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onepaTopoa 

PaccMaTpaaaeTc51 rononorH38UHH anre6p aeorpamt"tJ:eHHbiX oneparopoa 
B I'HnLf5epTOBOM npOCTpBHCTBe. lleJlb COCTOHT B TOM, 'IT06bi HCCli9llOB8Tb 

COOTB9TCTBHSI M9>KD.Y HeKOTOpbiMH TODOJIOI"'IHIMJI ( HaiipHMep, p8BHOMepH8SI 

rononora~, nopgnxoaaH rononoruH) u ABTb HBHoe onucaaue srux Torronorufi. 
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rononoraa H nopA.llKOBBB rononorHn coana.aaiDT. 3TH peayllbTBThi nony'leHbi 

C llOMOWb~ npSJMOA KOHCTpyKUHH H OUeHKH onepaTOpOB B r'Hnb6epTOBOM 
npocTpaacrae. Pa3Hbie npHMepbi HnnrocTpHpyJOT peayllbTBTbi H pasrpaHHqHaa­

IOT o6nacTb HX npHM9HHMOCTH. 
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0, INTRODUCTION 
Given an unbounded operator algebra (Op*-algebra) on a dense in­
variant domain in a Hilbert space, it is possible to define in a 
"natural way" various locally convex topologies generalizing the 
operatornorm topology of c*-algebras, In this paper, we consider 
the topologies t' , t' l2l), J and il. • The topologies t' and j are 

~ ~ 

related to basic concepts in the theory of ordered vector spaces. 
t'~ is connected with the notion of normality of a cone because 

the cone of all positive operators in the algebra is r~-normal, 
If we regard the hermitian part of an Op*-algebra as an ordered 
vector space, thens is just the order topology. 

Our aim is to study the following problem: 
Under what condi tiona to an Op<t"-algebra .1't on a domain ;;D the 
topologies 'l:'".n and J reap, t"l

21 and il. coincide on .A: ? 

In section 3 we prove that for certain Op*-algebras vi which are 
"rich enough" (for example, the algebra L+(~) ) on domains of the 

form ::l> = ng 'J) ( Sn) , S a self-adjoint operator, the question has 
C:lJ) \ 

an affirmative answer, that is, 'z; = j and t" = 11. on l1t • Section 
4 contains three examples, We include an example of a closed OP*­
algebra on a domain of the form ':b = n :;() ( sn) for which the posi­
ti ve cone is not normal with respect to the order topology J (in 
particular, t: * J ) . By another example we see that there are 
Prechet 2J domains J) such that '~ ;. J and t"'

31 + ,.\. on L+( ;D ) • 
Section 1 collects some definitions about unbounded operator 
algebras. Section 2 gives some elementary facts about bounded sets 
in Op!f-algebras. 

1 , DEPINITIONS 
Let ~ be a dense domain in a Hilbert space de • Let 

L+(2)):={acEnd~ : a:Os~ ,a*]Js'JJ}. L+(2) is a'll'-algebrarlth 
the usual multplication and the involution a-a+:=a""f'J) • 
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An Op*-algebra is a ~-subalgebra of L+( :1>) containing the identity 

map I=I 21 • The locally convex topology 4.11. .on ~ generated by the 

family of seminorma ll~ II a==Ua~// ,aUt, ~E:J), is called the 
graph topology. If .tC = L+ (;}) ) , then we write 4 instead of 4 + ..t 
Let ~ (.tl) = fl ,'U(a) where a means the closure of the operator 

- at:Jt 
a. The operators a: =a ~ ::£) form an Op-!f-algebra vi on :;() = 2> (.It). 
~[441 is the compietion ~f ~[4.A] • ..It is said to-be cl:;-sed on :0 

if A= & , i.e. ':b=~ ( v't). 

Let us define .Ah:={a£v4: :a+=a}, A+:={aE..d :(a.p ,f~ ~ 0 V;e:D} 
and a;::b iff a-bE .i+for a,b€~. A linear functional fan .A. 
is called strongly positive if · · f( a)~ 0 ¥ a e vf+. 
Now we turn to the topologiza.tion of ~-algebra.a: 

?or each bounded set m. of :b['f..tJ we define 

p (a):= sup l<a.IP,"!'/"1 and P m(a.):= sup Ua90 
Pl. ~,i'Oil 4>011. 

The topol0gies (;".z> and t:tJ) generated by the semi norms { Pm J reap. 

{Pmj were introdueced by La.asner (/41 ,151). Z"~ is called the 

uniform topology on vi • .A.fSJ is a topological *-algebra. Since 

r21 can be given also by the equivalent system of seminorms 

p 1 (a.):= sup J<a,P,f;>l , v1 is L. -norma.l(/91). 
m. fOil + .3 

Further, for a, x ( vi we define 

vVx:={u.A.: {(af,p)'/ ~ ca.,xUxf>// 2 V'fE:O}, 
..M.x:={a e .A. : Us. 9 II ~ ca. x 1/:::z: ,PU V' ft:b}, 

' J<a~ ·fi>l , hlJ!... C J (a):= sup 2 , ,. (a):= sup Ux.llfl where 0 =+ oo for 
X te~ h~ lJ X f~~ T 

C">O and-%= o. 
J and ,\ denote. the inductive toplogies on Jf: with respect to 

the normed spaces{<vVx,Jx),x€<1!} reap. {<Jtx,.{x),xfll}. In 
th.is form J and A are introduced by Arnal and Jurzak (/1 I). 
Since the inductive limit of normed spaces is bornological, A[J] 
and J\.[1.1 are bornological locally convex spaces. The topology J 
on the hermitian part vi;h of II{ is the order topology of the vector 

space Jl. h ordered by the positive cone A+. This :follows from I 8 I, 
p.232,6.3, because the norm Jx is just the order unit norm. For 

simplicity, we say that J is the order topology on ~ • 
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Suppose II~Ux, Xnf.tl,neN, is a directed system of seminorms gene­
n 

rating 4.t on :D • Then a zero-neighbourhood ba.ae :for J and A is 

given by the families o:f sets V.IIL := aco( t1.. 11Ux ,ntN) reap. 
n 

-v: := a.co( "- V ,neN) 
... n xn 

where d. ={~,neN} is an arbitrary sequence 

of positive numbers ot. n. Ux and V x denote the unit balls in the 
n n m 

normed spaces (v'Vx •Jx) reap. (.Mx ,,t ).We havet"S:Jandt' sA.. 
n n nxn .tl 

2)
00

(S) means the (dense) domain defined by J..o(S):= ~ :l> (Sn) 

whereby S is a self-adjoint operator in Hilbert space. ~or a 

domain ;n = :;z)DO(S) we define 
<J

1
(.:D):={te.lt:(Z): ta is of trace cla.as for all afL+(.2>)} and 

(j 1 (2))+:={te0"1 (~): t:;!! 0} .Since 2 = 2 00(S), it follows that 

tdei~ fo:r teG"
1
(!l)) (see for example l11l,lemma 1.1,(1) ). 

By jr we denote the 8et of all linear functionals f(a) = T:r ta , 

a ~ Jl , t E G"'
1 

( :D)+, on ~ • Let a- a and <t ~ be the strong ope:rator 

topologies on Jt given by the families of seminorms{UaU;:=Ua;// , 

4le:l>j 1'esp.{qf(a):= f(a+a) 11
2
,fe:J'} • 

Finally, ~at always denotes the strongest locally convex topology 

on .;t • 
For the remainder of this paper we assume that the graph topologies 

of all Op*-algebras are metriza.ble. 

2. BOUNDED SETS 
Let Jl be an Op*-algebra on :;/) with metrizable graph topology 4.A. • 
Since the family of seminorms Hfla' a E .A. , is directed, there are 

operators xnE<It, x1=I, nEN, so that I xnfU,//xn+1 tU .Yte-:0 ,nEN, 

and that the seminorms lltU:x ,ntN, define the topology 4.,-t. 
n 

LJ!)!MA 1 : For each subset n of Ill. the following assertions are 

equivalent: 

(i) n is "~-bounded. 
(ii) There are a constant c>o and a neN such that 

l<a+,9)1 ~ chnfU 2 Yte-:t>,ulL • 
(iii) 11. is j -bounded. 

Proof: 
(i)-(ii): 
Assume that (ii) is not true. Then there are vectors fnf:Jl and 

operators an En such that j<an + n' f n>l ~ n U xn + nf· • By 
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normalizing the vectors we get II~~ n U'"' 1. The set in :={fn,nEN} 

is 4,-bounded because sup lltpU ~ M.ax(U~f 1 U, ••• ,Uxkfk_1 /1,1) 
"' fElll. xk ' 

<+t<J. On the other side, one has sup Pm(a) ~ /(anfn•f n>/ ~ n 
aE1l. 

for all neN which is a contradiction to (i). 

(ii) ..__,.(iii): 

Clear, because (ii) means that the set ~ is bounded in the nor-
med space ( J( , .J ) • 

xn xn 
(iii) ~(i): 

Trivial because ~ ~ J • I I 
Similarly, we have 

LEMPl:A 2: The following properties of a set llS Jt. are equivalent~ 
(i) 1l. is tUI)_bounded. 

(ii) ~here exist a constant C > 0 and a number n~N such 

thatllaO~cUxnfll Yte=t>,a€12. 
(ii) 'll is l. -bounded. 

Since Jl.fj] and .Af.U are bornological spaces, we obtain the follo­
wing corollary. 

COROLLARY 3: Suppose .A is an Op*-algebra on ~ with metr:!. zable 

graph topology. !hen: 

( 1) Jl.[?;] [ .A[t~l] J is the homological space asso­

ciated with .AfJ] [ A,[.t] J . 
(2) J1. [r:JJ is homological if and only if ~'"' J 

( 3) .A [ t IJlJ is bornologioal if and only if t 0 )= _:t 

3. THE MAIN RESULTS 

T!I!tQF..EM 1 :~ Let S , S ~I, be a self-adjotnt operator in a Hilbert 

"' apace with spectral resolution S = f t dE(t) • 
• 

Let {1>1n,neN} be a monotonic sequence with ~=1 and 
lim M =+ oo • 
n-+ao n 

Suppose A is an Oplf-algebra on J> = loo(s) such that 

Sf./L and E(Mr.+1 )-E(1-0)eA. ¥ nfN. 
(ll) .4. 

Then we have 't".t = J a.YJ.d Z" = ,t on or{. • 

:;~:0rc g: .. ving the proof of the theorem, we mention some corollaries. 
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COROLLARY 2: Let Jt and :ll as in theorem 1 • Then: 

Proof: 

(1) Jl.[t;J and A.ft 11J1] are bornological spaces. 

( 2) The cone Jl. + is normal for the order topology J. 
(3) Suppose in addition that S is the inverse of a 

completely continuous operator in JC • 
Then each J-continuous linear functional f on 
Jl is a trace functional, i.e. f(a) = Tr ta , 

a E ,A. whereby t E 6"1 ( J)). 

Since the topologies J and ,\, are bornological, (1) follows from 

theorem 1. 'SJ = J implies (2) because .A.+ is z-21 -normal (/ 9 /). 
W'e prove (3). Since s-1 is compact, 7)[4.-t] is a li'rechet Mantel 

spaceCsee I /,section 3,remark 2). f is Z"~-continuous because 

r :0 = J on .It by theorem 1 • Now the assertion follows from 

111 I, section 4, theorem 4. I I 

In the case A. =L+ ( .2l ) theorem 1 gives 
COROLLARY): If ~= :l) 00 (S), S a self-adjoint 

(.ll) ' space, then 'L:z~ = J and 't" = .., 

operator in a Hilbert 
on L+(.J) ). 

COROLLARY 4: Suppose A is an Op*-algebra on the domain :bo<J(S). 

Proof: 

Suppose that S E .A. • 
Then each strongly positive linear functional f on 

is 't'.j) -continuous. 

By the closed graph theorem, we get 4.A. = If+ on :1) • Hence A. is 

cofinal in L+(~) and f can be extended to a strongly positive 

linear functional f on L+( :1)). Since strongly positive linear 

functionals are always continuous in the order topology J and 
r;o =J on L+(~) by corollary 3, f is 'Z".z -continuous on L+(,J ). 

Because 4...t = ;f + , the uniform topology o:t A. agm es with the topolo­
gy induced by the uniform topology of L+( ::iJ ) • Therefore, f is ~ -

continuous on .It. I I 
Now we pass to some preliminaries for the proof of theorem 1. 

Let 4' ={.Vk•k£N} be a sequence of real numbers .Yk with O<j'k ~ 1lk1 
V keN. We define a real function hi(z) by 

hv(z):= sup J'kzk for zcm.,, z~1. 
• keN 
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LEMMA 5: Let p ={fik,k<N} be a sequence of positive real numbers. 

Then there exist monotonic sequences { ~,kcNj,{~,kENj 
of natural numbers nk,~ where ~=1 and a real sequence 

,r= {.Yk•kcNJ such that: 

Proof: 

(i} 

(ii) 

0 < fk ~ P k' and J' k ~ 1/k! V kfN. 

~ h j ( z) = y n. z for M_ ~ z ~ M , 
It "'k ~+1 

Moreover, (i) and (ii) imply 

(iii) sup zkh 
1 

(z)-1 < + oo for each kEN. 
z~1 

kEN. 

Let f={fk,kENj be an arbitrary real sequence satisfying 0 < {k 

~ 1/k! V kEN. Since lim c(kzk = 0 , for each z ~ 1 the supremum 
k-oo 

in the definition of h 0 (z} will be attai~ed for some kEN (de-

pending on s). Purther, the set of all kEN such that h 0 (z)= fkzk 

is a finite set for each (fixed) z 7; 1 • l!'rom this facts it follows 

the existence of a monotonic sequence {rk,keNJ of natural numbers 

and of a real sequence { ~01~( r[ ) , kt N J (both depending on o ! ) 

r 
Btl.Oh that 1~l1c< ~+1 ,L1 :a1, and h 0 (z),. drkz k for~' z~~+1 • 

After these preliminary observations we shall inductively define 

the sequences{~} ,{mk},{rJ • 

l!'irst let rfk=Min( ~k,1/k!). Since lim Mk =+~,there is an index 
k-+00 

~ so that M ?- L1 ( (). Suppose that ~ 5 ( Li ,Li +1J. By 
~ 1 1 1 

making { 2 , ••• , dr sufficiently small we can get Mm =L1 (J'). 
i +1 1 

Put r
1

= { 1 and~= t1 (l!r1 ( cf) ). We continue this procedure with 

the new sequence o. Take ~ such that ~ ?ltL2 ( o). Let 

Mm... .5 ( Li , Li 1]. Now we change a2 , ••• , rF r in such a way 
c 2 2+ i2+1 

that ~ =L2 ( /') and define J'2'= /"2, ~ = r 2 • By induction this 
2 

construction proves the first part of lemma 5. 

Next we show (iii). 1ix kEN. We take a 1EN such that~ ~k. 

Then we have hi ( z) ? f kzk for all z ~ ~ • Hence 
i 

zkh i' ( z) - 1 ~ i k - 1 for all z ~ Mm • Since the continuous 
i 

function hi' (z)-1 zk on [1,~i] is bounded, this implies (iii). 
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Proof of Theorem 1: 
We want to show that 'S> = J on it . Since always ~ ~ J , it is 

enough to prove that J S r.7) • Let U.( = &co( .£ kU sk' kfN) , o( k > 0 

lpl kEN, be a fixed 0-neighbourhood for j in .;l , 

Pirst we inductively define a new sequence p = {pk,kEN} by 

R '{ -) 1 f:l ( -(k+2) R -1 -(k+3) R-1 
r1= 2 ~1 •rk""Min 2 o£kr1• 2 o£kr2'"'' 

2-(k+k} .,£ A -1 f 2-(2k+1} cJ, I ) 

kfk-1 , k • 

Then we have R 11 ~ cl.. 2 -(k+m+1) Y. k ~ m, k,meN. 
rk rm m 

Next we take sequences {i'k} ,{~J·{~} having the properties 
described in lemma 5. 1or simplicity we write h(z) instead of 

(1) 

h ¥ ( z). Let 111. = h(S) - 1B where B denotes the unit ball of the 

Hilbert space, 
Since ~ =<JJ

110
(S) and se.lt, the seminorms II+ II k =0 sk ; U , kEN, 

s 
already generate the topology 4~ on :2> • Hence we conclude from 

lemma 5,(iii), that art is a bounded subset of :D['ttl· 

Now let 'Wm ={x evi. :p m (x) ~ 1}. Our proof is complete if we 

a E 'IJ"bt • Then have shown l.tf'ln. Si 'lL.t., Take an element 

p (a) =sup l<aj 'L>I ~ 1 
111. j,1 E h(S}-1B 

and so /<a J .z >I~ llj It Uz U 

V j,zeh(s)-11{. Putting J=h(S)-\p, ~=h(s)-1 1' 
l<a ,,'1'>1 ~ llhCsHII ~ h(S)"fU V' t,tt:0(h(s)). 

we get 

Let Pk=E(,+
1
)-E(,-O) and let l1'k=P1+ ••• +Pk for kEN. 

assumptions imply that Pk £.A. and J'k E llf ¥kEN. 

Our 

(2) 

-(~+n +1) 
STATEMENT I: Pk:aP:r e 2 r .£~ U sttr fork~ r, k,rEN. 

Proof: l!'or k ~ r, ~t'J) , we have 

l<PkaPrf•f)l=l(aPr~'Pkf>l ~ f!h(S)Prqlj 1/h(S)PkfU = 
2 (ii) 

'i u S~Pr~ ll ¥ Us~k~" ~ pn_ a_ Us~+ n ~ 
~ ~ (i) --r '"k ( 1 ) 

d.. 
2 
-<~+~+1 > 11 s~ ~ 11 2 which proves the atatement. 

~ 
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We assumed that S ';l> I. Therefore .1 = U vV~ k • Hence there is a 
keN s 

number lc N such that a E Jf1 • We choose an index m such that 
S S 

~ ~ 24 f 1 (a) "'i:1 (3) 
B S 

which is possible because lim ~ =+ oo • For brevity let us 
k~OO k 

write Ji(a) and Ui instead of J . (a) resp. U . ,iEN. s]. s]. 

STATE!~ENT II: (I-Fs)a(I-Fs)+Fsa(I-Fs)+(I-l!'s)all'8 ~ 112 CX:.l+1 Ul+1" 

Proof: By the spectral theorem, it follows that 

II s1 (r-F8 )~ U 6 Mm-1 U sl+1 (I-Fs) fU ¥ f e 2) • (4) 
s 

Clearly, /(a~,~)/ ~j1(a) /ls1 fil 2 
implies /(at,t)f~ 

~.fl(a) Ms1.ji1111s1 tll V f,"Y'c::D by polarization. Moreover, 

II s1Fs~ II ~ II sl+1 ~ II because s ~I. Using this facts, we obtain 

I<F
8
a(I-PsH ,pi =/(a(I-P

8
)f ,F8 ;)( ~ 4J 1 (a)l/s1

(I-F8 )f«l/s
1FsfU 

~ 4j (a) M - 1 U s1+1 (I-P ) '"0 U sl+1 H :::; 116 "'- Us1 +1fD 2. ( 4) 1 m8 s Y ( 3) -l+1 

and 

/((I-F
8

)a(I-F
8
)i .~~~ :::; j 1 (a) lfs1 (I-ll'8 )f II 2 ~ 

J,(a)r.l-2 lls1+1 (I-F)•"U 2 <. 116.1. Us1+1 ,q 2 
·' m

8 
s T - 1+1 1' 

'l~hercfore, F8 a(I-Fs) E 116 "'-l+1 U1+1 ' (I-F8 )a(I-F8 ) E 1I6"'J.+1u1+1 

and similarly, (I-Fs)aFs E 116"" 1+1 u1+1 • This completes the 

proof of statement II. 

By statements I and II, we conclude that 
8 

e. = ~: : Pkal'r + (I-ll'
8

)a(I-P
8

)+li'sa(I-F8 )+(I-P8 )aF8 is in 
k,r=1 

s -(~+n +1) 
11 = aco( <i ku k,k€N) because ~ 2 r +112 < 1. 
~ s k,r=1 

'i'hu::< l'iG r;roved that ~ = .1 • 
(.I>) 

In a s:.tn:ilar way, it can be shown that 't = ,\ on Jl . I I 
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The preceding arguments can be used to get further results about 

the comparison of topologies. We mention an example. 

PROP03I TION 6: Let Jl. , 1J = Jl00( S) e.nd {~} as in theorem 1 • 
Suppose in addition that ~[ 4..._] is a nuclear space. 

Then the topologies <l"J:" and A. coincide on .A. 
Proof: 

We first prove that A ~ Q" 3<. 
Since ~[4-A.] is a nuclear apace e.nd SEA, a certain power s-2r, 

r~N, is a nuclear operator. We can choose an orthonormal base 

{fk,kENJ of 'l consisting of eigenvector• of S. Let {)"k'ke-NJ 
be the sequence of the corresponding eigenvalues. Since S ~I, 

/'k ~ 1 V kEN. 

Consider an arbitrary 0-neighbourhood 

,\ whereby .t.k > 0 't k£N. 
VJ..'" aco( ot. kv k' keN) of 

s 
~ 

{ y -1 -k-r' d. } 
Let d' = ,rk:= C 2 k+r' k£N where C:= l:: ut2r 

i=1 I 

nuclearity of s-2; Notice that C < oo by the 

We define t:=h 11 (S)-2 • 

STATEMENT I: t f 6"1 ( :2) ) +. 
Proof: Let a€L+ ( ':i)). By the closed graph theorem, there is a neN 

st1ch that Ua ~ U ~ C 1/ snH V + t; 1J • ·~en we have 
"" a "" O<J 

L Uaft ~k11 2 ~CaL lls~,(S)-\p k/1
2 

=CaL /"~n h/;')c)-
2 

k=1 k=1 4 k=1 4 

l_<y_ -2r r ., 2n+2r oo 
:Ca -- rk 1.(" k h <r )-2] <+ 00 because L At - 2r < + 00 

k=1 '/ k k=1 I k 

and sup ~~n+2r h" ( u.k)-2 -<+llO by lemma 5,(iii). Therefore, 
keN a I 

a '{t' is a Hilbert-So hmid t operator. Putting a;. I, we see that ft 
is of Hilbert-Schmidt class. Hence, the closure of at = a(f (t 
i.s of trace class, that is, tt:6"1 (;;(})+. I I 

Let f(a) = Tr ta for a € .It. 
STATEMENT II: If f(a+a) ~ 1 for a E Jt, then aE Vet. • 

00 

Proof: Suppose that f(a+a) ;; L h <r )-2 u a• u2 < 1 
k=1 ¥ k 'f k - • 

Let a € vft 1 • Now we repeat some arguments used in the proof of 
s 
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theorem 1. Let Pk=E(~+1 )-E(~-O) and let Pk=P1+ ••• +Pk. 

We choose m
8 

so large that ~ ?: 2 .:\.1 (a) .Li:1 • Then 
8 

II a(I-F8 )fll~ .l
1

(a) lls1 (I-P
8
}f II ~ ~:1 -t 1 (a) II sl+1 (I-P8 )~ II~ 

1I2.L llsl+1AU 1+1 't' 
, i.e. a(I-P

8
) € 112 J..l+1 V 1+1 • s 

Let Nk be the set of all i N with fi S [M.. ,Mm. ] • 

( 5) 

Then 

~ "'k -It+ 1 + 
Pk ~ = HN <+ , ~ i) f i. Using lemm& 5, (ii), and f(a a) .{: 1, we 

k 
get 
UaPkfll 2 ~ <LI<~.t¥llla~ill> 2 ~ CL,)o<i2rHL"l<t.+i>l 2~rlla~ill 2 > 

HNk iEifk i€Nk I 

~ c L I<+ + )\2/2r !lh (S) th q2 ., C 11 2 L l<t,~ )j2f2r+2nk' 
HN , i i r r i , ~ i Nk i i 

k 

c v 2 II sr+~1. .~.u2 ;< 2-r-~ <£ 
2 llsr+~,.. U 2 

6 ~ k,. ...., r+~ T 

aP E 2 -r-lit d. V 
k r+~ 3r+nK 

s 
Since a = ~ aPk + a(I-P8 ) 

k-=1 

, (5) and (6) together give us 

3>' 
a E VJ. • Thus, we proved that ,{ c.: u . 
It remains to show that (i"'J>!i A. Let t~Ei";(::b)+. We have 

(6) 

Tr tx = lT- di (xti•t i) whereby {"tiJis an orthonormal system 

of eigenvectors corresponding to the positive eigenvalues ~ of t. 

Notice that i'i = t( ii1 i'i) f: ':b because t X S 'J> • 

Now let a E vtt 1 • Then 
s 

f(a+a) = Tr ta+a = L J"i II a'til/
2 

i 
~ L {i:A,l(a)2 U Sl"fi//2 

i 

= ~l (a) 2 f(s21). Since ,\, is the inductive topology on .A with 

respect to the family of normed spaces{< ~ k' Ak) ,kEN} , this 
s 

implies that (t:t s ,"\ , completing the proof of proposition 6. 

I I 
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4. THREE EXAMPLES 

In this section we examine three examples. Examples 2 and 3 may be 

regarded as counter-examples to our main problem. 

EXAMPLE 1: 
Our first examples gives two classes of Op!f-algebras for which our 

question has an affirmative answer. To see this, we reformulate 

the main results of 110 I. 
THEOREM: Let Jl be a countable generated Op*-algebra on ~ • 

(1) If 'l:'.D = '~"at or J ""'1" st• then we have t.2l = J' o" '1" st' 
l2>> clll , 

(2) If'!:' = t'st or A = 'Z"st•the.n 1:' -=A = 'Z"st' 

(3) Suppose Jl. is closed on J:> • 
2 UJ , 

If o- = 't" st or 7: -= t'at or 1\ = ?' st• then 
~ (.:Z,) 

cr' = 1: = ). = 1" st • 
Proof: 
(1): According to theorem 1 in 1101, we know that 7:~ ='~"at if and 

only if all vector spaces .Kx,x <vi , are finite dimensional. 

Since Jl.[fJ is the inductive limit of the spaces Kx, the 

latter is equivalent to J = ?'at• This proves (1). 

(3): Since <3"~ so 't'(ll S A S 7: at• it is sufficient to show that 

,\. = L'st implies cr-:ll = L'at• If A= ?"8 t' then the vector space 

J(lx is finite dimensional for each x € .A. because A.[),] is 

the inductive limit of the spaces • .W x•x eJl.. In 'view of 

theorem 2 in 110 I, this is equivalent to (}" 'Jl = '!:"st. 

( 2) : Suppose that ). = 't t on A . !.:hen, A. = '!:" t on A • By (3) , s 6 -
::b 

we get <3"- = t' st on !J.. Hence for each seminorm p on .A. there 

exist vectors ~ 1,. .. 1 fKE~ such that p(a):;;: Lll! fill 1' aEJI. 
1 

(In I I, it was even shown that one vector suffices). Since 

;Q is the completion of 'J)[ 4A], there are sequences { f ;, ncN} 
i i i { ij i=1, •.. ,k, ~ne:/l, with ~ = 4.;t-l;m ~n· 1Q.:= ~n is a 

+A -bounded set. Further, p(a) ~ p 111 (a) a sup Ua~~ jj • 
Consequently, 1:'211 = '~"st• I I i,n 

our theorem can be rephrased by saying that for countable genera­

ted "very unbounded " Op*-algebras (which means that the vector 

spaces J( resp. M are finite dimensional for all x E ..t ) we have 
X X (J) 

1"2>"' J = 'Lst resp. 7: = ,{ = 'l" at• 
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EXAMPLE 2: 
Let .A.= .§ i9 be the tensor algebra over a nuclear Frechet space 

E [t' J with a continuous involution. For example, one can take the 

Schwartz space 1 (Rn) for E [t' J , vl is a 11"-aljebra in a natural 
way. In 112 I. it was shown that the *-algebra can be realized as 
an Opit-algebra on a domain 'J) = 'J)

00
(S), S a certain self-adjoint 

operator in a Hilbert space, such that ~ = r':Dl, J ~ .\ and 4.A. • 4+. 
For the definitions and facts about tensor algebras used in this 

example we refer to I 6 I or to 112.1. 
We claim that J = A. = 'L 19 for this realization of A as an Op~-

2 .A.[j 1 is the asso-algebra. Indeed, by corollary 3 in section 

cia ted bornological space for .A[t.;!l]. Since v'l.[r-,J is bornologi-

cal and !
8 

and T00 have the same bounded sets, t"~ = '!:"00 implies 

J = t"® • Similarly, we get ~ = t"@ • 

Suppose now that E [t"] is not normable (since E [t] is nuclear, 

this is equivalent to the requirement that E is not finite dimen­

sional). Then we have '!:"@ 'i' t 
00 

• Consequently, 1 + r~ and ,l 'f' r c:z>J. 

From this example we can learn a little bit more. 
1 • Because .A [ t 13 ] 

1 'f .A.[t-00 ]: .A [j] and .A[t~ J have different 

dual spaces and S is not the Mackey topology to 't~ in general. 
2. In our example, the cone Jt+ is not normal with respect to the 

order topology J . Since J = t® , ~s follows from the known 
fact that the smaller cone P (.A ) : = 1 ~ x! xi, xi € Jt} of all finite 

i 
sums of squares is not 1'QJ-normal (/ 6 I). 
3. Moreover, our example can be used to give an order-bounded 
linear functional which is not a linear combination of (strongly) 

positive linear functionals. The only example of this kind which 
the author has found in the standard literature on ordered vector 

spaces is due to Iamioka (cf.l Z I ,p.30). Namioka' s construction 

makes use of the spaces L , 0 <P < 1. 
p 00 

Let E ft J = j (IR1 ) • Then A. : !!; i9 = L !n (direct sum) where 
n=o 

E
0 

= c
1 
and~ =~(~) for nEN. We define a linear functional f 

- n n 00 11-11. 

on lit by putting f(x):= x +L 'i) 1'\ '<> 'C}trt Xn(o, ••. ,o) 
o n=1 t 1 ·" 11. 

for x=(xn)Evl ,xnE~n· Obviously, f is ~.-continuous. Hence, f is 

14 

order-bounded because the order topology j coincides with ~ •• 

f is not a linear combination of Jl+-positive linear functionals 
because it is not in the linear hull of P(~)-positive linear 

functionals (/13'1,section 4,theorem 5,(iii) ) and "?(vi)~ .k+. 

Thus, we have seen that there are Op-11'-algebras A with 4 A = -+ 
C~) "" + 

on domains ;;;() = '.Dr;;o( S) such that 't"~ 'f J and 't + ,{ . On the 

other side, if the 0p10'-algebra .A. on 'J) = 'JJJ,.s) satisfies the 

assumptions of theorem 1, then 't"ll = J and 't"OJ) = ,.\. on .A (in 

particular, this is true for L+(.:l) ) ) • In our next example, we 

construct a Frechet domain :21 [4 J such that 'r.,. + J and 
(~ + ~ 

t: ~ A even on L + ( 2> ) • 

EXAMPLE 3: 

Let a(k),k~N, be the infinite matrix a(k)=(a(~5)= 
( (k) (k) - k - ](" (k) k k k ) Y1 , ••• ,yk_1 ;xr-e,xr- e, ••• ) where yj =(1,2 ,3 ,4 , ••• , 

e=(1,1,1, ••• ),j=1, ••• ,k-1, kEN. Writing each matrix as a sequence 
a(k) corresponds to a diagonal operator ~in the Hilbert space 

1 2 • We use the following notations: 
'l'l. n1 nr 
a{:=~···~ for i=(k1' ... ,kr),1t=(n1 , ... ,~), ki'niEN, reN, 

1 r 
and /~/=k1 + ... +kr. a;:(a. ) 

/""'\ ~ '11 lj 
Let ]) = 1 1 ""' (a i ) . Let .A be the set of all complex matrices Y 

~.'It 
whose elements can be estimated by the elements of a certain 

1t J I .,. ( k 1 ) n ( ky ) n operator a.l.. , i.e. aij ::::: C a ij 1,,, a ij r where C)'O 

is a constant. Jt corresponds to an 0p*-algebra of diagonal 

operators on ;i) • Clearly, all a:{ are in A. • 
STATEMENT: I,et .] be an Oplf-algebra on Q) with 

Proof: 
Then we have t-.2> 'f J and 1:'~) 4- ,l, on 

J 2 .A. • 
J . 

We prove only that 'l2l 'f f . 
Take the 0-neighbourhood U = ace( cl., U ; I, ,n ) for the topo-

l-k/htl.,_ ",'11. a'l'l. 
logy j where ~ = /-k J • Let »z be an tarbi tra.ry bounded set 

r ·
11 2 r- 2 (k+1 )2. 2 

of 1)~.,4]. Then sup /1~+1 ~II = ~ l fiji a ij =:Ck <toO, 
] ~{ 'Rl l' j 

In particular, this implies that sup I tkj j jk ~ Ck for each jE N. 
feb!. 
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We choose j=jk so large that Ck 2jk - 2k ~ 2-(k+1 ) for 

Put aij= 2 ~or (i,j)=(k,jk) and aij= 0 otherwise, 

all kEN. 

We claim that plr!.(a)~1 and afUo£. ~or a=(aij)EJ 
00 

In ~act, we have 

~ !::L 

Pm(a)=sup Laijl~ijj 
vo ·~'ln. i, j 

2 
= sup L 2l+kj 1

2 

ftDL k=1 k 

k=1 
2 ck2jk-2k ~~ 2·2·(k+1) = 1. 

k=1 

Now consider an arbitrary element b .. ~ "tbi € u" where 
r i=1 1 

bi E ti.1 U 'II.• 
"i tl.i a ' 

I lq 

and L Jt'i / ~ 1. The absolute values of' the 
i=1 

matrix elements in the m.-row o~ b are not larger than 
r I~ 1/-~t I 

Ll!il Iii! i i rl..g_ ~ 1 if we take m:• Max /-G.i/ 
i=1 "'i ;"t. i i 

Therefore, a 4 l.(o£. , 
Thus, there is no bounded subset 1n o~ 

'W'II!. :={x £] :pln. (x) S 1 } ~ l.Lo£. • This 
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