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0. INTRODUCTION

The present paper deals with the topologization of unbounded
operator algebras (Opx-algebras) in Hilbert space. We consider
two possible topologies, the so-called uniform topology TJD intro-~
duced in /2/ and the strong operator topology o®, We characterize
the countable generated [closed] Op¥-algebras 4 for which ’Z'_-o
[resp. G":D] agrees with the strongest locally convex topology on
A . Our main theorems contain some known result for concrete Op»-
algebras (/2/,/3/,/4/,/6/).

In /5/, theorem 1 was used in proving that for certain Opx-
algebras (for example, the Op%-algebra of a1l differential opera-
tors with polynomial coefficients on the Schwartz space :f’(Rn) )
all linear functionals f on A are trace functionals, i.e. they
can be given by f(a) = Tr ta ,a€ A, t an appropriate nuclear
operator.

1. DERINITIONS AND NOTATIONS

First we repeat some basic definitions and facts about unbounded
operator algebras from /2/. Let D be a dense linear subspace of
a Hilbert space ¥ . An Op#-algebra i on & 1s a x¥-algebra of
unbounded operators leaving the domain d 1invariant. We assume
that the identity map is in A and denote it by 1. The graph
topology tA on D 1is the locally convex topology defined by
the seminorms | ¢ § g:= faél , ped ,a¢ A, Por each bounded subset

m of 'D[t‘A] we put p,m(a).= sup [<a ¢,v>| . The uniform
dyem

topology T’.b on A 1s generated by the family {p.m} of these
seminorms. 'A[:.r:b] is always a topological ¥ -algebra. The strong

operator topology 0’2’ on A 1s glven by the seminorms
“all¢ :=|la¢ll.,()eib,a€v‘1 .
Tet B (A):= BC\A D(&). The operators a := Er@ form an Op#*-

algebra A on D = D (A) which will be called the closed
oxtension of A . A is eaid tobe closed 1f A3 f§ »1.¢.D = DA}



An Op#-algebra WA 18 closed on D if and only if the space

D [tdl,] is complete.

Purthermore we use the following notations throughout the paper
(adapted from /1/):

Ne=facd:[Cap 921 < c, dxpll® ¥éed],

=(acd:flapll < cy Mxpl ¥ ¢eD],

(
!x(a)-— :up &fﬁg—‘ . ).x(a):= 31:1)3 g—:%— for a,x ¢ A

Here we make the convention that %—= + 00 for C >0 and % a 0,
Clearly, J/x and ‘M‘x are vector spaces.
By Tat we always denote the strongest locally convex topology on

3. THE RESULTS

THEOREM 1: Por each countable generated Op¥-algebra A on D the
following are equivalent:
(1.1) Por all operators x & A the vector space vi
1s finite dimensional.
(1.2) There are operators x, €A ,neN, such that

A= U JV and the vector spaces W, are

néN n
finite dimensi onal.

(1.3) T,= Ty

THEOREM 2: Tet A be a countable generated Ops-algebra on D .
Consider the following conditions:
(2.1) Por all operators x¢ A the vector space 'Mx
18 finite dimensional.
(2.2) There are operators x, € A ,néN, such that

A u M and the vector spaces M x are
neN n
finite dimensiona.l.

(2.3) ¢2=1,, .
Then we have (2,3) — (2.2)e—> (2.1). If A is a
closed Opx-algebra on 2 , then all three conditions
are equivalent,
The proofs of theorems 1 and 2 will be given in sections 4 and 5.
Here we note a corollary only.

COROLLARY 3: If A is a countable gemerated Op¥-algebra on o
and if T:b: T g¢ ON A , then (:‘;= Tt OB A

4

Proof:
Let x€ 4 Since 'Z'.b =T st? theorem 1 1mplies that the space
‘Afx*x+1 i3 finite dimensional. Moreover, J/ xtx+1 by the

Cauchy-Schwarz inequality., Therefore, m is finlte dimensional.
Since all operators a € A are tA -continuou.s on D and ? 1is tA

dense in @ , it is clear that aed 1if and only if ae # . Hence,

Mx is a finite dimensional vector space. Thus, condition (2.1)
15 fulfilled and we have r2= T . //

Remark:
In /1/, Op¥-algebras satisfying condition (1.1) are called hyper-
finite.

4., SOME EXAMPLES
In this section we mention some examples of Op¥-algebras satis-
fying the assumptions of our theorems.

Example 1: Let A be the Opx-algebra P(T) of all polynomials in
a symmetric linear operator T on a dense invariant domain 31 in
a Hilbert space. Suppose that the operator T is not bounded on 31.

Example 2: Denote by w/z2 the Op*-algebra?generated by the position
and momentum operators qJ = tJ, pJ =1 2t yj=144+.,n, on the
domain 32:=Cg°(ﬁn). In other words, \/12 is the ¥-algebra of all
differential operators with polynomial coefficients.

Now we pass to a more general class of examples which give a
greater variety of Op%-algebras fulfilling our conditions.

Example 3: Let G be a Tle group and £(G) be the universal enve-
loping algebra of the Iie algebra of G. Suppose W 1is a (fixed)
neighbourhood of the unit element in G, If we realize £ (G) as an
algebra of left invariant differential operators acting on the
Lie group G with the domain $3:= °°°(l.l) in the Hilbert space
Lz(u,/u ),/u the right Haar measure of G, then we obtain an Opx-
algebra Jl3 depending on G.

With this netations we have the following theorem.

THEOREM 4: The uniform topologies on the Opx-algebras s/4.1, :/4-2,
\AB and the strong operator topologles on A‘Pi“z’_"ij

coincide with the strongest locally convex topologies
Tap 00 Ay, A,, AB resp. A, ,_42,£3.



Remarks:

1. Most of this results are already known. For Jl.l both assertions
were first proved in /3/ (for the uniform topology partial results
were obtained in /2/). In the case \42 both statements are shown in
/6/. Por \/13 the assertion concerning the uniform topology was
proved in /4/, The methods applied in the proofs for v{ and u‘l

in /6/ and /4/ are different from the method used in the present
paper. Some basic arguments of the proofs are drawn from the
proofs of theorems B and C in /2/.

2. By considering unitary representations of Lie groups (more
precisely,the associated represenations of the enveloping algebras)
algebras of differential operatorg (for exa.mple, the Opx-algebra

generated by a = +1 and p - d% on =C, ®(0,1) ), sequence

spacesyetc., it is not difficult to construct further examples
satisfying the conditions of theorems 1 and 2,

LEMMA 5: Suppose that Ais an Op%-algebra on J , a,x eAand ae J/x
Then there is a constant Ka x such that
’

lag U? ¢ x, Mx¢l Il xapl ¥4ed. (1)

-]

Proof: 2

Let W := {¢e3: [zl < 1}. Since [{a ¢, ) < Co x Uxoll”™ ¥¢ed
by aGva we have ()Sell\-})x Ka" 14’)’ < Ca,!'

Using <a ¢,¥> = 1/4 {<a(d+v ), ¢+¥>-(alp-v),¢-y)

~ica( ¢ +iy), ¢ +iy) +ida( ¢ -1y), ¢-i \b}} it follows

supu[<a¢ Y2 € 4 Cq g because the elements 1/2( ¢4v%),...,

dye '

1/2( b -i+¥) are in the absolutely convex set u . Hence, we get
Ka ¢ ,¥)| < ac, L Uxell fx~yl Véyed. Putting v=a¢$ ,this
glves (1). / /

Now let us turn to the proof of theorem 4.

By corollary 3,we only have to prove the assertions about the
uniform topologies. In view of theorem 1, it is sufficient to
show that condition (1.1) is fulfilled fordt A 43, that is,
the vector spaces ‘Mx are finite d:lmensional for all operators
x of the Op¥-algebras Jl1, "{2, 013 Here we only carry out the
proof of this fact in the case of ol,., For u?. and u‘l condition

(1.) could be verified by repeating parts of the arguments used in
/2/ and /4/.

Proof for the Op¥-algebra \/12 3

For simplicity in notation we restrict us to the case n = 1.

The subset {yiJ:= alpd, 1¢w, JGN} is a Hamel base for A ,. Take a
tixed vector ¢ed,, ¢ #0, with supp ¢ s[0,1] and put

¢"'P (t):= p (B (t-4)) for «,p €Ry. A simple calculation leads

to d“iﬂjupj¢" "yijhﬂ” (d+1)1$'1”p+“ (2)

where Hqu;[l# 0 ¥ j¢w.

Let a= 1:_1 ‘i;] Yige = ZJ pij Yyg and xa:Z Y13 ¥1j°

degree of an element a 48 defined by d(a):= Max {i+_1 o J4=o}
Let (k,1) be the lexicographic largest tupel for which this
maximum will be attained, 1.e. k= Max {i: “ij*o for j=d(a)-12 0}
and 1=d(a)-j. Denote by (r,s) the corresponding tupel for the
element x,

Now we show that ale implies d(a) £ 2d4(x)+1. In particular,
this means that W 15 a finite dimensional vector space.

We assume that d(a) 21 and d(x) 21 (otherwise the assertion is

trivial).

i+j~-

1
'm k+1+7+8 ¥1,3eN. (3)

Let p= :
We write, f(& )= (&™) ,me€R,, for a function (&) it [£2(a )™}
is bounded for sufficiently large « 1if and only if n'2m. mis
called the order of the function f with respect to « .

1
k+l-
kK+i+r+8
Trom (2) and (3) 1t follows thatllyklti’.‘(p Il =0(a )
and for all other elements yij with ‘13*0 the functions
“yi_j hpﬂhave smaller orders with respect to « ., By the triangle

inequality, this implies Ua(’;Jsz = 0(« 2(k+1- k+1+r+s) ). (4)

Then d_i p‘j =

T k+1
Purther we have ”‘ﬁ.p I = U(GL +14T48 (5)

By the commutation rules it is clear that J’ifo for j > 1l+s and
= 0. Hence, if there is a 1i6&N such that
Yk+r,1+s 41 Prs ¥ ’

facts, we get
y“*o, then k_«d?ﬁ < 1. Using this two , £

k+l+r+s - B
uxa #4 u - o' & k+l+r+8 )‘ (6)
Putting (4),(5) a.nd (6) into (1), it follows
1+8
20641 - iayre ) S T8 - miveys YIRS C Blrvs

Therefore, d(a) =k+l & 2r+2s8+1=23(x)+1 which finishes the/I}'OOf-



4, PROOF OP THEOREM 1

(1.1) —>(1.2): Trivial.

(1.2)y —>(1.1):

Tet x ¢ A. Since A= U/ fo , there exists a number neN such

neN n

that x*x e N . This implies KX & KX . lence A 1is finte
x, x x, x

dimensional.

(1.3) ——(1.1):

We suppose that 5: Tst' Tet us assume that (1.1) is not true,
i.e. there is an element xé A such that fo contains an infinte
set {an,neﬂ} of linear independent operators ane A . we supply
elements bm€ # such that the system {an,bm} is a Hamel base of 4.
Without restriction of generality we may assume that fx(an) <1/4
¥ neN. Then|{ad , ¥l < Kx¢l xvll V¢‘yeﬂby polarization (cf.lemma
5 in section 3). Por each positive sequence y = {tyn} we define

the seminorm py(a) =§ tynld‘n‘ fora.:-go(n a, +§ Pm b
Since T.D:‘ Tgyy there is a bounded subset M of ;th'A] such that
Py (a) € pp(a) ¥ acA . Putting & = « 8 +...+d 8y we get

px(a) Enz Yolanl € ppp(a) = ;illml<(d1a1+---+dkak) .2l <
Z‘dn | (sup Ux¢ll [xyll) = ¢ ZIoLn[ whereby C=sup [ x¢ll flxyll
n ¢vem o pryem
£ +90 . Since oL.I,...,c(k,... are arbitrary complex numbers, this
is a contradiction if su]% Pp=t+ ™ . //
né

Now we turn to the main part in the proof of theorem 1.

(1.1) ——(1.3):

Pirst we note a simple lemma. We shall need it only for finite

dimensional Hilbert spaces ;.

LEMMA 1: Let ¥, be a Hilbert subspace of X with ¥, ¢ D . Let
P, be the orthogonal projection on ¥, end 21:=(1-P1).2)

=de ¥,. Suppose A 1s an Opsx-algebra on D, a,xevt

and il Slx¢l for all ¢ed .

_ iKad 07 Ko v, vl
It ‘fx(a) =8UP Trg =+ ®,then sup W=+w,
- ¢ed e,
8

Proof:
Since the operators a, a.+,xE A have dense defined adjoint opera-
tors in A , their restrictions to ?1 are closed and hence
bounded by the closed graph theorem. Thus fl aq” £ C ﬂzﬂ ,
+
ia llﬂ < cligh, szﬂ $l Cll»lll)l ¥ oned,.
<ay,
Let us assume that sup ——112—
vedy hx~y Il
Kay,y?| < c, llx~fﬂ2 ‘b‘yeill. For each ¢¢€ 3, P=t+7y ,1'&2)1,

nedy, we got [Kad,b2l = [Kalw+y Y, ¥+l &

<o, ¥+ Kag ,w>(+[<y,a%>l+ Kayg 21 €

cbx 2 + 2clplliyle cuypl? < ol x(9 - )P Upleclgl?® <

c,(Ixpll +c Inl )2e3cl ¢l < [cy(140)%e3¢] hx ¢l  because

u¢{[ slix¢ll . Therefore ‘gx(a) <+ which 1s a contradiction.
//

Now suppose that condition (1.1) is fulfilled. To prove that
T:.D = Tyyr We need some preparations and notations. Let us take

=0, < +00, Le

a sequence {xn,nEN} of operators xne./{ such that

(1) ¢l < Hxpls llx 49l ¥ ¢, nen,
(11) \Afxngdlfxn+1 and (111) A:Iké vi .

n
It is very easy to see that such a sequence exists. The vector
space A has a countable Hamel basia {yn,neN}. Let zn=1+y1+y1+...
+yn+yn. Then yied’; for 1 g n. Take 1, = z,. Because ‘Mx is

n 1

finite dimensional, there is a number, hence a smallest number
n,eN such that y, ¢‘Mx . Putting x, = x4 2+zn§+1 we have

N UJVL'_C.Jsz, "Mx1 #fo2 and yie-/(xz ¥ 1=1,...,0,.

z
n,
Continuing this procedure, we get a sequence {xn}with desired

properties.
3ince each vector space fo ,n22, 13 finite dimensional, "Yx
n
can be decomposed as a direct sum of VVI and a certain vector
n-1
space ﬂnS van. Let A, = ‘)/;1. Then ‘A=§An (direct sum of
vector spaces). Let d  be the dimension of }lﬁ and let a.? ,ab
Dreeey

be a basis of ‘An’ ‘/Ln is ¥ -invariant because vV; obviously
n

&
n



is #¥-invariant. Without loss of generality we suppose that the
operators a'; are symmetric (which is possible since 'An 1s » -
invariant) and an (a]) = 1 for i=1,...,d,. By

a: = d~183|1+...+ d.dn agn , c(.=(aL1,..., etdn), we shall dgnote the
n
elements of .ﬂn. Purther we use the norm "a‘ﬂ 1= i Iyl
i=1

on v‘ln. Let Sn be the unit sphere in this norm. For each sequence

Y= {yn,neN} of positive real numbers yn we define the seminorm
n n

py(a):= En ynﬂa‘ﬂ , a:-; a? ed, on A . Clearly, all

seminorms of this kind give the strongest locally convex topology
Tgg OB A. Tet us take a fixed sequence y = {Yn} .

STATEMENT 2: Por each neéN there existsa finite set of vectors
S RIIE 2 having the following properties:
n

(a) Max K% 43,4320 2
1=1,...,rn

1o [{pm+1+ 2 max a2y y2)

k,m<n },1,s
(0) x5 €2 ¥ k<noand 1=1,...,7,.
(c) <a*£, nf’;>= 0o ¥ aevin, 1$n<m, 1=1,...,T,,
J=1,...,rm.
Proof:
We choose the sequence 1—?,...,72 by induction on n. We post-
n

pone the proof that 14, seey 'Yl exist because it requires parts
1

of the following arguments.

Suppose for k=1,...,n~1 sequences '1;1; y1=1,...,17), are chosen
such that the conditions (a),(b),(c) are satisfied. Let ?f.] be
the linear span of all elements a'f]; where a € fon yk=1,...,n-1,

1=1,...,7,.. ¥, 1s finitedemensional because ‘yxn is finite
dimensional. Put 31= D 911. Let Cn be a fixed positive number.

If a.zle S,» then aié\yx ; by construction. This means that
n-

§x _(8%) = +%. In view of lemma 1, this implies
n-=1

10

I<ag ¥, ¥ 7| " a9
;1:%1 T ey = + . Hence there exists a vector v €4

(depending on a: ) such that Kag v de X’ > Collx, 4 Y: 2. (1)

Since inequality (1) remains valid if we multiply »{.: with a

‘factor , we may assume that ||x Y*n | =27m. (2)

By U(aﬁ ) we denote the set of all elements a?e !n with

n _ n nyl = n_n _n n n _n -
](aIa MR MER! p1(a1 R PR ﬁdn <adn"i’4' Y, > >c,.2 n
Clearly, U(all) is an open subset of the sphere Sn. PFurthermore,
ali € U(ana‘) according to (1) and (2). By the Heine-Borel theorem

the open cover {U(aﬁ )} of 5, has a finite subcover {U(az,- ),
i=1,...,rn. Put *? = "l’ﬁ y 1=1,...,1,. Then we have

n_n n -n n
¥=u1 . Ka&"’i"‘fi” > c,2 for all a_ €35,.
yeeesTy

By norming elements ai € Aﬂ it follows

Mg.x Kaﬂ*f, Y?)I 2 C, 2-2n ﬂ ai ﬂ for each aie an.
2n n_k . m
Putting now C_ = 2 e D _ Max [<a >|},
n {Yn X,m<n j,1,s J?l' Ys

this is just condition (a). Because lx¢ Il € I x, 60 ¥ ¢ed
1 $ n-1, condition (b) is fulfilled by (2). The vectors
r\y?,i=1,...,rn, are in w.l:') e ]f1 by construction. Hence, (c)

is also true. Consequently, the induction hypothesis 1s proved.

We have to say some words about the construction of "f], ...,"fl .
In this case we only have to check condition (a), 1i.e. 1

Max [{oy ¥ ¥i71 2 Bal Depyem.

This can be done by using the covering argument of the preceding
proof. Now the proof of statement 2 1is complete. / /

Next we regard the following subset 7t of the domain D :

q
mie{q-2 £, 4D, o ceenlal=1}

Tt



Let us verify this assertion. If )La(xn)=+ oo for a certain opera-

tor ae ‘An’ then the new sequence Xj,...,X; 4,8X j..o gives a

"finer" decomposition of A which satisfies (i) and (i1). (i1) is

obvious. Since af.WL‘ implies .M ; % M and A (x )=+

n- Tn-

implies ‘Ma M, (1) is also true. According to (2.1), all
n

vector spaces M xr XE 4 , are finite dimensional. Consequently,

by an induction argument this procedure can be continued until

(111) 1s fulfilled.

Without loss in generality, we can assume that 'lx 1(xn) $1
n+
Purther we use the following notations from the proof of theorem 1:

a]; 2Qp a:,ﬂaiﬂ » Sp-

STATEMERT 1: C,:= sup A (x,) & +0e  for each neN.
n a*
Proof: ay € sn

Assume that the contrary is true. Then there exist sequences
€S, ,keN, (for brevity we write a, instead of al and x for

x,) and ¢, €d,keN, such that la, ¢, 2k Ix¢ !l . We may assume

that lxéy =1 ¥ keN (otherwise we multiply by a suitable

factor). Then we have lim Ha.kq)kﬂ =0. By the compactmess of
k—

the unit sphere S there is a subsequence of {a.k} converging to an
element a€3,. For simplicity suppose that ii: fec-al=o.

Let 8y -a = 1ka1+...+ %y kad . Then

I(ay-2) $, = in fagl lad ¢l < é fgpe | Ix gy ll = [ o -af
—=> 0 fork— ., By flag, | & [(ay-a)¢ M+ oy § Il tnis
glves ]i‘in fa ¢, ll=o0.

On the other hand, we have A (x)<+00 by condition (1ii), In
particular, this implies that 1 2hxgy I €A, fady .
This 18 a contradiction to lim lapy ll=o0. / /

k—~b %0

An immediate consequence of statement 1 1s

STATEMERT 2: There are constants Cn>0, neN, with

ﬂa!:‘ﬂ uxnﬂl & Cn“a2¢” ¥ feu'b, aie.ﬁn, neN.

14

Let r "{)’ }be a sequence of positive numbers and q be the semi-

norm on A defined by ay (a)= {Z b Ha }1/2 for a= Z a DA,

Our goal is to prove that o= Tgt OB .A . Since all seminoms

th define the topology 'l’st,it is enough to show that for each

sequence y there exist a vector ¢ ¢ d (depending on 7 } such that
1, (a) S Jjadl ¥ aeA. Now fix a positive sequence Y= {Yn}

The next step of our construction is

STATEMERT 3: There exist a sequence {[ neN} of positive numbers
and a sequence {¢ ,nEN} of vectors ¢ €D satis-
fying the following conditions:

n-1

2 2
(8) Ux ¢ =14+ y.C, +1+E"xnh" ¥ new.
() Iz 6,0 <28, ¥ nen.
() Ux ¢ 10l £2™ ¥ x¢n, k,neN.
(d) The Aeterminants Dn=Dn(d'1,...,¢fn) are positive.

-2 2

c,™° 4, 16 8, d, ... <168 d)

A -2 2
b - S P P P 216 85 4
h =
I
68, 4, 164,86 L7
Proof:
In the case n=1 we take a positive numher (f with
——ﬁ
2‘{ r +J’1c1 +1 and a vector ¢, €D with HX.I%H +)1(‘1 +1.

Now suppose that d. ,...,fn_1 and ¢1""’¢n-1 are already chosen
so that (a) - (d) are fulfilled. Iet us consider the determinant
Dn' Dn is a quadratic polynomial in fn The coefficient of the

quadratic term is just equal to Cn 2 Dn_1 which is positive by

induction assumption. Hence fn may be taken so large that Dn >0
n-1
2 2 » —
and 2J‘n>,!cfn+yncn +1+Zi:7 Hxnhﬂ = M,

Purther,we assumed that M + M ; o L.e. A (Xn) + 0o,
n-1 n

Thus there is a vector ¢n €3 such that
Ixadpl = My e X4 ¢l After o suitable norming of § we

obtain fx ¢ Ii= M . Consequently, lr _, ¢n" £2™®, since
lxl¢ I g llxn 1 (7 I <2™® for 1 $n-1, the conditions (a) - id) are
satisfied for {,,...,d and ¢,,....¢ . By lnduction, Btatenent 3

is proved. //

15



From A= \'{q 'Mx it 18 clear that the topology td on J can be
given by the seminorms llwl 1= llx Wf , neN. Therefore condition
(c¢) of statement 3 implies that the sequence  .:= F $; 1s a

Cauchy sequence in b[tﬂl . Since the Op¥-algebra A was assumed
to be closed on & , ‘the space D [t ] is complete, Consequently,

the sequence {y, neN} is converging to an element ¢ = Z p,€D.
STATEMENT 4: Por all a€ A we have lagl 2 qy(a)-

Proof:
Applying (a) and (c) we obtain

EXIIRRERX N & z:ux ¢1u-Zﬂxn¢ U2 V62 poea®

1.e. uxn” -ynch 7 4, (M
In a similar way, (a.) (b) and (c) glve us
I ¢l slx, ¢, u+Zuxn1>1 1{;—“‘ bl g

n-1

PN ll+ZanqilI+: ot g 2lx gl s 4d. (D

=n+1

Now we make use of condition (d). It implies that the quadratic
form Q(t):= X b c, 26,2 - 16 Z t,%, 4, &, 1is positive

definite. In particular, this means that
Zﬂanﬂgc'2f2-162nann uamu 2 0.

By the estimations (1) and 2) we get

Zﬂanug (ERTE 1Sy nZ Ba2 0 Qa0 Uxgllx, M
The triangle inequality combined with llaiq>l[< Hx ol ¥
1=1,...,8,, leads to lal ¢ < < [ef I e, 0l .

Further we have '2 ﬂan 12 llanvll < la% gl 2 py statement 2.
Putting the two 1ast inequalities into (3) it follows that
Tlanel2 - 0alty, - Zglhedel Dalpl > o

Therefore

a4l - 0 @2 2GR0, T 2> - 5 Dallfy,
Zﬂa ¢ﬂ2 Z "a ¢l "a ¢l - § ﬂa’iﬂg Ya 20

which completes the proof.
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6. CONCLUDING REMARKS

The preceding proofs of our theorems 1 and 2 show that the multi-
plication in the Op¥-algebra A was used only to ensure that the
families of vector spaces {J/x,xe Jl} and {\Mx,xeﬂ} are directed.

In fact, our proofs yield the following more general results,

Let A be a vector space of linear operators on a dense domain d
in a Hilbert space (we don’t assume that the operators map d
into itself). Suppose, {xn,nEN} is a sequence of linear operators
defined on P so that xy = 1 and llxnﬂﬂlxn”{)l ¥$ed ,nel.

By the seminorms {[¢ [ _ :=ﬂxn¢ﬂ ,neN, we define a locally convex
topology t, on D. Le%

:={aea‘l Kad.¢>] & Cuplxg#l® ¥ ged} ana

= {aeﬂ,: laplf < Ca,n Han“ Véew} .

THEOREM 1’: Suppose that for each ach the operator a.* is defined
on D and a*:= a*fD €A . Suppose A =

neN Wxn ¢
The uniform topology T on A will be defined by the
pm(a)=sup [<a$,y>] taken for all
byem
bounded subsets M of the locally convex space '.b[tJ.

seminorms

Then, T at if and only i1f all vector spaces

o =
W, ,néR, are finite dimensional.
n
THEOREM 2°: Suppose A = U/ M and the space 3[t+] is
complete. nel *n

Let (I‘D be the locally convex topology on A sgene-
rated by the seminorms ﬂaﬂ¢:=ﬂafﬂ y e d

Then, 5'3= rst if and only if all vector spaces '/“x

are finite dimensional. n

Notice that the assumption vt = U/ vV implies that
nelN

(a) <to Vaed., 1t ac -/V o then](a¢ a2l < 4f (a)x wan\*“
by polarization; hence pu(a) 4p, (a) sup ﬂxn’[[ ﬂ n"'u <t®
because M 1is bounded in ’.b[tJ, " yem
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