ОБЪЕАИНЕННЫЙ
 ИНСТИТУТ
 ЯAEPHЫX
 ИССАЕАОВАНИЙ

AY5HA

fussise

E5 - 11522
K.Schmüdgen

TWO THEOREMS ABOUT TOPOLOGIES
ON COUNTABLE GENERATED OP*-ALGEBRAS

1978

E5 - 11522

K.Schmüdgen

TWO THEOREMS ABOUT TOPOLOGIES ON COUNTABLE GENERATED OP*-ALGEBRAS

Submitted to Acta Math. Acad. Sci. Hungar.


```
    GMEJHETEHA
```

[^0]
Шмюдген К.

E5-11522
Две теоремы о счетно-порожденных OP^{*}-алгебрах
Найдена характеристика счетно-порожденных (замкнутых) OP * -алгебр A , для которых равномерная топология r_{D} (относительно сильная операгорная топология r) совпадает с сильнейшей локально-вылуклой топологией на A.

Работа выполнена в Лаборатории теоретической фиэике ОИЯИ.

Препринт Объединенного институтя ядерных исследований. Дубна 1978

$$
\text { Schmiidgen } \mathrm{K}
$$

E5-11522
Two Theorems About Topologies on Countable
Generated OP * -Algebras
We characterize the countable generated (closed) Op *-algebra A for which the uniform topology τ_{D} (resp. the strong operator topology τ_{D}) concides with the strongest locally corvex topology on A.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research.

0. INTRODUCTION

The present paper deals with the topologization of unbounded operator algebras (Op*-algebras) in Hilbert space. We consider two possible topologies, the so-called uniform topology τ_{D} introduced in $/ 2 /$ and the strong operator topology σ^{D}. We characterize the countable generated [closed] Op*-algebras A for which τ_{D} [resp. σ^{D}] agrees with the strongest locally conver topology on \mathcal{A}. Our main theorems contain some known result for concrete $0 p *$ algebras (/2/,/3/,/4/,/6/).
In /5/, theorem 1 was used in proving that for certain op*algebras ${ }^{A}$ (for example, the Op*-algebra of all differential operators with polynomial coefficients on the Schwartz space $\mathcal{f}\left(R_{n}\right)$) all linear functionals \mathcal{F} on A are trace functionals, i.e. they can be given by $f(a)=T r$ ta, $a \in \mathcal{A}, t$ an appropriate nuclear operator.

1. DEFINITIONS AND NOTATIONS

First we repeat some basic definitions and facts about unbounded operator algebras from /2/. Let ∂ be a dense linear subspace of a Hilbert space \mathscr{H}. An $O p *-a l g e b r a ~ A$ on ∂ is a $*-a l g e b r a$ of unbounded operators leaving the domain D invariant. We assume that the identity map is in A and denote it by 1. The graph topology $t_{\mathcal{A}}$ on D is the locally convex topology defined by the seminorms $\|\phi\|_{a}:=\|a \phi\|, \phi \in \mathcal{D}, a \in \mathcal{A}$. For each bounded subset m of $D\left[\mathrm{t}_{\mathcal{A}}\right]$ we put $\mathrm{P}_{\boldsymbol{m}}(\mathrm{a})=\sup _{\phi \in \mathcal{m}}\langle\mathrm{a} \phi, \psi\rangle \mid$. The uniform $\phi, \psi \in m$
topology τ_{D} on \mathcal{A} is generated by the family $\left\{\mathrm{p}_{m}\right\}$ of these seminorms. $A\left[J_{2}\right]$ is always a topological *-algebra. The atrong operator topology σ^{2} on \mathcal{A} is given by the seminorms $\|a\|_{\phi}:=\|a \phi\|_{1}, \phi \in \mathcal{D}, a \in \mathcal{A}$.
Let $\underline{D}(\mathcal{A}):=\bigcap_{a \in \mathcal{A}} D(\bar{a})$. The operators $\underline{a}:=\bar{a} \upharpoonright$ @ form an $O p *-$ aigebra \mathcal{A} on $\underline{D}=\underline{D}(\mathcal{A})$ which will be called the closed extension of \mathcal{A}. \mathcal{A} is said to be closed if $\mathcal{A}=\underline{A}, 1, e . D=\underline{D}(\mathcal{A})$.

An Op*-algebra \mathcal{A} is closed on \mathcal{D} if and only if the space
$\partial\left[t_{\mathcal{A}}\right]$ is complete.
Furthermore we use the following notations throughout the paper

$$
\begin{aligned}
& \text { (adapted from } / 1 /): \\
& \mathcal{N}_{x}:=\left\{a \in \mathcal{A}:|\langle a \phi, \phi\rangle| \leqslant c_{a, x}\|p\|^{2} \forall \phi \in D\right\}, \\
& \mathcal{M}_{x}:=\left\{a \in \mathcal{A}:\|a \phi\| \leqslant C_{a, x}\|x \phi\| \quad \forall \phi \in D\right\}, \\
& \rho_{x}(a):=\sup _{\phi \in D} \frac{\| a \phi, \phi\rangle \mid}{\|x \phi\|^{2}}, \lambda_{x}(a):=\sup _{\phi \in D} \frac{\|a \phi\|}{\|x \phi\|} \text { for } a, x \in \mathcal{A} .
\end{aligned}
$$

Here we make the convention that $\frac{C}{0}=+\infty$ for $C>0$ and $\frac{0}{0}=0$. Clearly, V_{x} and \mathcal{H}_{x} are vector spaces.
By $\tau_{\text {st }}$ we always denote the strongest locally convex topology on \mathcal{A}.

3. THE RESULTS

THEOREM 1: For each countable generated $0 \mathrm{p} *-\mathrm{al}$ gebra \mathcal{A} on D the following are equivalent:
(1.1) For all operators $x \in \mathcal{A}$ the vector space $\mathcal{N}_{\mathbf{x}}$ is finite dimensional.
(1.2) There are operators $x_{n} \in \mathcal{A}, n \in N$, such that $\mathcal{A}=\bigcup_{\mathrm{n} \in \mathbb{N}} \mathcal{N}_{\mathbf{x}_{\mathrm{n}}}$ and the vector spaces $\mathcal{N}_{\mathbf{x}_{\mathrm{n}}}$ are finite dimensional.
(1.3) $\tau_{D}=\tau_{\text {st. }}$

THEOREM 2: Let A be a countable generated Op*-algebra on d. Consider the following conditions:
(2.1) For all operators $x \in \mathcal{A}$ the vector space $\mathcal{M}_{\mathbf{r}}$ is finite dimensional.
(2.2) There are operators $x_{n} \in \mathcal{A}, n \in N$, such that $\mathcal{A}=\bigcup_{n \in N} \mathcal{M}_{x_{n}}$ and the vector spaces $\mathcal{M}_{x_{n}}$ are finite dimensional.
(2.3) $\sigma^{2}=\tau_{\mathrm{at}}$.

Then we have $(2.3) \longrightarrow(2.2) \longleftrightarrow(2.1)$. If \mathcal{A} is a closed Op*-algebra on D, then all three conditions are equivalent.
The proofs of theorems 1 and 2 will be given in sections 4 and 5. Here we note a corollary only.
COROLLARY 3: If \mathcal{A} is a countable generated Op*-algebra on D and if $\tau_{D}=\tau_{\text {st }}$ on \mathcal{A}, then $G^{2}=\tau_{s t}$ on \mathcal{A}.

Proof:
Let $\underline{x} \in \underline{A}$. Since $\tau_{D}=\tau_{\text {gt }}$, theorem 1 implies that the space $\mathcal{N}_{\mathbf{x}^{+} \boldsymbol{x}+1}{ }^{\text {is }}$ inite dimensional. Moreover, $\mathcal{N}_{\mathbf{x}} \leq \mathcal{N}_{\mathbf{x}^{+} \mathbf{x + 1}}$ by the Cauchy-Schwarz inequality. Therefore, \mathcal{M}_{x} is finite dimensional. Since all operators a $\in \mathcal{A}$ are $t_{\mathcal{A}}$-continuous on D and D is $t_{\mathcal{A}}$ dense in \underline{D}, it is clear that $a \in \mathcal{M}_{x}$ if and only if $a \in \mathbb{K}_{\underline{x}}$. Hence, $\mathcal{M}_{\underline{x}}$ is a finite dimensional vector space. Thus, condition (2.1) is ${ }^{\text {fulfilled and we have } \sigma^{2}}=\tau_{\text {st }}$. //
Remark:
In /1/, op*-algebras satisfying condition (1.1) are called hyperfinite.

4. SOME EXAMPLES

In this section we mention some examples of Op*-algebras satisfying the assumptions of our theorems.
Example 1: Let A_{1} be the 0 p*-algebra $\mathcal{P}(\mathbb{T})$ of all polynomials in a symmetric linear operator T on a dense invariant domain D_{1} in a Hilbert space. Suppose that the operator T is not bounded on D_{1}. Example 2: Denote by \mathcal{A}_{2} the $0 p *$-algebrajgenerated by the position and momentum operators $q_{j}=t_{j}, p_{j}=1 \frac{\partial}{\partial t_{j}}, j=1, \ldots, n$, on the domain $D_{2}:=C_{0}^{\infty}\left(R_{n}\right)$. In other words, \mathcal{A}_{2} is the $*$-algebra of all differential operators with polynomial coefficients.

Now we pass to a more general class of examples which give a greater variety of Op*-algebras fulfilling our conditions.
Example 3: Let G be a lie group and $£(G)$ be the universal enveloping algebra of the Lie algebra of G. Suppose u is a (fixed) neighbourhood of the unit element in G. If we realize $\mathcal{E}(G)$ as an algebra of left invariant differential operators acting on the Lie group G with the domain $D_{3}:=C_{0}^{\infty}(U)$ in the Hilbert space $I_{2}(U, \mu), \mu$ the right Haar measure of G, then we obtain an Op*algebra \mathcal{A}_{3} depending on G.
With this notations we have the following theorem.
THEOREA 4: The uniform topologies on the Op*-algebras A_{1}, A_{21}
\mathcal{A}_{3} and the strong operator topologies on $\underline{A}_{1}, \underline{d}_{2}, \underline{A}_{3}$ coincide with the strongest locally convex topologies $\tau_{\text {st }}$ on $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$ resp. $\underline{A}_{1}, \underline{A}_{2}, \underline{A}_{3}$.

Remarks:

1. Most of this results are already known. For \mathcal{A}_{1} both assertions were first proved in $/ 3$ / (for the uniform topology partial results were obtained in /2/). In the case A_{2} both statements are shown in /6/. For \mathcal{A}_{3} the assertion concerning the uniform topology was proved in /4/. The methods applied in the proofs for \mathcal{A}_{2} and A_{3} in $/ 6 /$ and $/ 4 /$ are different from the method used in the present paper. Some basic arguments of the proofs are drawn from the proofs of theorems B and C in $/ 2 /$.
2. By considering unttary representations of life groups (more precisely, the associated represenations of the enveloping algebras) algebras of differential operators (for example, the 0p*-algebra generated by $a=t^{-1}$ and $p^{2}=-\frac{d^{2}}{d t^{2}}$ on $D=C_{0}^{\infty}(0,1)$), sequence spaces, etc., it is not difficult to construct further examples satisfying the conditions of theorems 1 and 2 .

LEMMA 5: Suppose that \mathcal{A} is an $O p *-a l g e b r a$ on $D, a, x \in \mathcal{A}$ and $a \in \mathscr{N}_{x}$. Then there is a constant $K_{a, x}$ such that

$$
\begin{equation*}
\|a \phi\|^{2} \leq K_{a, x}\|x \phi\|\|x a \phi\| \forall \phi \in D . \tag{1}
\end{equation*}
$$

Proof:
Let $u_{x}:=\{\phi \in D:\|x \phi\| \leqslant 1\}$. Since $|\langle a \phi, p\rangle| \leqslant c_{a, x}\|x \phi\|^{2} \forall \phi \in \mathcal{D}$ by $a \in N_{x}$, we have $\sup _{\phi \in U_{x}}|\langle a \phi, \phi\rangle| \leqslant C_{a, x}$.
Using $\langle\mathrm{a} \phi, \psi\rangle=1 / 4\{\langle\mathrm{a}(\phi+\psi), \phi+\psi\rangle-\langle\mathrm{a}(\phi-\psi), \phi-\psi\rangle$
$-1\langle a(\phi+i \psi), \phi+i \psi\rangle+i\langle a(\phi-1 \psi), \phi-i \psi\rangle\}$ it follows
$\sup _{\phi, \psi \in \chi_{x}}|\langle a \phi, \psi\rangle| \leqslant 4 C_{a, x}$ because the elements $1 / 2(\phi+\psi), \ldots$, $\phi, 4 \in U_{x}$
$1 / 2(\phi-1 \psi)$ are in the absolutely convex set U_{x}. Hence, we get $|\langle a \phi, \psi\rangle| \leqslant 4 C_{a, x}\|x \phi\|\|x \psi\| \quad \forall \phi \psi \in D$. Putting $\psi=a \phi$, this gives (1). / /

Now let us turn to the proof of theorem 4. By corollary 3,we only have to prove the assertions about the uniform topologies. In view of theorem 1, it is sufficient to show that condition (1.1) is fulfilled for $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{R}_{3}$, that is, the vector spaces \mathcal{N}_{x} are finite dimensional for all operators x of the Op*-algebras $A_{1}, \Lambda_{2}, A_{3}$. Here we only carry out the proof of this fact in the case of A_{2}. For A_{1} and A_{3} condition (1.) could be verified by repeating parts of the arguments used in /2/ and/4/.

Proof for the $0 p *$-algebra \mathcal{A}_{2} :

For aimplicity in notation we restrict us to the case $n=1$.
The subset $\left\{\mathrm{y}_{1 j}:=\mathrm{q}^{1} \mathrm{p}^{\mathrm{j}}, 1 \in \mathbb{N}, j \in \mathrm{~N}\right\}$ is a Hamel base for \mathcal{A}_{2}. Take a fixed vector $\phi \in D_{2}, \phi \neq 0$, with supp $\phi \leq[0,1]$ and put
$\phi_{\alpha, \beta}(t):=\beta \phi(\beta(t-\alpha))$ for $\alpha, \beta \in \mathbb{R}_{1}$. A simple calculation leads
to $\quad \alpha^{1} \beta^{j}\left\|p^{j} \phi\right\| \leq\left\|y_{1 j} \phi_{\alpha, \beta}\right\| \leq(\alpha+1)^{i} \beta^{j}\left\|p^{j} \phi\right\|$
where $\left\|p^{j} \phi\right\| \neq 0 \quad \forall j \in \mathrm{~N}$.
 degree of an element a 1 s defined by $\mathrm{d}(\mathrm{a}):=\operatorname{Max}\left\{1+\mathrm{j}: \alpha_{1 j} \neq 0\right\}$.
Let (k, l) be the lexicographic largest tupel for which this Let ($k, 1$) be the lexicographic largest tupel for which this
maximum will be attained, $1 . e . k=\operatorname{Max}\left\{1: \alpha_{1 j} \neq 0\right.$ for $\left.j=d(a)-1 \geqslant 0\right\}$ and $l=d(a)-j$. Denote by (r, s) the corresponding tupel for the element x.
Now we show that $a \in \mathscr{N}_{x}$ implies $d(a) \leqslant 2 d(x)+1$. In particular, this means that \mathcal{N}_{x} is a finite dimensional vector space.
We assume that $d(a) \geqslant 1$ and $d(x) \geqslant 1$ (otherwise the assertion is trivial).
Let $\beta=\alpha^{1-\frac{1}{k+1+r+s}}$. Then $\alpha^{i} \beta^{j}=\alpha^{i+j-\frac{j}{k+1+r+B}} \quad \forall i, j \in \mathbb{N}$. (3)
We write, $f(\alpha)=\theta\left(\alpha^{m}\right), m \in R_{1}$, for a function $f(\alpha)$ if $\mid f(\alpha) \alpha^{-m^{\prime} \mid}$ is bounded for sufficiently large α if and only if $\mathrm{m}^{\prime} \geqslant \mathrm{m}$. II is called the order of the function f with respect to α.
From (2) and (3) it follows that $\left\|y_{k 1} \phi_{\alpha, \beta}\right\|=\sigma\left(\alpha^{k+1-\frac{1}{k+1+r+8}}\right)$ and for all other elements $y_{1 j}$ with $\alpha_{i j} \neq 0$ the functions
$\left\|y_{i j} \phi_{\alpha, \beta}\right\|$ have smaller orders with respect to α. By the triangle
inequality, this implies $\left\|a \phi_{\alpha, \beta}\right\|^{2}=\theta\left(\alpha^{2\left(k+1-\frac{1}{k+1+r+\beta}\right)}\right)$. (4)
Purther we have $\left\|x \phi_{\alpha, \beta}\right\|=O\left(\alpha^{r+s-\frac{s}{k+1+r+s}}\right)$.
By the commutation rules it is clear that $\gamma_{1 j}=0$ for $j>1+B$ and $\gamma_{\mathrm{k}+\mathrm{r}, \mathrm{l+B}} \equiv \alpha_{\mathrm{k} 1} \beta_{\mathrm{rs}} \neq 0$. Hence, if there is $\mathrm{a} \quad i \in \mathbb{N}$ such that
$\gamma_{1 j} \neq 0$, then $\frac{1}{k+1+\mathrm{r}+\mathrm{s}}<1$. Using this two facts, we get

$$
\begin{equation*}
\left\|x a \phi_{d, \beta}\right\|=\theta\left(\alpha^{k+1+r+s-\frac{1+a}{k+1+r+\beta}}\right) . \tag{6}
\end{equation*}
$$

Putting (4), (5) and (6) into (1), it follows
$2\left(k+1-\frac{1}{k+1+r+8}\right) \leqslant r+\beta-\frac{s}{k+1+r+8} \quad+k+1+r+s-\frac{1+8}{k+1+r+s}$.
Therefore, $d(a)=k+1 \leq 2 x+2 s+1=2 d(x)+1$ which finishes the, iroof.
4. PROOR OP THEOREM 1
$(1.1) \longrightarrow(1.2):$ Trivial.
$(1.2) \longrightarrow(1.1):$
Let $x \in \mathcal{A}$. Since $\mathcal{A}=\bigcup_{n \in \mathbb{N}} \mathcal{N}_{x_{n}}$, there exists a number $n \in \mathbb{N}$ such that $x^{+} \mathbf{x} \in \mathscr{N}_{x_{n}}$. This implies $\mathcal{N}_{x} \subseteq \mathscr{N}_{x_{n}}$. Hence \mathscr{N}_{x} is finte dimensional.
$(1.3) \longrightarrow(1.1):$
We suppose that $\tau_{D}=\tau_{s t}$. Let us assume that (1.1) is not true, i.e. there is an element $x \in A$ such that \mathscr{N}_{x} contains an infinite set $\left\{a_{n}, n \in \mathbb{N}\right\}$ of linear independent operators $a_{n} \in \mathcal{A}$. We supply elements $b_{m} \in \mathcal{A}$ such that the system $\left\{a_{n}, b_{m}\right\}$ is a Hamel base of \mathcal{A}. Without restriction of generality we may assume that $\rho_{x}\left(a_{n}\right) \leq 1 / 4$ $\forall n \in N$. Then $|\langle a \phi, \psi\rangle| \leq\|x \phi\|\|x \psi\| \forall \phi \psi \in d$ by polarization (cf.lemma 5 in section 3). Por each positive sequence $\gamma=\left\{\gamma_{n}\right\}$ we define the seminorm $p_{\gamma}(a)=\left.\sum_{n} \gamma_{n}\right|_{n} \mid$ for $a=\sum_{n} \alpha_{n} a_{n}+\sum_{m} \beta_{m} b_{m}$. Since $\tau_{D}=\tau_{\text {st }}$, there is a bounded subset m of $D\left[{ }_{\mathcal{A}}\right]$ such that $p_{\gamma}(a) \leqslant p_{m}(a) \forall a \in \mathcal{A}$. Putting $a=\alpha_{1} a_{1}+\ldots+\alpha_{k} a_{k}$ we get $\left.p_{\gamma}(a) \equiv \sum_{n} \gamma_{n}\left|\alpha_{n}\right| \leq p_{m}(a) \equiv \sup _{\phi, \psi \in m} K\left(\alpha_{1} a_{1}+\ldots+\alpha_{k} a_{k}\right) \phi, \psi\right\rangle \mid \leqslant$ $\sum_{n}\left|\alpha_{n}\right|\left(\sup _{\phi, \psi \in m}\|x \phi\|\|x \psi\|\right)=c \sum_{n}^{\phi} \sum_{n}\left|\alpha_{n}\right|$ whereby $\operatorname{Casup}_{\phi_{i} \psi \in m}\|x \phi\|\|x \psi\|$ $<+\infty$. Since $\alpha_{1}, \ldots, \alpha_{k}, \ldots$ are arbitrary complex numbers, this is a contradiction if $\sup _{n \in N} \gamma_{n}=+\infty$. //

Now we turn to the main part in the proof of theorem 1.
$(1.1) \longrightarrow(1.3)$:
first we note a simple lemma. We shall need it only for pinite dimensional Hilbert spaces \mathcal{H}_{1} 。
LEMMA 1: Let \mathbb{X}_{1} be a Hilbert subspace of $\mathcal{H}_{\text {with }} \mathcal{X}_{1} \subseteq \mathcal{D}$. Let P_{1} be the orthogonal projection on \mathcal{X}_{1} and $D_{1}:=\left(1-P_{1}\right) D$ $\equiv D \theta \mathcal{H}_{1}$. Suppose A is an $0 p *-a l$ gebra on $D, a, x \in \mathcal{A}$ and $\|\phi\| \leqslant\|x \phi\|$ for all $\phi \in D$.

$$
\text { and }\|\phi\| \leqslant \| x \phi \mathbb{\text { for } a l l} \rho_{x}(a) \equiv \sup _{\phi \in D} \frac{|\langle a \phi, \phi\rangle|}{\|x \phi\|}=+\infty, \text { then } \sup ^{\| \in D_{1}} \frac{|\langle a \psi, \psi\rangle|}{\|x \psi\|^{2}}=+\infty .
$$

Proof:
Since the operators $a, a^{+}, x \in \mathcal{A}$ have dense defined adjoint operators in \mathcal{H}, their restrictions to \mathcal{H}_{1} are closed and hence
bounded by the closed graph theorem. Thus $\|a \eta\| \leqslant c\|\eta\|$,
$\left\|\mathrm{a}^{+} \eta\right\| \leqslant c\|\eta\|,\|x \eta\| \leqslant C\|\eta\| \quad \forall \eta \in \mathcal{X}_{1}$.
Let us assume that $\sup _{\psi \in D_{1}} \frac{|\langle a \psi, \psi\rangle|}{\|x \psi\|^{2}}=0_{1}<+\infty$, i.e.
$|\langle a \psi, \psi\rangle| \leqslant c_{1}\|x \psi\|^{2} \quad \forall \psi \in D_{1}$. For each $\phi \in D, \phi=\psi+\eta, \psi \in D_{1}$,
$\eta \in \mathcal{X}_{1}$, we get $|\langle a \phi, \phi\rangle|=|\langle a(\psi+\eta), \psi+\eta\rangle| \leqslant$
$\left|\left\langle a^{\prime} \psi, \psi\right\rangle\right|+\left|\left\langle a_{\eta}, \psi\right\rangle\right|+\left|\left\langle\psi, a_{\eta} \eta\right\rangle\right|+\left|\left\langle a_{\eta}, \eta\right\rangle\right| \leqslant$
$C_{1}\|x \psi\|^{2}+2 C\|\eta\| \psi\|+C\| q\left\|^{2} \leqslant C_{1}\right\| x(\phi-q)\left\|^{2}+2 C\right\| \phi\left\|^{2}+C\right\| \phi \|^{2} \leqslant$
$C_{1}(\|x \phi\|+C\|\eta\|)^{2}+3 C\|\phi\|^{2} \leqslant\left[C_{1}(1+C)^{2}+3 C\right]\|x \phi\|^{2}$ because
$\|\phi\| \leqslant\|x \phi\|$. Therefore $\rho_{x}(a)<+\infty$ which is a contradiction.
$1 /$
Now suppose that condition (1.1) is fulfilled. To prove that
$\tau_{D}=\tau_{s t}$, we need some preparations and notations. Let us take a sequence $\left\{x_{n}, n \in \mathbb{N}\right\}$ of operators $x_{n} \in \mathcal{A}$ such that

$$
\begin{aligned}
& \text { (1) }\|\phi\| \leqslant\left\|x_{n} \phi\right\| \leqslant\left\|x_{\mathrm{n}+1} \phi\right\| \quad \forall \phi \in D, n \in \mathbb{N}, \\
& \text { (11) } \mathcal{N}_{\mathrm{x}_{\mathrm{n}}} \subsetneq \mathscr{N}_{\mathrm{x}_{\mathrm{n}+1}} \quad \text { and } \quad \text { (1i1) } \mathcal{A}=\bigcup_{\mathrm{n} \in \mathbb{N}} \mathscr{N}_{\mathrm{x}_{\mathrm{n}}} .
\end{aligned}
$$

It is very easy to see that such a sequence exists. The vector space \mathcal{A} has a countable Hamel basis $\left\{y_{n}, n \in N\right\}$. Let $z_{n}=1+y_{1}{ }^{+} y_{1}+\ldots$ $+y_{n}{ }^{+} y_{n}$. Then $y_{1} \in \mathscr{X}_{z_{n}}$ for $1 \leqslant n$. Take $x_{1}=z_{1}$. Because $\mathcal{N}_{x_{1}}$ is finite dimensional, there is a number, hence a smallest number $\mathrm{n}_{2} \in \mathbb{N}$ such that $\mathrm{y}_{\mathrm{n}_{2}} \notin \mathcal{N}_{\mathrm{x}_{1}}$. Putting $\mathrm{x}_{2}=\mathrm{x}_{1}{ }^{2}+\mathrm{z}_{\mathrm{n}_{2}}{ }^{2}+1$ we have $\mathcal{N}_{z_{n_{2}}} \cup \mathcal{N}_{\mathbf{x}_{1}} \subseteq \mathcal{N}_{\mathbf{x}_{2}}, \mathcal{N}_{\mathbf{x}_{1}} \neq \mathscr{N}_{\mathbf{x}_{2}}$ and $\mathrm{y}_{\mathbf{1}} \in \mathcal{N}_{\mathbf{x}_{2}} \quad \forall i=1, \ldots, \mathrm{n}_{2}$.
Continuing this procedure, we get a sequence $\left\{x_{n}\right\}$ with desired properties.
Since each vector space $\mathcal{N}_{x_{n}}, n \geqslant 2$, is finite dimensional, $\mathcal{N}_{x_{n}}$ can be decomposed as a direct sum of $\mathcal{N}_{x_{n-1}}$ and a certain vector space $\mathcal{A}_{n} \subseteq \mathscr{N}_{x_{n}}$. Let $\mathcal{A}_{1}=\mathscr{N}_{x_{1}}$. Then $\mathcal{A}=\sum_{n}^{n_{n}-1} \mathcal{A}_{n}$ (diract sum of vector spaces). Let d_{n} be the dimension of \mathcal{A}_{a} and let a_{1}^{n}, a_{2}, \ldots, $a_{d_{n}}^{n}$ be a basis of $\mathcal{A}_{n} \cdot \mathcal{A}_{n}$ is *-invariant because $\mathcal{N}_{x_{n}}$ obviously
is *-invariant. Without loss of generality we suppose that the operators a_{i}^{n} are symmetric (which is possible since \mathcal{A}_{n} is $*-$ invariant) and $\rho_{x_{n}}\left(a_{1}^{n}\right)=1$ for $1=1, \ldots, d_{n}$. By
$a_{\alpha}^{n}=\alpha_{1} a_{1}^{n}+\ldots+\alpha_{d_{n}}{ }^{n} a_{d_{n}}^{n}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{d_{n}}\right)$, we shall denote the elements of A_{n}. Further we use the norm $\left\|a_{\alpha}^{n}\right\|:=\sum_{i=1}^{d_{n}}\left|\alpha_{1}\right|$
on \mathcal{A}_{n}. Let S_{n} be the undt sphere in this norm. For each sequence $\gamma=\left\{\gamma_{n}, n \in N\right\}$ of positive real nunbers γ_{n} we define the seminorm $p_{\gamma}(a):=\sum_{n} \gamma_{n}\left\|a_{\alpha}^{n}\right\| \quad, \quad a=\sum_{n} a_{\alpha}^{n} \in \mathcal{A}$, on \mathcal{A}. Clearly, all seminorms of this kind give the strongest locally convex topology $\tau_{\text {st }}$ on \mathcal{A}. Let us take a fixed sequence $\gamma=\left\{\gamma_{n}\right\}$.

STATEMENT 2: For each $n \in N$ there exists a finite set of vectors $\psi_{1}^{n}, \ldots, \psi_{r_{n}}^{n}$ having the following properties:

$$
\begin{aligned}
& \text { (a) } \begin{array}{l}
\operatorname{Max}_{1=1, \ldots, r_{n}}\left|\left\langle a_{\alpha}^{n} \psi_{1}^{n}, \psi_{i}^{n}\right\rangle\right| \geqslant \\
\quad\left\|a_{\alpha}^{n}\right\|\left\{\gamma_{n}+1+\sum_{k, m<n} \operatorname{Max}_{j, 1, s}\left|\left\langle a_{a}^{n} \psi_{j}^{k}, \psi_{1}^{m}\right\rangle\right|\right. \\
\text { (b) }\left\|x_{k} \psi_{1}^{n}\right\| \leqslant 2^{-n} \quad \forall k<n \text { and } 1=1, \ldots, r_{n} . \\
\text { (c) }\left\langle a \psi_{1}^{n}, \psi_{j}^{m}\right\rangle=0 \quad \forall a \in \mathscr{N}_{x_{n}}, 1 \leqslant n<m, 1=1, \ldots, r_{n}, \\
j=1, \ldots, r_{m} .
\end{array}
\end{aligned}
$$

Proof:
We choose the sequence $\psi_{1}^{n}, \ldots, \psi^{n} r_{n}^{n}$ by induction on n. We postpone the proof that $\psi_{1}^{1}, \ldots, \psi_{r_{1}}^{1}$ exist because it requires parts of the following arguments.
Suppose for $k=1, \ldots, n-1$ sequences $\psi_{1}^{k}, 1=1, \ldots, r_{k}$, are chosen such that the conditions (a), (b), (c) are satisified. Let \mathcal{H}_{1} be the linear span of all elements a ψ_{1}^{k} where a $\in \mathcal{N}_{x_{n}}, k=1, \ldots, n-1$, $i=1, \ldots, r_{k} * \mathscr{H}_{1}$ is finite demensional because $\mathcal{N}_{x_{n}}$ is finite dimensional. Put $D_{1}=D \in \mathscr{R}_{1}$. Let c_{n} be a fixed positive number. If $a_{\alpha}^{n} \in S_{n}$, then $a_{\alpha}^{n} \notin \mathcal{X}_{r_{n-1}}$ by construction. This means that $\rho_{x_{n-1}}\left(a_{\alpha}^{n}\right)=+\infty$. In view of lenma 1, this implies
$\sup _{\psi \in D_{1}} \frac{\left|\left\langle a_{\alpha}^{n} \psi, \psi\right\rangle\right|}{\left\|x_{n-1} \psi^{2}\right\|^{2}}=+\infty$. Hence there exists a vector $\psi_{\alpha}^{n} \in D_{1}$
(depending on a_{α}^{n}) such that $\left.K a_{\alpha}^{n} \psi_{\alpha}^{n}, \psi_{\alpha}^{n}\right\rangle \mid>c_{n}\left\|x_{n-1} \psi_{\alpha}^{n}\right\|^{2}$. (1)
Since inequality (1) remains valid if we multiply ψ_{α}^{n} with a factor, we may assume that $\left\|x_{n-1} \psi_{\alpha}{ }^{n}\right\|=2^{-n}$.
By $U\left(a_{\alpha}^{n}\right)$ we denote the set of all elenents $a_{\beta}^{n} \in s_{n}$ with
$\left.\left|\left\langle a_{\beta}^{n} \psi_{\alpha}^{n}, \psi_{\alpha}^{n}\right\rangle\right| \equiv\left|\beta_{1}\left\langle a_{1}^{n} \psi_{\alpha}^{n}, \psi_{\alpha}^{n}\right\rangle+\ldots+\beta_{d_{n}}\left\langle a_{d_{n}}^{n} \psi_{\alpha}^{n}, \psi_{\alpha}^{n}\right\rangle\right|\right\rangle c_{n} 2^{-n}$
Clearly, $U\left(a_{\alpha}^{n}\right)$ is an open aubset of the sphere S_{n}. Furthermore, $a_{\alpha}^{n} \in U\left(a_{\alpha}^{n}\right)$ according to (1) and (2). By the Heine-Borel theorem the open cover $\left\{0\left(a_{\alpha}^{n}\right)\right\}$ of S_{n} has a finite subcover $\left\{J\left(a_{\alpha^{i}}^{n}\right)\right.$, $1=1, \ldots, r_{n}$. Put $\psi_{1}^{n}=\psi_{\alpha^{i}}^{n}, 1=1, \ldots, r_{n}$. Then we have
$\operatorname{Max}_{i=1, \ldots, r_{n}}\left|\left\langle a_{\alpha}^{n} \psi_{i}^{n}, \psi_{i}^{n}\right\rangle\right|>c_{n} 2^{-n}$ for all $a_{\alpha}^{n} \in S_{n}$.
By norming elements $a_{\alpha}^{n} \in A_{n}$ it follows
$\underset{1}{\operatorname{Max}}\left|\left\langle a_{\alpha}^{n} \psi_{1}^{n}, \psi_{1}^{n}\right\rangle\right| \geqslant c_{n} 2^{-2 n}\left\|a_{\alpha}^{n}\right\|$ for each $a_{\alpha}^{n} \in t_{n}$.
Putting now $c_{n}=2^{2 n}\left\{\gamma_{n}+1+\sum_{k, m<n} \operatorname{Max}_{j, 1, s}\left|\left\langle a_{j}^{n} \psi_{1}^{k}, \psi_{s}^{m}\right\rangle\right|\right\}$,
this is just condition (a). Because $\left\|x_{1} \phi\right\| \leqslant\left\|x_{n-1} \phi\right\| \forall \phi \in \mathcal{D}$,
$1 \leqslant n-1$, condition (b) is fulfilled by (2). The vectors $\psi_{i}^{n}, 1=1, \ldots, r_{n}$, are in $D_{1}=\partial \theta \mathscr{H}_{1}$ by construction. Hence, (c)
is also true. Consequently, the induction hypothesis is proved.
We have to say some words about the construction of $\psi_{1}^{1}, \ldots, \psi_{r_{1}}^{1}$. In this case we only have to check condition (a), i.e.

$$
\operatorname{Max}_{1}\left|\left\langle a_{\alpha}^{1} \psi_{1}^{1}, \psi_{1}^{1}\right\rangle\right| \geqslant\left\|a_{\alpha}^{1}\right\|\left(\gamma_{1}+1\right)
$$

This can be done by using the covering argument of the proceding proof. Now the proof of statement 2 is complete. //

Next we regard the following subset m of the domain D :

$$
m:=\left\{\eta=\sum_{n=1}^{q} \varepsilon_{n} \psi_{1_{n}}^{n}: q \in N, \varepsilon_{n} \in c_{1},\left|\varepsilon_{n}\right|=1\right\}
$$

Let us verify this assertion. If $\lambda_{a}\left(x_{n}\right)=+\infty$ for a certain operator $a \in A_{n}$, then the new sequence $x_{1}, \ldots, x_{n-1}, a, x_{n}, \ldots$ gives a "finer" decomposition of \mathcal{A} which satisfies (i) and (i1). (i1) is obvious. Since a \& $\mathcal{M}_{x_{n-1}}$ inplies $\mathcal{M}_{x_{n-1}} \neq \mathcal{M}_{a}$ and $\lambda_{a}\left(x_{n}\right)=+\infty$ implies $\mathcal{M}_{a} \neq \mathcal{M}_{x_{n}}$, (1) is also true. According to (2.1), all vector spaces $\mathcal{M}_{x^{\prime}} x^{x} \in \mathcal{A}$, are finite dirensional. Consequently, by an induction argument this procedure can be continued until (iii) is fulfilled.

Without loss in generality, we can assume that $\lambda_{x_{n+1}}\left(x_{n}\right) \leqslant 1$. Further we use the following notations from the proof of theoren 1: $a_{1}^{n}, a_{n}, a_{\alpha}^{n},\left\|a_{\alpha}^{n}\right\|, s_{n}$.
$\begin{array}{ll}\text { STATEMENT 1: } & C_{n}:=\sup _{a_{\alpha}^{n} \in S_{n}} \quad \lambda_{a_{\alpha}}\left(x_{n}\right)<+\infty \quad \text { for each } n \in N . ~\end{array}$
Assume that the contrary is true. Then there exist sequences
$a_{\alpha_{k}}^{n} \in S_{n}, k \in N$, (for brevity we write a_{k} instead of $a_{\alpha_{k}}^{n}$ and x for x_{n}) and $\phi_{k} \in \mathcal{D}, k \in N$, such that $\left\|a_{k} \phi_{k}\right\| \geqslant k\left\|x \phi_{k}\right\|$. We may assume that $\left\|x \phi_{k}\right\|=1 \quad \forall k \in \mathbb{N}$ (otherwise we multiply by a suitable factor). Then we have $\lim _{k \rightarrow \infty}\left\|a_{k} \phi_{k}\right\|=0$. By the compactness of the unit sphere S_{n} there is a subsequence of $\left\{a_{1 c}\right\}$ converging to an element $a \in S_{n}$. Por simplicity suppose that $\lim _{k \rightarrow \infty} \| a_{k}-a \rrbracket=0$. Let $a_{k}-a=\alpha_{1 k^{a}}{ }_{1}^{n}+\ldots+\alpha_{d_{n}} k^{a^{n}}{ }_{n}$. Then
$\left\|\left(a_{k}-a\right) \phi_{k}\right\| \leqslant \sum_{1=1}^{\alpha_{n}}\left|\alpha_{1 k}\right|\left\|a_{i}^{n} \phi_{k}\right\| \leqslant \sum_{i=1}^{\alpha_{n}}\left|\alpha_{1 k}\right|\left\|x \phi_{k}\right\|=\left\|a_{k}-a\right\|$ $\longrightarrow 0$ for $k \rightarrow \infty$. By $\left\|\phi_{X_{k}}\right\| \leqslant\left\|\left(a_{k}-s\right) \phi_{k}\right\|+\left\|a_{a_{k}} \phi_{k}\right\|$ this gives $\lim _{k \rightarrow \infty}\left\|a \phi_{k}\right\|=0$.
On the other hand, we have $\lambda_{a}(x)<+\infty$ by condition (1i1). In particular, this implies that $1=\left\|x \phi_{k}\right\| \leqslant \lambda_{a}(x)\left\|a \phi_{k}\right\|$. This is a contradiction to $\lim _{k \rightarrow \infty}\left\|a \phi_{k}\right\|=0 . \quad / /$

An immediate consequence of statement 1 is
STATEMENT 2: There are constants $C_{n}>0, n \in N$, with

$$
\left\|a_{\alpha}^{n}\right\|\left\|x_{n} \phi\right\| \leqslant c_{n}\left\|a_{\alpha}^{n} \phi\right\| \quad \forall \phi \in D, a_{\alpha}^{n} \in A_{n}, n \in N .
$$

Let $\gamma=\left\{\gamma_{n}\right\}$ be a sequence of positive numbers and q_{γ} be the seminorim on \mathcal{A} defined by $q_{\gamma}(a)=\left\{\sum_{n} \gamma_{n} \rrbracket a_{\alpha}^{n} \|^{2}\right\}^{1 / 2}$ for $a=\sum_{n} a_{\alpha}^{n} \in A$. Our goal is to prove that $\sigma^{\partial}=\tau_{s t}$ on \mathcal{A}. Since all seminorms q_{y} define the topology $\tau_{s t}$, it is enough to show that for each sequence γ there exist a vector $\phi \in D$ (depending on γ) such that $q_{\gamma}(a) \leqslant\|a \phi\| \quad \forall a \in \mathcal{A}$. Now f1x a positive sequence $\gamma=\left\{\gamma_{n}\right\}$. The next step of our construction is
STATEMENT 3: There exist a sequence $\left\{\delta_{n}\right.$, neN $\}$ of positive numbers and a sequence $\left\{\phi_{n}, n \in \mathbb{N}\right\}$ of vectors $\phi_{n} \in \mathcal{D}$ satisfying the following conditions:
(a) $\left\|x_{n} \phi_{n}\right\|=\sqrt{\delta_{n}^{2}+\gamma_{n} C_{n}^{2}}+1+\sum_{1=1}^{n-1}\left\|x_{n} \phi_{1}\right\| \quad \forall n \in N$.
(b) $\left\|x_{n} \phi_{n}\right\| \leq 2 \boldsymbol{r}_{n} \quad \forall n \in N$.
(c) $\left\|x_{k} \phi_{n}\right\| \leqslant 2^{-n} \quad \forall k<n, k, n \in N$.
(d) The determinants $D_{n}=D_{n}\left(\delta_{1}, \ldots, \delta_{n}\right)$ are positive.

$$
D_{n}=\left|\begin{array}{ccccc}
C_{1}{ }^{-2} \delta_{1}^{2} & -16 \delta_{1} \delta_{2} & \cdots & -16 \delta_{1} \delta_{n} \\
-15 \delta_{1} \delta_{2} & C_{2}^{-2} \delta_{2}^{2} & & -16 \delta_{2} \delta_{n} \\
-16 \delta_{1} \delta_{n} & -15 \delta_{2} \delta_{n} & \cdots & c_{n}^{-2} \delta_{n}^{2}
\end{array}\right|
$$

Proof:
In the case $n=1$ we take a positive number δ_{1} with $2 \delta_{1} \geqslant \sqrt{\delta_{1}^{2}+\gamma_{1} c_{1}^{2}}+1$ and a vector $\phi_{1} \in D$ with $\left\|x_{1} \phi_{1}\right\|=\sqrt{\delta_{1}^{2}+\gamma_{1} \mathrm{C}_{1}^{2}}+1$. Now suppose that $\delta_{1}, \ldots, \delta_{n-1}$ and $\phi_{1}, \ldots, \phi_{n-1}$ are already ohosen so that (a) - (d) are fulfilled. Iet us consider the deterininant D_{n}. D_{n} is a quadratic polynomial in δ_{n}. The coefficient of the quadratic terim is just equal to $\mathrm{C}_{\mathrm{n}}{ }^{-2} \mathrm{D}_{\mathrm{n}-1}$ which is posiline by induction assumption. Hence δ_{n} may be taken so large that $D_{n}>0$ and $2 \delta_{n} \geqslant \sqrt{\delta_{n}{ }^{2}+\gamma_{n}{ }^{C_{n}{ }^{2}}}+1+\sum_{1=1}^{n-1}\left\|x_{n} \phi_{1}\right\|:=M_{n}$.
Purther, we assumed that $\mathcal{M}_{x_{n-1}} \neq \mathcal{M}_{x_{n}}$, i.e. $\lambda_{x_{n-1}}\left(x_{n}\right):+\infty$. Thus there is a vector $\phi_{n} \in \mathcal{D}$ such that $\left\|x_{n} \phi_{n}\right\| \geqslant M_{n} 2^{n}\left\|x_{n-1} \phi_{n}\right\|$. After a suatable norming of ϕ_{n} we obtain $\left\|x_{n} \phi_{n}\right\|=M_{n}$. Consequently, $\left\|x_{n-1} \phi_{n}\right\| \leqslant 2^{-n}$. Since $\left\|x_{1} \phi_{n}\right\| \leqslant\left\|x_{n-1} \phi_{n}\right\| \leqslant 2^{-n}$ for $1 \leqslant n-1$, the conditions (a) - (d) are satisfied for $\delta_{1}, \ldots, \delta_{n}$ and $\oint_{1}, \ldots, \phi_{n}$. By induction, statenent 3 is proved. //

From $\mathcal{A}=\bigcup_{n \in \mathbb{N}} \mathcal{K}_{x_{n}}$ it is clear that the topology $t_{\mathcal{A}}$ on D can be given by the seminorms $\|\phi\|_{x_{n}}:=\left\|x_{n} \phi\right\|, n \in N$. Therefore condition (c) of statement 3 implies that the sequence $\psi_{n}:=\sum_{i=1}^{n} \phi_{1}$ is a Cauchy sequence in $\partial\left[\mathrm{t}_{\mathcal{A}}\right]$. Since the op*-algebra \mathcal{A} was assumed to be closed on D, the space $\partial\left[t_{A}\right]$ is complete, Consequently, the sequence $\left\{\psi_{n}, n \in \mathbb{N}\right\}$ is converging to an element $\phi=\sum_{i=1}^{\infty} \phi_{i} \in \mathcal{D}$.
STATEMENT 4: For all a $\in \mathcal{A}$ we have $\|a \phi\| \geqslant q^{(a)}$.

Proof:

Applying (a) and (c) we obtain
$\left\|x_{n} \phi\right\| \geqslant\left\|x_{n} \phi_{n}\right\|-\sum_{i=1}^{n-1}\left\|x_{n} \phi_{i}\right\|-\sum_{i=n+1}^{\infty}\left\|x_{n} \phi_{i}\right\| \geqslant \sqrt{\delta_{n}^{2}+\gamma_{n}^{c}{ }_{n}^{2}}$,
i.e. $\left\|x_{n} \phi\right\|^{2}-\gamma_{n} c_{n}^{2} \geqslant \delta_{n}$.

In a similar way, (a), (b) and (c) give us
$\left\|x_{n} \phi\right\| \leqslant\left\|x_{n} \phi_{n}\right\|+\sum_{i=1}^{n-1}\left\|x_{n} \phi_{i}\right\|+\sum_{i=n+1}^{\infty}\left\|x_{n} \phi_{i}\right\| \leqslant$
$\left\|x_{n} \phi_{n}\right\|+\sum_{i=1}^{n-1}\left\|x_{n} \phi_{i}\right\|+\sum_{i=n+1}^{\infty} \quad 2^{-1} \leqslant 2\left\|x_{n} \phi_{n}\right\| \leqslant 4 \delta_{n}$. (2)
Now we make use of condition (d). It implies that the quadratic form $Q(t):=\sum_{n} t_{n} \vec{t}_{n} C_{n}^{-2} \delta_{n}^{2}-16 \sum_{n \neq \square I I} t_{n} \bar{t}_{m} \delta_{n} \delta_{m}$ is positive definite. In particular, this means that
$\sum_{n}\left\|a_{\alpha}^{n}\right\|^{2} C_{n}^{-2} \delta_{n}^{2}-16 \sum_{n \neq m}\left\|a_{\alpha}^{n}\right\|\left\|a_{\alpha}^{m}\right\| \delta_{n} \delta_{m} \geqslant 0$.
By^{n} the estimations (1) and ${ }^{\text {nt a }}(2)$ we get
$\sum_{n}\left\|a_{\alpha}^{n}\right\|^{2} c_{n}^{-2}\left(\left\|x_{n} \phi\right\|^{2}-\gamma_{n} c_{n}^{2}\right)-\sum_{n \neq m}\left\|a_{\alpha}^{n}\right\|\left\|a_{\alpha}^{m}\right\|\left\|x_{n} \phi\right\|\left\|x_{m} \phi\right\| \geqslant 0$.
The triangle inequality combined with $\left\|a_{i}^{n} \phi\right\| \leqslant\left\|x_{n} \phi\right\| \quad \forall$ $1=1, \ldots, a_{n}$, leads to $\left\|a_{\alpha}^{n} \phi\right\| \leqslant\left\|a_{\alpha}^{n}\right\|\left\|x_{n} \phi\right\|$.
Further we have $C_{n}^{-2}\left\|a_{\alpha}^{n}\right\|^{2}\left\|x_{n} \phi\right\|^{2} \leqslant\left\|a_{\alpha}^{n} \phi\right\|^{2}$ by statement 2. Putting the two last inequalities into (3) it follows that

$$
\sum_{\substack{n \\ \text { Therefore }}}\left\|a_{\alpha}^{n} \phi\right\|^{2}-\sum_{n}\left\|a_{\alpha}^{n}\right\|^{2} \gamma_{n}-\sum_{n=n}\left\|a_{\alpha}^{n} \phi\right\|\left\|a_{\alpha}^{m} \phi\right\| \geqslant 0 .
$$

Therefore
$\|a \phi\|^{2}-q$
$(a)^{2} \equiv\left\langle\sum_{n} a_{d}^{n} \phi, \sum_{m} a_{\alpha}^{m} \phi\right\rangle-\sum_{n}\left\|a_{\alpha}^{n}\right\|^{2} \gamma_{n} \geqslant$ $\sum_{n}\left\|a_{\alpha}^{n} \phi\right\|^{2}-\sum_{n \neq m}\left\|a_{\alpha}^{n} \phi\right\|\left\|a_{\alpha}^{m} \phi\right\|-\sum_{n}\left\|a_{\alpha}^{n}\right\|^{2} \gamma_{n} \geqslant 0$ which completes the proof.

6. CONCLUDING REMARKS

The preceding proofs of our theorems 1 and 2 show that the multiplication in the $O p *$-algebra \mathcal{A} was used only to ensure that the families of vector spaces $\left\{\mathcal{N}_{\mathbf{x}}, \mathbf{x} \in \mathcal{A}\right\}$ and $\left\{\mathcal{M}_{\mathbf{x}}, \mathbf{x} \in \mathcal{A}\right\}$ are directed.
In fact, our proofs yield the following more general results.
Let A be a vector space of linear operators on a dense domain \mathfrak{D} in a Hilbert space (we don't assume that the operators map D into itself). Suppose, $\left\{x_{n}, n \in \mathbb{N}\right\}$ is a sequence of in ear operators defined on D so that $x_{1}=1$ and $\left\|x_{n} \phi\right\| \leqslant\left\|x_{n+1} \phi\right\| \forall \phi \in D, n \in N$.
By the seminorms $\|\phi\|_{x_{n}}:=\left\|x_{n} \phi\right\|, n \in N$, we define a locally convex topology t_{+}on D. Le t

$$
\begin{aligned}
& \text { topology } t_{+} \text {on d. Let } \\
& \mathcal{N}_{x_{n}}:=\left\{a \in \mathcal{A}:|\langle a \phi, \phi\rangle| \leqslant c_{a, n}\left\|x_{n} \phi\right\|^{2} \forall \phi \in D\right\} \quad \text { and } \\
& \mathcal{M}_{x_{n}}:=\left\{a \in \mathcal{A}:\|a \phi\| \leqslant c_{a, n}\left\|x_{n} \phi\right\| \forall \phi \in D\right\} .
\end{aligned}
$$

THEOREM 1^{\prime} : Suppose that for each $a \in \mathcal{A}$ the operator a^{*} is defined on D and $a^{+}:=a^{*} \mid D \in \mathcal{A}$. Suppose $\mathcal{A}={\underset{n \in N}{ }}_{\mathcal{N}_{x_{n}}}$. The uniform topology τ_{D} on \mathcal{A} will be defined by the seminorms $p_{m}(a)=\sup _{\phi}|\langle a \mid, \psi\rangle|$ taken for all bounded subsets m of the locally convex space $D\left[t_{+}\right]$ Then, $\tau_{D}=\tau_{s t}$ if and only if all vector spaces $\mathcal{N}_{r_{n}}, \mathrm{n} \in \mathrm{N}$, are finite dimensional.
THEOREM 2': Suppose $\mathcal{A}=\bigcup_{n \in F} \mathcal{M}_{x_{n}}$ and the space $D\left[t_{+}\right]$is complete. Let σ^{D} be the locally convex topology on A generated by the seminorms $\|a\|_{\phi}:=\|a \phi\|, \phi \in D$. Then, $\sigma^{D_{=}} \tau_{\text {st }}$ if and only if all vector spaces $\mathcal{K}_{r_{n}}$ are finite dimensional.
Notice that the assumption $A=\underset{n \in \mathbb{N}}{U} \mathscr{N}_{x_{n}}$ implies that $p_{r R}(a)<+\infty \forall a \in \mathcal{A}$. If a $\in \mathbb{N}_{x_{n}}$, then $|\langle a \phi, \psi\rangle| \leq 4 \rho_{x_{n}}(a)\left\|x_{n} \phi\right\|\left\|x_{n} \psi\right\|$ by polarization: hence $p_{m}(a) \leqslant 4 \rho_{I_{n}}$ (a) sup $\left\|x_{n} \phi\right\| \in\left\|_{n}\right\| x_{n} \psi \|<+\infty$ because M is bounded in $\partial\left[t_{+}\right]$.

REPERENCES

1. D.Arnal,J.-P.Jurzak. Topological aspects of algebras of unbounded operators, J. Funct.Analysis,1977.
2. G.Lassner. Topological algebras of operators, Rep.Math. Phys. 3(1972), 279-293
3. K.Schmidigen. Uniform topologies and strong operator topologies on polynom algebras and on the algebra of CCR, Rep. Math. Phys. 10(1976), 369-384
4. - Uniform topologies on enveloping algebras, Preprint, KMU-MPh-1 (1977)
5. - On trace representation of linear functionals on unbounded operator algebras, Preprint, KMU-MPh-4(1977), to appear
6. B.Timmermann, H. Timmermann. Uber einige Topologien auf der Algebra der CCR, Wiss.Zeitschrift, KMU Leipzig 1978

[^0]: * Sektion Mathematik, Karl-Marx-Universitat Leipzig, DDR.

