\gamma_{k}\right\}$.
First let $\delta_{k}=\operatorname{Min}\left(\beta_{k}, 1 / k!\right)$. Since $\lim _{k \rightarrow \infty} M_{k}=+\infty$, there is an index m_{1} so that $M_{m_{1}} \geqslant \mathrm{I}_{1}(\delta)$. Suppose that $M_{m_{1}} \subseteq\left[\mathrm{I}_{1_{1}}, \mathrm{I}_{\mathrm{i}_{1}+1}\right]$. By making $\delta_{2}, \ldots, \delta_{r_{1+1}}$ sufficiently small we can get $M_{m_{1}}=L_{1}(\delta)$. Put $\gamma_{1}=\delta_{1}$ and $n_{1}=1_{1}^{+1}\left(\Xi_{1}(\delta)\right)$. We continue this procedure with the new sequence δ. Take m_{2} such that $\mathrm{m}_{\mathrm{m}_{2}} \mathrm{I}_{2}(\delta)$. Let $M_{m_{2}} \subseteq\left[I_{i_{2}}, I_{1_{2}+1}\right]$. Now we change $\delta_{2}, \ldots, \delta_{I_{i_{2}+1}}$ in such a way that $M_{m_{2}}=I_{2}(\delta)$ and define $\gamma_{2}=\delta_{2}, n_{2}=r_{2}$. By induction this construction proves the first part of lemma 5.
Next we show (iii). Fix $k \in N$. We take a $1 \in N$ such that $n_{1} \geqslant k$.
Then we have $h_{\gamma}(z) \geqslant \gamma_{k} z^{k}$ for all $z \geqslant M_{m_{i}}$. Hence
$z^{k_{h}}{ }_{\gamma}(z)^{-1} \leqslant \gamma_{k}{ }^{-1}$ for all $z \geqslant M_{m_{1}}$. Since the continuous function $h_{\gamma}(z)^{-1} z^{k}$ on $\left[1, M_{m_{1}}\right]$ is bounded, this implies (iii).

Proof or Theorem 1:
We want to show that $\tau_{D}=\rho$ on \mathcal{A}. Since always $\tau_{p} \leq \rho$, it is enough to prove that $\rho \subseteq \tau_{D}$. Let $X_{\alpha}=\operatorname{aco}\left(\alpha_{k_{S}}{ }_{S}, k \in \mathbb{N}\right), \alpha_{k}>0$ $\forall k \in N$, be a fired o-neighbourhood for ρ in \mathcal{A}.
Pirst we inductively define a new sequence $\beta=\left\{\beta_{k}, k \in \mathbb{N}\right\}$ by

$$
\begin{align*}
\beta_{1}=\sqrt{2^{-3} \alpha_{1}}, \beta_{k}=\operatorname{Min}\left(2^{-(k+2)} \alpha_{k} \beta_{1}^{-1}, 2^{-(k+3)} \alpha_{k} \beta_{2}^{-1}, \ldots\right. \\
\left.2^{-(k+k)} \alpha_{k} \beta_{k-1}^{-1}, \sqrt{2^{-(2 k+1)} \alpha_{k}}\right) \tag{1}
\end{align*}
$$

Then we have $\beta_{k} \beta_{m} \leqslant \alpha_{m} 2^{-(k+m+1)} \quad \forall k \leq m, k, m \in N$.
Next we take sequences $\left\{\gamma_{k}\right\},\left\{n_{k}\right\},\left\{m_{k}\right\}$ having the properties described in lemma 5. For simplicity we write $h(z)$ instead of $h_{\gamma}(z)$. Let $m=h(S)^{-1} B$ where B denotes the unit ball of the Hilbert space.
Since $D=D_{\infty}(S)$ and $s \in A$, the seminorms $\|\phi\|_{S} k=\left\|S^{k} \phi\right\|, k \in N$, already generate the topology A_{A} on D. Hence we conclude from lemma 5 , (1i1), that $O R$ is a bounded subset of $D\left[A_{A}\right]$.
Now let $w_{m}=\left\{x \in \mathcal{A}: p_{m}(x) \leqslant 1\right\}$. Our proof is complete if we have shown $W_{m} \leq U_{\alpha}$. Take an element $a \in W_{m}$. Then
$p_{m}(a) \equiv \sup _{\xi_{1} \in h(S)^{-1} B}|\langle a \xi, \eta\rangle| \leqslant 1$ and so $|\langle a \xi, \eta\rangle| \leqslant\|\xi\|\|\eta\|$
$\forall \xi_{1} \in \mathrm{~h}(\mathrm{~S})^{-1} \mathcal{H}$. Putting $\xi=\mathrm{h}(\mathrm{S})^{-1} \phi, \eta=\mathrm{h}(S)^{-1} \psi$ we get
$|\langle a \phi, \psi\rangle| \leqslant\|h(S) \phi\| \quad\|h(S) \psi\| \quad \forall \phi, \psi \in D(h(S))$.
Let $P_{k}=F\left(M_{m_{k+1}}\right)-E\left(M_{m_{k}}-0\right)$ and let $F_{k}=P_{1}+\ldots+P_{k}$ for $k \in N$. Our
assumptions imply that $P_{k} \in \mathcal{A}$ and $P_{k} \in \mathcal{A} \forall k \in N$.
STATEMENT I: $P_{\mathbf{k}^{a P}} \in 2^{-\left(n_{k}+n_{r}+1\right)} \alpha_{n_{r}} U_{S} n_{r} \quad$ for $k \leqslant r, k, r \in N$.
Proof: for $k \leqslant r, \phi \in \mathcal{D}$, we have
$\left|\left\langle P_{r_{k}}{ }^{a P_{r}} \phi, \phi\right\rangle\right|=\left|\left\langle a P_{r} \phi, P_{k} \phi\right\rangle\right| \leqslant\left\|h(S) P_{r} \phi\right\|\left\|h(S) P_{k} \phi\right\|$

$\alpha_{n_{r}} 2^{-\left(n_{r}+n_{k}+1\right)}\left\|S^{n_{r}} \phi\right\|^{2}$ which proves the atatement.

We assumed that $S \geqslant I$. Therefoxe $A=\bigcup_{k \in \mathbb{N}} \mathcal{W}_{S} k$. Hence there is a number $1 \in N$ such that $a \in \mathcal{N}_{S^{1}}$. We choose an index m_{s} such that

$$
\begin{equation*}
M_{M_{B}} \geqslant 24 \rho_{S^{I}}(a) \alpha_{I+1}^{-1} \tag{3}
\end{equation*}
$$

which is possible because $\lim _{k \rightarrow \infty} M_{m_{k}}=+\infty$. Por brevity let us write $f_{i}(a)$ and U_{i} instead of $\rho_{S^{i}}(a)$ resp. $U_{S^{i}}, i \in N$.
STATENTENT II: $\left(I-F_{s}\right) a\left(I-P_{s}\right)+F_{s} a\left(I-F_{s}\right)+\left(I-F_{B}\right) a F_{s} \in 1 / 2 \alpha_{1+1} U_{1+1}$. Proof: By the spectral theorem, it follows that
$\left\|S^{J}\left(I-\mathbb{F}_{g}\right) \phi\right\| \leqslant M_{m_{s}}^{-1}\left\|S^{I+1}\left(I-F_{s}\right) \phi\right\| \quad \forall \quad \phi \in D \quad$.
cleariy, $|\langle a \phi, \phi\rangle| \leqslant \rho_{1}(a)\left\|s^{1} \phi\right\|^{2}$ implies $|\langle a \phi, \psi\rangle| \leqslant$ $4 \rho_{工}(a)\left\|s^{1} \phi\right\|\left\|s^{1} \psi\right\| \forall \phi, \psi \in D$ by polarization. Moreover, $\left\|s^{3} P_{s} d\right\| \leqslant\left\|s^{1+1} \phi\right\|$ because $S \geqslant I$. Using this facts, we obtain $\left|\left\langle F_{k} a\left(I-F_{s}\right) \phi, \phi\right\rangle\right|=\left|\left\langle a\left(I-F_{s}\right) \phi, F_{s} \phi\right\rangle\right| \leqslant 4 \rho_{1}(a)\left\|S^{I}\left(I-F_{s}\right) \phi\right\| \|^{I_{1}} F_{B} \phi$
$\underset{(4)}{\leq} 4 \rho_{1}(\varepsilon) M_{m_{s}}^{-1}\left\|S^{1+1}\left(I-F_{s}\right) \phi\right\|\left\|S^{1+1} \phi\right\| \quad \underset{(3)}{\leq} 1 / 6 \alpha_{1+1}\left\|S^{1+1} \phi\right\|^{2}$
$\underset{\text { and }}{ }\left\langle\left(I-F_{g}\right) a\left(I-\mathbb{F}_{g}\right) \phi, \phi\right\rangle \mid \leqslant \rho_{1}(a)\left\|S^{1}\left(I-F_{g}\right) \phi\right\|^{2} \leqslant$
$\rho_{1}(a) M_{m_{\mathrm{m}}}^{-2}\left\|S^{1+1}\left(I-F_{\mathrm{g}}\right) \phi\right\|^{2} \leqslant \quad 1 / 6 \alpha_{1+1}\left\|S^{1+1} \phi\right\|^{2}$
Therefors, $F_{e} a\left(I-F_{g}\right) \in 1 / 6 \alpha_{1+1} U_{1+1},\left(I-F_{g}\right) s\left(I-F_{s}\right) \in 1 / 6 \alpha_{1+1} J_{1+1}$ and similarly。 $\left(I-F_{s}\right) a r_{s} \in 1 / 6 \alpha_{1+1} U_{1+1}$. This completes the proof of statement II.

By statements I and II, we conclude that
 $u_{\alpha}=\operatorname{aco}\left(\alpha_{k^{U}}^{U} k^{k}, k \in N\right)$ because $\sum_{k, r=1}^{s} 2^{-\left(n_{k}+n_{r}+1\right)}+1 / 2<1$.
Thue we proved that $\tau_{D}=\rho$.
In a similer wey, it can be shown thet $\tau^{(D)}=\lambda$ on A. //

The preceding arguments can be used to get further results about the comparison of topologies. We mention an example.
PROPOSITION 6: Let $A, D=D_{\infty}(S)$ and $\left\{M_{n}\right\}$ as in theorem 1 .
Suppose in addition that $\partial\left[A_{\mathcal{A}}\right]$ is a nuclear space
Then the topologies $\sigma^{\mathfrak{F}}$ and λ coincide on \mathcal{A}.
Proof:
We first prove that $\lambda \subseteq \sigma^{F}$.
Since $\partial\left[A_{\mathcal{A}}\right]$ is a nuclear pace and $S \in \mathcal{A}$, a certain power $S^{-2 T}$, $r \in \mathbb{N}$, is a nuclear operator. We can choose an orthonormal base $\left\{\phi_{k}, k \in \mathbb{N}\right\}$ of \mathbb{Z} consisting of eigenvectors of S. Let $\left\{\mu_{k}, k \in \mathbb{N}\right\}$ be the sequence of the corresponding eigenvalues. Since $S \geqslant I$, $\mu_{k} \geqslant 1 \forall k \in \mathbb{N}$.
Consider an arbitrary 0 -neighbourhood $V_{\alpha}=\operatorname{aco}\left(\alpha_{k}{ }_{S}{ }^{k}, ~ k \in \mathbb{N}\right)$ of λ whereby $\alpha_{k}>0 \quad \forall k \in K$.
Let $\gamma=\left\{\gamma_{k}:=\sqrt{C^{-1} 2^{-k-r}} \alpha_{k+r}, k \in N\right\}$ where $C:=\sum_{i=1}^{\infty} \mu_{i}^{-2 r}$.
Notice that $C<\infty$ by the nuclearity of $s^{-2 r}$.
We define $t:=h_{\gamma}(\mathrm{S})^{-2}$.
STATEMENT I: $t \in \sigma_{1}(D)_{+}$.
Proof: Let $a \in L^{+}(D)$. By the closed graph theorem, there is a $n \in \mathbb{N}$ such that $\|a \phi\| \leq c_{a}\left\|s^{n} \phi\right\| \quad \forall \phi \in D$. Then we have
$\sum_{k=1}^{\infty}\left\|a \longdiv { t } \phi _ { k }\right\|^{2} \leqslant c_{a} \sum_{k=1}^{\infty}\left\|s^{n_{h}}(s)^{-1} \phi_{k}\right\|^{2}=c_{a} \sum_{k=1}^{\infty} \mu_{k}^{2 n} h_{\gamma}\left(\mu_{k}\right)^{-2}$
$=C_{a} \sum_{k=1}^{\infty} \mu_{k}^{-2 r}\left[\mu_{k}^{2 n+2 r} h_{\gamma}\left(\mu_{k}\right)^{-2}\right]<+\infty$ because $\sum_{k=1}^{\infty} \mu_{k}^{-2 r}<+\infty$
and $\sup _{k \in \mathbb{N}} \mu_{k}^{2 n+2 r} h_{\gamma}\left(\mu_{k}\right)^{-2}<+\infty$ by lemma 5,(i11). Therefore, a $\sqrt{t} \quad \underset{i s}{ } \in \mathbb{N}$ a Hilbert-Schmidt operator. Putting anI, we see that \sqrt{t} is of Hilbert-Schmidt class. Hence, the closure of at $=a \sqrt{t} \sqrt{t}$ is of trace class, that is, $t \in \sigma_{1}(D)_{+} . \quad / /$
Let $f(a)=\operatorname{Tr}$ ta for $a \in \mathcal{A}$.
STATEMENT II: If $f\left(a^{+} a\right) \leqslant 1$ for a $\in \mathcal{A}$, then $a \in V_{\alpha}$.
Proof: Suppose that $f\left(a^{+} a\right) \equiv \sum_{k=1}^{\infty} h_{\gamma}\left(\mu_{k}\right)^{-2}\left\|a \phi_{k}\right\|^{2} \leqslant 1$.
Let $a \in \mathcal{M}_{S^{1}}$. Now we repeat some arguments used in the proof of
theorem 1. Let $P_{k}=E\left(M_{m_{k+1}}\right)-E\left(M_{m_{k}}-0\right)$ and let $F_{k}=P_{1}+\ldots+P_{k}$. We choose m_{B} so large that $M_{m_{s}} \geqslant 2 \lambda_{1}(a) \alpha_{1+1}^{-1}$. Then
$\left\|a\left(I-F_{s}\right) \phi\right\| \leq \lambda_{1}(a)\left\|S^{1}\left(I-F_{B}\right) \phi\right\| \leqslant M_{m_{s}}^{-1} \lambda_{1}(a)\left\|S^{1+1}\left(I-F_{s}\right) \phi\right\| \leqslant$ $1 / 2 \alpha_{1+1}\left\|S^{1+1} \phi\right\|$, i.e. $a\left(I-P_{s}\right) \in 1 / 2 \alpha_{1+1} \nabla_{S^{1+1}}$.
Let N_{k} be the set of all 1 w with $\mu_{i} \subseteq\left[M_{m_{k}}, M_{m_{k+1}}\right]$. Then $P_{k} \phi=\sum_{1 \in \mathbb{I}_{k}}\left\langle\phi, \phi_{1}\right\rangle \phi_{1}$. Using lemma 5 , (i1), and $f\left(a^{+} a\right) \leqslant 1$, we $\left\|a P_{\mathbf{k}} \phi\right\|^{2} \leqslant\left(\sum_{1 \in \mathrm{H}_{\mathbf{k}}} K\left\langle\phi_{1} \phi_{1}\right\rangle\left\|a \phi_{1}\right\|\right)^{2} \leqslant\left(\sum_{1 \in \mathbf{H}_{\mathbf{k}}} \mu_{i}^{-2 \mathbf{r}}\right)\left(\sum_{1 \in \mathrm{~N}_{\mathbf{k}}}\left|\left\langle\phi_{1} \phi_{1}\right\rangle\right|^{2} \mu_{1}^{2 r}\left\|a \phi_{1}\right\|^{2}\right)$ $\leqslant c \sum_{1 \in \mathbb{H}_{k}}\left|\left\langle\phi, \phi_{1}\right\rangle\right|^{2} \mu_{1}^{2 r}\left\|n_{\gamma}(s) \phi_{1}\right\|^{2}=c \gamma_{n_{k}}^{2} \sum_{i=\mathbb{I}_{\mathbf{k}}}\left|\left\langle\phi_{1} \phi_{i}\right\rangle\right|^{2} \mu_{1}^{2 r+2 n_{k}}$
$=c \gamma_{n_{k}}^{2}\left\|s^{r+n_{k} p_{k} \phi \|^{2}} \leqslant 2^{-r-n_{k}} \alpha_{r+n_{k}}^{2}\right\| S^{r+n_{k}} \phi \|^{2}$,
$a P_{k} \in 2^{-r-n_{k}} \alpha_{r+n_{k}} \nabla_{S^{r+n_{k}}}$.
Since $a=\sum_{k=1}^{B} a P_{k}+a\left(I-F_{s}\right)$, (5) and (6) together give us
$a \in V_{\alpha}$. Thus, we proved that $\lambda \leq \sigma^{\mathfrak{F}}$.
It remains to show that $\sigma^{\mathcal{F}} \leqslant \lambda$. Let $t \in \sigma_{1}(D)_{+}$. We have $\operatorname{Tr} \mathrm{tx}=\sum_{1} \delta_{i}\left\langle x \dot{\psi}_{1}, \psi_{1}\right\rangle$ whereby $\left\{\psi_{1}\right\}$ is an orthonormal system of eigenvectors corresponding to the positive eigenvalues δ_{i} of t. Notice that $\psi_{1}=t\left(\delta_{i}^{-1} \psi_{1}\right) \in D$ because $t \mathbb{X} \subseteq D$. Now let $a \in \mathcal{K}_{S^{1}}$. Then
$f\left(a^{+} a\right)=\operatorname{Tr} t a^{+} a=\sum_{i} \delta_{i}\left\|a \psi_{i}\right\|^{2} \leqslant \sum_{i} \delta_{i} \lambda_{1}(a)^{2}\left\|s^{1} \psi_{i}\right\|^{2}$ $=\lambda_{1}(a)^{2} \mathrm{f}\left(\mathrm{S}^{21}\right)$. Since λ is the inductive topology on A with respect to the family of normed spaces $\left\{\left(\mu_{S^{K}}, \lambda_{k}\right), k \in \mathbb{N}\right\}$, this 1mplies that $\sigma^{3} s \lambda$, completing the proof of proposition 6.

. THREE EXAMPLES

In this section we examine three examples. Examples 2 and 3 may be regarded as counter-exemples to our main problem.

EXANPLE 1:
ur first examples gives two classes of Op*-algebras for which our question has an affirmative answer. To see this, we reformulate the main results of $/ 10 /$.
THEORAM: Let \mathcal{A} be a countable generated $O_{p} *$-algebra on D
(1) If $\tau_{D}=\tau_{s t}$ or $\rho=\tau_{s t}$, then we have $\tau_{D}=\rho=\tau_{s t}$.
(2) If $\tau^{(D)}=\tau_{\text {st }}$ or $\lambda=\tau_{s t}$, then $\tau^{(\lambda)}=\lambda=\tau_{s t}$.
(3) Suppose \mathcal{A} is closed on D.

If $\sigma^{2}=\tau_{\text {st }}$ or $\tau^{(\lambda)}=\tau_{s t}$ or $\lambda=\tau_{s t}$, then $\sigma^{\partial}=\tau^{(\lambda)}=\lambda=\tau_{s t}$.
Proof:
(1): According to theorem 1 in $/ 10 /$, we know that $\tau_{D}=\tau_{g t}$ if and only if all vector spaces $\mathcal{N}_{x}, x \in \mathcal{A}$, are finite dimensional. Since $A[\rho]$ is the inductive limit of the spaces \mathcal{N}_{x}, the latter is equivalent to $\rho=\tau_{\text {st }}$. This proves (1).
(3): Since $\sigma^{D_{\leq}} \tau^{(3)} \leq \lambda \leq \tau_{s t}$, it is sufficient to show that $\lambda=\tau_{\mathrm{gt}}$ implies $\sigma^{2}=\tau_{\mathrm{st}}$. If $\lambda=\tau_{\mathrm{st}}$, then the vector space M_{x} is finite dimensional for each $x \in \mathcal{A}$ because $A[\lambda]$ is the inductive limit of the spaces $\mathcal{H}_{x}, x \in \mathcal{A}$. In Jiew of theorem 2 in $/ 10 /$, this is equivalent to $\sigma^{D}=\tau_{s t}$.
(2): Suppose that $\lambda=\tau_{\text {st }}$ on \mathcal{A}. Hen, $\lambda=\tau_{\text {st }}$ on \mathcal{A}. By (3), we get $\sigma^{D}=\tau_{s t}$ on \mathcal{A}. Hence for each seminorm p on \mathcal{A} there exist rectors $\phi^{1}, \ldots, \phi^{k} \in \underline{\mathcal{D}}$ such that $p(a) \leqslant \sum_{I}\left\|\underline{a} \phi^{1}\right\| \forall \mathrm{f} \in \mathcal{A}$
(In / /, it was even shown that one vector suffices). Since D is the completion of $\partial\left[\mathcal{A}_{A}\right]$, there are sequences $\left\{\phi_{n}^{i}, n \in \mathbb{N}\right\}$ $1=1, \ldots, k, \phi_{n}^{i} \in \mathcal{D}$, with $\phi^{i}=\mathcal{A}_{\mathcal{A}}-\lim _{n} \phi_{n}^{i} . m_{n}:=\left\{\phi_{n}^{i}\right\} \quad$ is a $+_{A}$-bounded set. Further, $p(a) \leqslant p^{m}(a) \equiv \sup _{1, n}\left\|a \phi_{n}^{1}\right\|$.
Consequently, $\tau^{(D)}=\tau_{s t}$.
Our theorem can be rephrased by saying that for countable generated "very unbounded " Op*-algebras (which means that the vector spaces \mathcal{N}_{x} resp. M_{x} are finite dimensional for all $x \in \mathcal{A}$) we have $\tau_{D}=\rho=\tau_{s t}$ resp. $\tau^{(\lambda)}=\lambda=\tau_{s t}$.

EXAMPLE 2:

Let $\mathcal{A}=\underline{E} \otimes$ be the tensor algebra over a nuclear Frechet space
$\mathrm{E}[\tau]$ with a continuous involution. For example, one can take the Schwartz space $f\left(\mathbb{R}_{n}\right)$ for $E[\tau]$. \mathcal{A} is a $*$-algebra in a natural way. In $/ 12 / .1 t$ was shown that the $*$-algebra can be reallzed as an Op*-algebra on a domain $D=D_{\infty}(S)$, s a certain self-adjoint operator in a Hilbert space, such that $\tau_{D}=\tau^{(D)}=\rho=\lambda$ and $A_{A}=A_{+}$. For the definitions and facts about tensor algebras used in this example we refer to $/ 6 /$ or to $/ 12 /$.
We claim that $\rho=\lambda=\tau_{0}$ for this realization of \mathcal{A} as an $O_{p} *-$ algebra. Indeed, by corollary 3 in section $2 \mathcal{A}[\rho]$ is the associated bornological space for $\mathcal{A}\left[\tau_{D}\right]$. Since $\mathcal{A}\left[\tau_{\infty}\right]$ is bornological and τ_{\otimes} and τ_{∞} have the same bounded sets, $\tau_{0}=\tau_{\infty}$ implies $\rho=\tau_{\otimes}$. Similarly, we get $\lambda=\tau_{\otimes}$.
Suppose now that $E[\tau]$ is not normable (since $E[\tau]$ is nuclear, this is equivalent to the requirement that E is not finite dimensional). Then we have $\tau_{\otimes} \neq \tau_{\infty}$. Consequently, $\rho \neq \tau_{\mathcal{D}}$ and $\lambda \neq \tau^{(\mathcal{D})}$.

From this example we can learn a little bit more. 1. Because $\mathcal{A}\left[\tau_{\otimes}\right]^{\prime} \neq \mathcal{A}\left[\tau_{\infty}\right]^{\prime}, \mathcal{A}[\rho]$ and $\mathcal{A}\left[\tau_{D}\right]$ have dipferent dual spaces and ρ is not the Mackey topology to τ_{D} in general. 2. In our example, the cone \mathcal{A}_{+}is not normal with respect to the order topology ρ. Since $\rho=\tau_{\otimes}$, this follows from the known fact that the smaller cone $P(\mathcal{A}):=\left\{\sum_{1} x_{1}^{+} x_{i}, x_{i} \in \mathcal{A}\right\}$ of all finite sums of squares is not $\tau_{\text {© }}$-normal (/6/).
3. Moreover, our example can be used to give an order-bounded linear functional which is not a linear combination of (strongly) positive linear functionals. The only example of this kind which the author has found in the standard literature on ordered vector spaces is due to Hamioka (cf./2/,p.30). Namioka's construction makes use of the spaces $\mathrm{I}_{\mathrm{p}}, \quad 0<\mathrm{p}<1$. Let $E[\tau]=\rho\left(\mathbb{R}_{1}\right)$. Then $\mathcal{A} \equiv \mathbb{E}_{\infty}=\sum_{n=0}^{\infty} E_{n}$ (direct sum) where $\underline{E}_{0}=C_{1}$ and $E_{n}=f\left(R_{n}\right)$ for $n \in \mathbb{N}$. We derine a linear functional f on A by putting $f(x):=x_{0}+\sum_{n=1}^{\infty} \frac{\partial^{n \cdot n}}{\partial t_{1}^{n} \cdots \partial t_{n}^{n}} x_{n}(0, \ldots, 0)$ for $x=\left(x_{n}\right) \in \mathcal{A}, x_{n} \in E_{n}$. Obviously, f is τ_{\otimes}-continuous. Hence, f is
order-bounded because the order topology ρ coincides with τ_{θ}. f is not a linear combination of \mathcal{A}_{+}-positive linear functionals because it is not in the linear hull of $\mathrm{P}(\mathcal{A})$-positive linear functionals (/13/,section 4 , theorem $5,(1 i 1)$) and $P(\mathcal{A}) \subseteq A_{+}$.

Thus, we have seen that there are $0 p *-a l$ gebras \mathcal{A} with $A_{A}=A_{+}$ on domains $D=D_{\infty}(S)$ such that $\tau_{D} \neq \rho$ and $\tau^{(D)} \neq \lambda$. On the other side, if the Op*-algebra A on $D=D_{\infty}(S)$ satisfies the assumptions of theorem 1, then $\tau_{\rho}=\rho$ and $\tau^{(D)}=\lambda$ on \mathcal{A} (1n particular, this is true for $I^{+}(D)$). In our next example, we construct a Frechet
domain $D\left[A_{+}\right]$such that $\tau_{D} \neq \rho$ and $\tau^{(D)} \neq \lambda$ even on $I^{+}(D)$.

EXAMPLE 3:

Let $a^{(k)}, k \in \mathbb{N}$, be the infinite matrix $a^{(k)}=\left(a_{i j}^{(k)}\right)=$ $\left(y_{1}{ }^{(k)}, \ldots, y_{k-1}^{(k)} ; k^{k} e, k^{k} \quad e, \ldots\right)$ where $y_{j}^{(k)}=\left(1,2^{k}, 3^{k}, 4^{k}, \ldots\right)$,
$e=(1,1,1, \ldots), j=1, \ldots, k-1, k \in N$. Writing each matrix as a sequence $a^{(k)}$ corresponds to a diagonal operator a_{k} in the Hilbert space l_{2}. We use the following notations:
$a_{k}^{n}:=a_{k_{1}}^{n_{1}} \ldots a_{k_{r}}^{n_{r}}$ for $k=\left(k_{1}, \ldots, k_{r}\right), n=\left(n_{1}, \ldots, n_{r}\right), k_{i}, n_{i} \in \mathbb{N}, r \in \mathbb{N}$, and $|k|=k_{1}+\ldots+k_{r}$.
Let $D=\bigcap_{k, n} D\left(a_{k}^{n}\right)$. Let A be the set of all complex matrices Y
whose elements can be estimated by the elements of a certain

is a constant. A corresponds to an Op*-algebra of diagonal
operators on D. Clearly, all a_{k}^{n} are in \mathcal{A}.
STATEMENT: Let B be an $0 p *$-algebra on D with $B \geq \mathcal{A}$. Then we have $\tau_{D} \neq \rho$ and $\tau^{(D)} \neq \lambda$ on B.

Proof:

We prove only that $\tau_{d} \neq \rho$.
Take the 0-neighbourhood $\mathcal{U}_{|k||n|^{\alpha}}=\operatorname{aco}\left(\alpha_{k, n}{ }_{\alpha_{k} n} ; k, n\right)$ for the topoiogy ρ where $\alpha_{k n}=|k|^{|k||n|^{\alpha}}$. Let m be an $\boldsymbol{a}_{\text {arbitrary bounded set }}$ of $D\left[4_{B}\right]$. Then $\sup _{\phi \in m}\left\|a_{k+1} \phi\right\|^{2}=\sum_{i, j}\left|\phi_{i j}\right|^{2} a_{1 j}^{(k+1)^{2}}=: c_{k}^{2}<+\infty$.
In particular, this implies that $\sup _{\phi \in \boldsymbol{m}}\left|\phi_{k j}\right| j^{k} \leqslant C_{k}$ for each $j \in N$.

We choose $j=j_{k}$ so large that $c_{k}{ }^{2} j_{k}-2 k \leqslant 2^{-(k+1)}$ for all $k \in N$. Put $a_{i j}=2$ for $(i, j)=\left(k, j_{k}\right)$ and $a_{i j}=0$ otherwise.
We claim that $p_{m^{\prime}}(a) \leqslant 1$ and $a \notin \mathcal{K}_{\alpha}$ for $a=\left(a_{i j}\right) \in \mathcal{F}$.
In fact, we have $p_{m}(a)=\sup _{\phi \in m} \sum_{i, j} a_{1 j}\left|\phi_{i j}\right|^{2}=\sup _{\phi \in m} \sum_{k=1}^{\infty} 2\left|\phi_{k j}\right|_{k}^{2}$ $\leq \sum_{k=1}^{\infty} 2 c_{k}^{2} j_{k}-2 k \quad \leq \sum_{k=1}^{\infty} 2 \cdot 2^{-(k+1)^{1, j}} \underset{=1 .}{=}$

Now consider an arbitrary element $b=\sum_{i=1}^{x} \mu_{1} b_{i} \in \mathcal{U}_{\alpha}$ where
$b_{i} \in \alpha_{k_{1} n_{1}} \int_{a_{k_{i}}} \quad$ and $\sum_{i=1}^{r}\left|\mu_{i}\right| \leqslant 1$. The absolute values of the
matrix elements in the $\mathrm{m} .-\mathrm{row}$ of b are not larger than
$\left.\sum_{i=1}^{r}\left|\mu_{i}\right|\left|k_{i}\right|\right|_{i}\left|\|_{i}\right| \alpha_{k_{1}, n_{i}} \leq 1$ if we take mim $\operatorname{Max}_{i}\left|k_{i}\right|$.
Therefore, a $\ddagger U_{\alpha}$.
Thus, there is no bounded subset M of $D\left[A_{B}\right]$ such that $W_{m}:=\left\{x \in \mathcal{B}: p_{m}(x) \leq 1\right\} \subseteq U_{\alpha}$. This completes the proof. / /
7. A. Peressini. Ordered topological vector spaces, New York 196%.
8. H.Schäfer. Topological vector spaces, New York 1966.
9. K.Schmüdgen. The order structure of topological *-algebras of unbounded operators, Rep.Math.Phys. 7(1975), 215-227.
10. - , Two theorems about topologies on countable generated op*algebras, JINR Preprint E5-11592, iubna, 1978.
11. - On trace representation of linear functionals on unbounded operator algebras, Preprint $K M J-M P h-4(1977)$, to appear
12. - , Dissertation B, Leipzig,1976, section 4.4
13. J. Yngvason. On the algebra of test functions for field operators, Comm.Math.Phys. 34(1973), 315-333.

REFERENECSS

1. D.Arnal, J.-P.Jurzak. Topological aspects of algebras of unbounded operators, J. Punct.Analysis 1977
2. G.Jameson. Ordered linear spaces, Springer-Verlag, Berlin-Heidelberg-New York,1970, Lecture notes.
3. G.Köthe. Topologische lineare Räume, Springer-Verlag, Berlin-Heidelberg-New York 1966.
4. G.Lassner. Topological algebras of operators, JINR Preprint E5-4606, Dubna 1969 or Rep.Math. Phys. 3(1972), 279-293.
5. - , Topologien auf Op*-Algebren, Wise.Zeitschrift, KMJ Leipzig, 22(1975), 465-471.
6. - , ther die Realisierbarkeit topologischer Tensoralgebren, Nath. Nachr . 62(1974), 89-101.

Received by Publishing Department on April 251978.

[^0]: *Sektion Mathematik, Karl-Marx-Universitat Leipzig, DDR.

