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Two Theorems About Topologies on Countable 
Generated OP *-Algebras 
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We characterize the countable generated (closed) Op *-algebra, 
A for which the uniform topology ro (resp. the strong operator 
apology 'D ) concides with the strongest locally convex topology 

~:m A. 
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0. INTRODUCTION 
The present paper deals with the topologization of unbounded 
operator algebras (Op~algebras) in Rilbert space. We consider 
two possible topologies, the so-called uniform topology '1:".:1) intro­
duced in /2/ and the strong operator topology~~. We characterize 

the countable generated [closed] Op,\'-algebras A for which 'l:"J> 

[reap. G"';n] agrees with the strongest locally convex topology on 
.A: • OUr main theorems contain some known result for concrete Opif­

algebras (/2/,/3/,/4/,/6/). 
In /5/, )heorem 1 was used in proving that for certain Op,!f­
algebras (for example, the Op*-algebra of all differential opera­
tors with polynomial coefficients on the Schwartz space ~(Rn) ) 
!!1 linear functionals f on Jl are trace functionals, i.e. they 
can be given by f( a) = Tr ta , a E '* , t an appropriate nuclear 

operator. 

1. DEFINITIONS AND NOTATIONS 
First we repeat some basic definitions and facts about unbounded 
operator algebras from /2/. Let :?) be a dense linear subspace of 
a Rilbert space ?(. • An Op-~i-algebra A on .:3 is a 41'-algebra of 
unbounded operators leaving the domain ;!) invariant. We assume 

that the identity map is in Jl. and denote it by 1 • The ~ 
topology tJl on J) is the locally convex topology defined by 

the seminorms II t B a:= H a~ U , ~ £ :2) , a € II{ , Por each bounded subset 

1n of :U[ t.A.] we put p'm(a) = sup l<a' ,'1')1 • The uniform 
~ ..... em 

topology 1':1> on .tl. is generated by the family {P'Irt} of these 
seminorms. J!.[:r J is always a topological* -algebra. The strong 

J) ~ 
operator topology t:r on .A. is given by the seminorms 

lla II ct :=II a f II , f € ~ , a e A . 
Let 11 ( A.):= f) :1) (a) • The operators a : = a t :i) form an Opolf-

- a£n - -
algebra A on '2) .. 'J) ( .A,) which will be called the closed 
extensio;-o! .A-: .A..is said to be closed if .As[! ,i.e.:!)= ~(..A.). 
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An Op"-algebra vt is closed on ':21 if and only if the space 
'2> [ t .A. J is complete, 

Furthermore we use the following notations throughout the paper 
(adapted from 111): 
Jfx:={at.A: !(a+,f>l ~ ca,xfixpU 2 l'~c:z>}, 
.Mx:={uJl: lfa911 b ca,xllx+l! ¥ fe'J>}, 

l<a •. 4'>1 !!ill_ 
.fx(a):= sup 1 , Ax(a):= sup U "'II for a,xevf. 

9E2> hfB 4!t2> XT 

Here we make the convention that g "' + o0 for C >O and g ~ 0. 
Clearly, J(x and ~ are vector spaces. 
By ~st we always denote the strongest locally convex topology on 
Jt. 

3. THE RESULTS 

THEOREM 1: l'or each countable generated Op!t-algebra .It on ':1> the 
following are equivalent: 
( 1 ,1) l'or all operators x E .A. the vector space vV x 

is finite dimensional. 
( 1 ,2) There are operators xn e.A. ,nEN, such 

A. = V Jf x and the vector spaces 
nEN n 

finite dimensional. 

(1,3) r:n= t"at• 

that 

Kx 
n 

THEOREM 2: Let A be a countable generated Op.v-algebra on ,i) • 

Consider the following conditions~ 
( 2,1) l'or all operators x E .A the vector space .M x 

is finite dimensional, 
xn E .A. ,nEN, such that 

are 

(2,2) There are operators 

A= V M.x and 
nf.N n 

finite dimensional. 

the vector spaces JK xn are 

(2.3) IT :I)= 't' at • 

Then we have (2,3)- (2,2)~ (2,1 ), It .A is a 
closed Op~-algebra on ~ , then all three condi tiona 
are equivalent. 

The proofs of theorems 1 and 2 will be given in sections 4 and 5. 
Here we note a corollary only. 

COROLLARY 3: It Jl is a countable generated Op*-algebra on~ 
and if 7;:1) = '?:' st on Jl , then a-i = 't" st on & . 
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Proof: 
Let :!; e &_. Since 'l:'~ = '?:' st' theorem 1 implies that the space 
JYx+x+

1 
is finite dimensional. Moreover, ~x 5 ~x+x+1 by the 

Cauchy-Schwarz inequality. Therefore, JKx is finite dimensional. 
Since all operators a E .k are t.A. -continuous on :1> and ~ is tA -

dense in~, it is clear that ae.Mx if and only if ,!!EJfx, Hence, 

~ is a finite dimensional vector space. Thus, conditio~ (2.1) 
X ~ 

is-fulfilled and we have 0"'- = 7; at' I I 

Remark: 
In 111, Op~-algebras satisfying condition (1,1) are called hyper­
finite, 

4, SOME EXAMPLES 
In this section we mention some examples of 0~-algebras satis­
fying the assumptions of our theorems. 

Example 1: Let vt1 be the Op *""algebra 3' ( T) of all polynomials in 
a symmetric linear operator T on a dense invariant domain ;I) 1 in 
a Hilbert space, Suppose that the operator T is not bounded on ~1 • 

Example 2: Denote by ~2 the Op*-algebra~generated by the position 

and momentum operators qj = tj, pj = i ~t ,j=1, ••• ,n, on the 
j 

domain ~ 2 :=C0110 (Rn), In other words, .A.2 is the it'-algebra of all 
4ifferential operators with polynomial coefficients. 

Now we pass to a more general class of examples which give a 
greater variety of Op*-algebras fulfilling our conditions. 

Example 3: Let G be a Lie group and e (G) be the universal enve­
loping algebra of the Lie algebra of G, Suppose ~ is a (fixed) 
neighbourhood of the unit element in G, If we realize £(G) as an 
algebra of left invariant differential operators acting on the 
Lie group G with the domain :b 3 : =C

0
110 ( 11) in the Hilbert space 

L
2

( U., /"), j'- the right Haar measure of G, then we obtain an Oplf­
algebra Jl 3 depending on G, 

With this natations we have the following theorem. 

THEOIDX 4: The uniform topologies on the Op~t-algebras llt1 , A2 , 

.A
3 

and the strong operator topologies on ~, ~2.~3 
coincide with the strongest locally convex topologies 

't" at on .A.1' .A.2, .A. 3 reap. Jl1' .12' .A. 3 • 
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Remarks: 

1. Most of this results are already known. Por Jt 1 both assertions 
were first proved in 131 (for the uniform topology partial results 
were obtained in 121). In the case~ both statements are shown in 
161. Por A 3 the assertion concerning the uniform topology was 
proved in I 41. The methods applied in the proofs for v{ 

2 
and Jl 

3 
in 161 and 141 are different from the method used in the present 
paper. Some basic arguments of the proofs are drawn from the 
proofs of theorems Band C in 121. 
2. By considering unitary representations of Lie groups (more 
precisely,the associated represenations of the enveloping algebras) 
algebras of differential operatorr (for example, the Op~algebra 

-1 2 d '1\ ao( ) ) generated by a = t and p = - (ftT on <IJ =C
0 

0,1 , sequence 

spacesfetc., it is not difficult to construct further examples 
satisfying the conditions of theorems 1 and 2. 

LEMMA 5: Suppose that .A. is an Op1f-algebra on ;o , a,x E .II. and aE ~­
Then there is a constant Ka,x such that 

Hat U 2 ~ Ka,x llxt U II xa9ll VfE2. (1) 
Proof: 

1 
Let llx:= {+tl: htU ~ 1}. Since [(a ~.9>1 ~ ca,x Uxfl/ Vf~:£} 
by a' J(x• we have sup k'a f ,,P)I :=. Ca x· 

~t\Ax ' 

Using (a9,'\f') = 114 {(a(~t"t),tt"t)-<a<+--y),t;--,> 
-i\a(f+i'f')d+i't/+i<a<t-i"f), f>-i"f>} it follows 
sup J<a ~ ,1')1 ~ 4 Ca x because the elements 112( f4"f' ), ••• , 
4>,,£lLX t 

112( ,P -1 "f') are in the absolutely convex set U.x. Hence, we get 

l<a+•'t>l ~ 4Ca X UxtU Ux"tU v~.tE2. Putting t= ap ,this 
gives (1). ' I I 

Now let us turn to the proof of theorem 4. 
By corollary 3,we only have to prove the assertions about the 
uniform topologies. In view of theorem 1, it is sufficient to 
show that condition (1.1) is fulfilled forllt1 ,.A. 2 ,.A.

3
, that is, 

the vector spaces J(x are finite dimensional for all operators 

x of the Oplf-algebras Jl1 , ...1.2 , ~. Here we only carry out the 
proof of this fact in the case of vt 2 • For .A 1 and .tl

3 
condition 

(1.) could be verified by repeating parts of the arguments used in 
121 and 141. 
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Proof for the Op*-algebra Jt 2L 
Por simplicity in notation we restrict us to the case n = 1. 
The subset {Yij:= qipj,HN,jeN} is a Hamel base for ~ 2 • Take a 
fixed vector ~~:1)2 , ~,PO, with supp; S [0,1] and put 
~.t..p (t):= p +<P (t-ol.)) for d.,fEfRt. A simple calculation leads 

to a~..ipJhJ~u ~Uyijf,~.,pU ~ (oL+1>i.p3h3fU (2) 

where H Pjf a+ 0 ¥ j(N. 

Let a= L ol.ij yij, x= L p ij yij and xa=L_ i' ij yij. The 
i,j i,j i,j 

degree of an element a t.s defined by d(a):= Max {i+j: o£ij't0}. 
Let (k,l) be the lexicographic largest tupel for which this 
maximum will be attained, i.e. k= Max {i: .£ij•o for j=d(a)-i~ o} 
and l=d(a)-j. Denote by (r,s) the corresponding tupel for the 
element x. 
Now we show that a E J{x implies d(a) ~ 2d(x)+1. In particular, 
this means that J(x is a finite dimensional vector space. 

We assume that d( a) ?: 1 and d(x) ~ 1 (otherwise the assertion is 

trivial). 
1 - 1 i+j- . j 

Let p = o1. k+l+r+s. Then d. i p j = ol k+I+r+s ¥ i, j € N. ( 3) 

We write, f(aL. )=<1'(aL.m),mER1' for a function f(aL.) if jf(aL. )o~.-m'J 
is bounded for sufficiently large ol if and only if m' ~ m. m is 
called the order of the function f with respect to o1. • 

k+l- 1 

ll'rom (2) and (3) it follows that U ykl + ... ~ U = 0'( 11.. k+l+r+s 
and for all other elements yij with o~. 13to the functions 
II y ij p .L U have smaller orders w1 th respect to rl.. • By the triangle 

,p 2 2(k 1 1 ) 
inequality, this implies U at.~.,,U = (J( o1. + -k+l+r+s ). (4) 

r+s--
l'urther we have U x J. H = (/ ( aL k+l+r+S ) r-.,p • 

8 

( 5) 

By the commutation rules it is clear that¥ ij=O for j :> l+s and 

i'k+r,l+s = olkl Prs 'f'O. Hence, if there is a iEN such that 

lij+O, then k+l+r+s < 1. Using this t;o facts, we get 
k +8 

u U +l+r+s - k+l+r+s 
JXa fo~,p = '(J( J.. ). 

Putting (4),(5) and {6) into (1), 1t follows 

(6) 

( ) 
S l+S 

2 k+l - k+l+r+s ' r+s - k+l+r+s +k+l+r+B - k+l+r+s 
Therefore, d(a) =k+l ~ 2r+2S+1=2d(x)+1 ~hich finishes the Jroof. 

I I 
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4. PROOF Oll' THEOREM 1 
(1.1) ~(1 .2): Trivial. 
(1.2)~(1.1): 

Let x E A. Since A= V J( , there exists a number n< N such 
n£N xn · 

that x+x £ J{ • This implies J{ S .Y . lienee ...Vx is fin'te 
xn x xn 

dimensional. 

(1.3)~(1.1): 

We suppose that~= Tat• Let us assume that (1.1) is not tru~, 
i.e. there is an element xE Jt such that Jfx contains an infirlte 

set {an, nfN} of linear independent operators anE A: • We supply 

elements bmEv4 such that the system {an,bm} is a Hamel base of.Jt. 

Without restriction of generality we may assume that fx(an) ;;: 114 

VneN. Thenl(af ,y>I,Hx~U llxtll -lfp,'fc~by polarization (cf.lemma 
5 in section 3). For each positive sequence t = {J' n i we define 

the seminorm Pv (a)= L v let. I for a=- L~t.. a +La b. • n a n n n n n m rm m 

Since !".ll = t at• there is a bounded subset m of :Z)[ t.A.J such that 

p 'I (a) ~ Pm (a) 1' aE Jl. Putting a =- «. 1 ~+ ••• +<ik~ we get 

Pv(a) =Lrnlo~.nl~ p'ln(a) =sup 1««.1a1+ ••• +alk~)f,"t')l ~ 
' n ~...,,. 

Llotn I (sup Uxt;/J Uxr/1) ~ C 2:l"nl whereby ~sup Uxf//l/x"/'11 
n f,'f'ETll n ~,...,£111. 

< + oo • Since o~. 1 , ••• ,ak' ••• are arbitrary complex numbers, this 

is a contradiction if sup Yn =- + IJO • I I 
neN 

Now we turn to the main part in the proof of theorem 1. 

(1.1) ~(1.3): 
ll'irst we note a simple lemma. We shall need it only for finite 

dimensional Hilbert spaces 1{1 • 

LEMMA 1 : Let 1(
1 

be a Hilbert subspace of K with 'K1 6 2 . Let 
P

1 
be the orthogonal projection on de., and ~1 :=(1-P1 ).I} 

: J) e 1(
1

• Suppose Jl is an Oplf-algebra on :.2) , a, x € vf 

and II + U ~ h ~ U for all ~ € :D • 
i<ai ,t)f l(a"!-of)l 

If Jx(a);: sup U Xf U 2 =-+oo,then sup ht112 =+OO. 

te~ "!''~ 
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Proof: 

Since the operators a, a+, x E .A. have dense defined adjoint opera­

tors in d( , their restrictions to '£ 1 are closed and hence 

bounded by the closed graph theorem. Thus II a~ u ' c II 'l n 
Ua+~U ~ Cll~ll, Uxlll ' C /1111 V 7(]{1 • 

!(a"f'•t>l . 
Let us assume that sup 2 =- c1 < + oo , L.e. 

i'E :D1 llx"!' U 

l<at,"t'>l 'c1 htll 2 l''ft2>1 • For each fEJ), ~=t+z ,'tc~1 • 
'Z€l'1' we get f(af,t)l = l(a("//+'Z ),'f'+tz>l ~ 
l(a"\',"f')l+ {(a~,'t)l+l("f,a+'Z>I + l(a'Z•7>1 ' 

c111xtU2 + 2CIItUU1'U+ cU~H 2 'c1 0x(f-Z)li 2+2CUr;D 2+cH~H 2 ' 
c1 (llxfll +C U~U )2+3CUfll 2 ~ [c1 (1+C) 2+3C] llxt0 2 because 

H II ~ u X; n • Therefore J x< a) "+ "" which is a contradiction. 
I I 

Now suppose that condition (1,1) is fulfilled. To prove that 

!",n = rat• we need some preparations and notations. Let us take 

a sequence {xn,nEN} of operators xn£/l. such that 

(i) U4'U ~ II xnfU' llxn+1 ;u V pE:lJ , nEN, 

(11) J{x ~ Kx and (iii) A.= n~ ~ 
n n+1 n 

It is very easy to see that such a sequence extsts. 'l'he vector 

space Jl has a countable Hamel basis {yn,ntN}. Let z =1+y1+y1+ ••• 
+ n 

+Yn Yn· Then yi ( Jl'.. for i~ n. Take x 1 = z1 • Because #~ is 
zn 41 

finite dimensional, there is a number, hence a smallest number 

n2 EN such that y J: Jf'. . Putting x2 ~ x1
2 +Z 2 +1 we have 

n2 't x1 n2 

J( z V J{ x .S J{x ' J{x 'f J(x and Y i E: J(x "' 1=1 • • • • • ~ • 
~ 1 2 1 2 2 

Continuing this procedure, we get a sequence { zn} with desired 

properties. 

Since each vector space J( ,n ~ 2, is finite dimensional, .ft"'x 
xn n 

can be decomposed as a direct sum of J{x and a certain vector 
n-1 

space .A. S: J( . Let A "' Jf' • Then .A.= L .A.n (direct sum of 
n xn v, x1 n 

vector spaces). Let dn be the dimension of A , and let an an a 1 ' 2• • .. , 
and be a basis of A . .A. is *-invariant because .N'x obviously 

n n n n 
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is H-invariant. Without loss of generality we suppose that the 

operators af are symmetric (which is possible since Jl is it -
n n 

invariant) and Jx (ai) = 1 for i=1, ••• ,dn. By 
n n n n 

aoL = oL1 a:,+ ••• + d.d ad , oL=( "'1'···• "-d), we shall denote the 
n n n d 

elements of lln. Further we use the norm H a~U := L l"-il 
i=1 

on ~n· Let Sn be the unit sphere in this norm. For each sequence 

J' = {.r n, n£N} of po.si ti ve real nUllbers r n we define the seminorm 

P v (a):= L in D a~ D , a "' L a~ f .A., on A. • Clearly, all 
6 n n 

seminorms of this kind give the strongest locally convex topology 

'l" st on .A. • Let us take a fixed sequence j' = {¥ n J . 

STATEMENT 2: For each noN there exis~a finite set of vectors 

Proof: 

~~ 
n 

'• • •' t r n 
having the following properties: 

(a) Max J(a~ 1' ~. "ff >I ~ 

i=1, .•• , rn 

n a!, u i in + 1 + 

(b) Jl~i'f II ~ 2-n 

(c) (a~~. 'tj >= 0 

j=1, ••• ,rm. 

k,m<n 
Max J (a~ i' ~, "f ~ >J 
j,l,s 

) 

"f k <n and i=1, ••• ,rn. 

V aEKX,.' 1~n<:m, i=1, ••. ,rn, 

We choose the sequence -yf, ••• , "t~ by induction on n. We post-
1 1 n 

pone the proof that 1'1 •·•••i'r exist because it requires parts 
1 

of the following arguments. 
k Suppose for k=1, •.• ,n-1 sequences i'i ,i=1, •.• ,rk, are chosen 

such that the conditions (a),(b),(c) are satisfied. Let df1 be 

the linear span of all elements at~ where a E Jf ~ , k=1 , ..• , n-1, 

i=1, ••. , rk. 1( 1 is finite demensional because J( ~ is finite 

dimensional. Put J> 1= :!> e "l1 • Let en be a fixed posi t1 ve number. 

If an f S , then an_. 4 Jl.. by construction. This means that 
.t.. n xn-1 

J x (a~ ) = + oo. In view of lemma 1, this implies 
n-1 

10 

l<a! "\' ,"f )l 
sup ux ..!.IJ2 
1'E.:b

1 
n-1 -r 

(depending on a~ 

= + oo • Hence there exists 

) such that l<a~t:.t:>l 

a vector "f':EP1 

> cnhn-1 "!': 112. 

Since inequality (1) remains valid if we multiply ~:with a 

( 1) 

factor , we may assume that II xn_1 "'f"-n II = 2-n. (2) 

By U( a~ ) we denote the set of all elements a~ • ~ with 

l<a; i': '"f':)l;; I p1 (af'l'~· 't: )+ ••• + pd <a~ "f:. or: >I > Cn2-z; 
n n 

Clearly, U(a~) is an open subset of the sphere Sn. Furthermore, 

a~ f U(an~) according to (1) and (2). By the Heine-Borel theorem 

the open cover { U( a'!!, ) } of Sn has a finite subcover { U( a!i ) , 

i=1 , •.• , r • Put ""in = -w ~ , i=1 , ••. , r • Then we have 
n r "'~ct' n 

Max l(a~ 1' f, "''~ )J ) en 2-n for all a: E sn. 
i=1, •.. ,rn 
By norming elements a~ £ -"n it follows 

Max l<an .,.,n 'llln >I ~ c 2-2n a an n 
i J.li'li "n .t.. 

for each a~ E .kn. 

Putting now en= 2
2

n {rn+1+ .z:==:- ':lax l<aj"''~• "t': ) I}, 
k,m<n .J,l,s 

this is just condition (a). Because llx1 ~11 ~ Uxn_1 ~U V~£:0, 
1 ~n-1, condition (b) is fulfilled by (2}. The vectors 

i'~·i=1, ••• ,rn' are in :;n 1 .. '";be J{ 1 by construction. Hence, (c) 

is also true. Consequently, the induction hypothesis is proved. 

We have to say some words about the construction of '1' ~, ••• , 1'! 
In this case we only have to check condition (a), i.e. 

1 

Max l<a:"''~·"''i>l ~ Ba~0Cj1 +1). 
i 

This can be done by using the covering argument of the pn·cerUng 

proof. Now the proof of statement 2 is complete. I I 

Next we regard the following subset m of the domain J) : 
q 

m=={ t1 = L f i'~ : q£N, fn( t1'1£n1 = 1} 
f. n=1 n n 
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Let us verify this assertion. If ila(xn)=+ oo for a certain opera­

tor a~ .A.
0

, then the new sequence x1' ••• ,x
0

_ 1 , a,xn,... gi vee a 

"finer" decomposition of Jl which satisfies (i) and (ii). (ii) is 

obvious. Since af~ implies .M.x =F Ma and A.a(xn)=+OO 
n-1 n-1 

implies JKa * ~ , (i) is also true. According to (2.1), all 
xn 

vector spaces .M. x• x E Jt , are fin! te dimensional. Consequently, 

by an induction argument this procedure can be continued until 

(iii) is ful~illed. 
Without loss in generality, we can assume that Ax (xn) ~ 1, 

n+1 
~rther we use the following notations from the proof of theorem 1: 

n n I n a 
ai ,dn, aaL ' U ad. , sn. 

STATEMENT 1: 

Proof: 

en:= sup 
antS 

01. n 

A (x ) < + e10 
an n 

aL 

for each neN. 

Assume that the contrary is true. Then there exist sequences 

a~ c Sn ,kEN, (for brevity we write ~ instead of a~k and x for 

x
0

) and +kdl,k€N, such that U"--c+kU ~k /lxhf/ • We may assume 
that Jlx fk 1/ = 1 '('kEN (otherwise we multiply by a suitable 

factor). Then we have lim U ~ cp k 1/ =0. By the compactness of 
k--+ 1>0 

the u:n1 t sphere S
0 

there is a subsequence of { ~} converging to an 

element aE Sn, P'or simplicity suppose that lim 0 ~-aU = 0. 
k->00 

· n n 
Let ~-a= <ll 1ka:t+• •• + al.d kad • Then 

U<~-a>+kU~ ~lo~.iklnlla~
11

fkH ~ ~l"'ikllJx~kli=U~-aH 
i=1 i=1 

-0 for k-oo. By 1/atkll ~ U<~-a)fkll+ ll~hll this 

gives 11m I\ a h II"' 0. 
k~OO 

On the other hand, we have .\a(x)<+PO by condition (iii), In 

particular, this implies that 1 = Uxfk U ~ ~(x) II a+kH • 

This is a contradiction to lim U a fk II• O. I I 
k- CIO 

An immediate consequence of statement 1 is 

STATEMENT 2: There are constants Cn>O, nEN, with 

a a~ u Bxn+H ' en /I a!+ u y. fE:D, a~E~, n(N. 

14 

Let'( ={tn} be a sequence of positive numbers and qi be the semi­

norm on A defined by qi (a)={~ 'in B a~ U 2 } 112 for a=~ a~ EA. 
Our goal is to prove that 0"4>== t' st on .A • Since all seminorms 

q t define the topology t st• it is enough to show that for each 

sequence 1 there exist a vector f E J) (depending on 1 ) such that 

q'l (a)* 1/atl/ '(' af.A. now fix a positive sequence i' =={fnl. 
The next step of our construction is 

STATEMENT 3: There exist a sequence { dn' ntN} of positive numbers 

and a sequence {+n•nEN} of vectors fnf~ satis­
fying the following conditions: 

n-1 1 2 2' ~ (a) Qxn4nU==(r0 +fnCn +1+L-I/Xnfil/ t'nfN. 
i=1 

(b) lfxntn\1.:$ 2{n 'rfn£N. 

(c) Uxk~nU ~;:>-n ¥ k<n, k,nfN. 

(d) The determinants Dn=Dn({1 , ••• ,{n) are poGitive. 

c1 -
2 cf / -16 cf1 12 -16 [1 [n 

Dn 
-16 o1 cf2 c2-2 J22 -16 ,[:, Jn 

-16 01 cfr. -16cf 2 [n c -? J ? 
n n 

Proof: 

In the case n=1 we ta~e a positive numher [ 1 with 

2J1 ~f/;
2+j1 c1 2 +1 and a vector ch t2l •.dth Hx1f1H=Ycf1

2+j'1c1
2 ' +1. 

Now suppose that cf1 , ... ,{n_1 and f 1 , •.. ,,
0

_ 1 are already '!hosen 

so that (a) - (d) are fulfilled. I.et us consider the determinant 

Dn. D is a qt~adratic polynomial in {. The coefficient of the 
n " n 

quadratic term is just equal to en- .. Dn_1 which is poni t -~ · ~ by 

induction assumption. Hence [n may he taken so large that Dn > 0 

T , n-1 
and 2 fn ~ {n

2
+ fnc/ + 1 + "t; flxnf iU := Mn. 

~rther,we assumed that .Mx t .M 
7 

, i.e. '-x (xn) + oo . 
n-1 ·n n-1 

Thus there is a vector -t E 2) sw~h l hat 
n n 

Uxn tnU ~ Mn2 II x
0

_ 1 fn U. After a sllitable norming of In we 

obtain II xn ~ n H = M • Consequently, II x 1 ~ If ~ 2 -n. Since 
n n- n 

lx
1 

fnll 6llxn_1 ~nU ~ 2-n for 1 'n-1, the conditions (a) - id) are 

satisfied for [ 1 , ••• , {n and t 
1

, •••• ·Pn. By induction, B tate·nent l 

is proved. I I 
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From .A= ~ .M. x it is clear that the topology t .,( on ;;) can be 
n 

g1 ven by the seminorms II f Ux : = II x f U , n £N. Therefore c ondi ti on 
n n n 

(c) of statement 3 implies that the sequence i'n==) f i is a "1=1 
Cauchy sequence in :2) [ tv'l] • Since the Op'it-algebra .A-was assumed 
to be closed on ~ , the space ';() [til.] is complete, Cons,:quently, 

the sequence{i'n•n6N}is converging to an element 4' = L fi f'l>. i=1 

STATEMENT 4: J!'or all a € ~we have U a~ U ~ q ¥ (a) • 

Proof: 
Applying (a) and (c) we obtain 

n-1 
!lxntU ~ llxn~nU- L Uxn;iH 

1•1 

lXI 

- CllxnfiU ~{fn2+jncn2 ' 
i=n+1 

i.e. Uxn f 11
2 

- "¥nCn
2 ~ { n' 

( 1 ) 

In a similar way, (a),(b) and (c) give us 
n-1 oo 

II xn ~ ll ~ ll xn ~ n U + Lllxn t i U + L H xn P i II ~ 
1 

i=1 i=n+1 
n- QO 

\lxntnl\+LUxn;iU + L::::: 2-i ~ 2llxn~nll ~ 4in. (2) 
i=1 i=n+1 

Now we make use of condition (d). It implies that the quadratic 

form Q(t):= ~ tntn Cn-2 {n2 - 16 ~ tntm dn d11 is positiVe 

definite. In particular, this means that 

L' fla!fi 2 cn-2 fn2 - 16 L. n a~ 0 n a11
) J"n rm ~ o. n ntm 

By the estimations (1) and 2) we get 

L0a!U 2 cn-2 <Uxn~U 2 -¥ncn2 > -L na: UDa~H llxn~liUxmtll ~o. 
n n'fm (3) 

The triangle inequality combined with Ua~q>ll~ lfxnH ¥ 
i=1, ... ,dn' leads to lla~~H ~ Ua~U llxnf'U 

Further we have en - 2 fi a~ U 2 U ~f U 2 ~ II a! f II 2 
by statement 2. 

Putting the two last inequalities into (3) it follows 

L U an A. II 2 - L 0 an 0 2 v - L U an t.IJ U am .1. U 
n o(.T n "" In n!6Ja o(.f o!.T' 

that 

~ o. 
Therefore 

llatU 2 - q¥(a)
2 a(~a~f.{ a:f> _l::Ua~S 2 in~ 

n 

L B a~ ~ U 2 
• L !Ia~ f U II a~ ~ 1/ 

n njom 
which completes the proof. 

- L 0 a~U 2 
)' n ~ 0 

n 
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6, CONCLUDING REMARKS 
The preceding proofs of our theorems 1 and 2 show that the multi­

plication in the OP*-algebra vt was used only to ensure that the 

families of vector spa0.es{Jfx,x£JlJ and {.Ntl:,x£.A.} are directed. 

In fact, our proofs yield the following more general results. 

Let Jt be a vector space of linear operators on a dense domaina 

in a Hilbert space (we don't assume that the operators map ~ 
into itself). Suppose, {xn,neNj is a sequence of linear operators 

defined on :() so that x 1 = 1 and U xn fU ~II xn+1 H t' ~ E ZJ , nEN. 

By the semi norms II f If xn: =Hxn f f , nE N, we define a locally convex 

topology t+ on ~ • Let 

J{ x : = { aE Jl : l(a +, f >I - Ca n U xn + 11 2 
V f e :i>} and 

n ' 
.Mx := {aeJl.: Ua.91! ~ can lx q U V fE~}. 

n ' n 

THEOREM 1 ': Suppose that for each a£ u{ the operator a*' is defined 

on 1> and a+-:= a* t l € .tl.. Suppose .A. =~ J/:n 

THEORflol 2': 

The uniform topology t'.v on .A will be defined by the 

semi norms p ( a)=sup I< a ; , "#'>I taken for all 
m. 4',1(em 

bounded subnets 1n of the locally convex space :2>[ tJ. 

Then, !~ = t
6

t if and only if all vector spaces 

~ ,n€N, are finite dimensional. 
xn 

and the space ;b [ t J is 
+ Suppose .A = U Mx 

complete. neN n 
Let 0' :i> be the locally convex topology on Jl gene-

ra ted by the semi norms U aU; : -:U a f U , ; c 'J) • 

Then, er'l)-: !"st if and only if all vector spaces .Mx 

are finite dimensional. n 

Notice that the assumption .Tt = U K implies that 
neN ~ 

p lll (a) < too \fa e J!. It a f Kxn' then J(a + ,"f )I ~ 4J~ ( a)Uxnmxn't'U 

by polarization; hence p (a) ~ 4J (a) sup lx +H Jlxn'f'U <+<10 
lrl xn + . n 

beC!lUSe m iS bounded in ~ [ t +1' I yt )1L 
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