ОБЪЕАИНЕННЫЙ ИНСТИТУТ ЯАЕРНЫХ ИССАЕАОВАНИЙ

АУБНА

$$
\begin{array}{lr}
\frac{C 324.3}{T-58} & 26 / 1 \times-77 \\
3852 / 2-77 & \text { E5-10796 } \\
\begin{array}{c}
\text { B.Timmermann }
\end{array} &
\end{array}
$$

THE UNIFORM AND THE STRONG TOPOLOGY ON REALIZATIONS OF THE ALGEBRA OF POLYNOMIALS

B.Timmermann

THE UNIFORM AND THE STRONG TOPOLOGY ON REALIZATIONS OF THE ALGEbrA OF POLYNOMIALS

Submitted to REPORTS ON MATHEMATICAL PHYSICS

Тиммерман Б.
Р5 - 10796 полиномов
Доказано, что прн достаточно общих предположениях на операторы $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ (неограниченные, симмегричнье) и на область \mathbb{T} на реализации $\mathscr{P}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)$ алгебрь полиномов $\mathscr{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ сильнейшая локально выпуклая гопологиятя совпадает как с равномерной топологией $\tau \mathscr{D}$, так и с сильной топологией ${ }^{\prime} \mathrm{s}$. Для $\mathrm{n}=2$ мь! приведем некоторье более конкрет ные условия для выполнения этих общих предположений.

Рабога выполнена в Лаборатории теорегической физики Оняи.

Препрннт Объеднненного пнствтута пдерных нсследованнй. Дубна 1977
Timmermann .
The Uniform and the Strong Topology on
Realizations of the Algebra of Polynomials

It is shown that under quite general assumptions on the operators A_{1}, \ldots, A_{n} (unbounded, symmetric) and on the domain \mathbb{D} on the realization $\mathcal{P}\left(A_{1}, \ldots, A_{n}\right)$ of the aigebra of polynomials $\mathscr{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ the strongest locally con vex topology $r_{s t}$ coincides with the uniform topology ${ }^{\text {g }}$ as well as with the strong operator topology r_{s}. In the case $n=2$ some conditions are given so, that these general assumptions are fulfilled.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1977
O. In an earlier paper /4/ we regarded the algebra of polynomiala of one variable. For thia case we have given a quite general condition on the unbounded symmetric operator A and on the domain D so, that on the representation $P(A)$ of $P(x)$ the atrongeat locally convex topology $\tau_{s t}$ coincides with the gtrong topology τ_{g}. Now we consider the algebra of polynomiala of n commuting variablea. In /5/ it is ahown that the atrongeat locally convex topology $\tau_{\text {gt }}$ on $\rho\left(x_{1}, \ldots, x_{n}\right)$ ia a uniform topology (see definition below) as well as a strong operator topology, i.e., there is a realization of $S\left(x_{1}, \ldots, x_{n}\right)$ as an operator algebra $\Theta(D)=P\left(A_{1}, \ldots, A_{n}\right)$ and on this algebra the atrongest locally convex topolory $\tau_{g t}$ coincides with the uniform topology τ_{D} and with the strong topology τ_{g}. The proof in /5/ is abstract in the sense that the universal repreaentation is used.

In this paper we give (aimilary as in /4/) conditions on the operators A_{1}, \ldots, A_{n} and on the domain D which provide the same result.

1. Let us repeat some definitions and properties (/2/). Let D be a unitary space with scalar product <.,.〉 and He ita completion. By $\mathscr{L}^{+}(D)$ we denote the *-algebra of all operators A with $A D \subset D, D \subset D\left(A^{*}\right), A^{*} D \subset D$ and with the invoIution $A \longrightarrow A^{+}=\left.A^{*}\right|_{0}$. An Op*-algebra $A(D)$ is a *subalgebra of $\mathscr{L}^{+}(\infty)$ with identity I. Every Op*-algebra $\mathcal{A}(\infty)$ defines a topology t_{∞} on D given by the gyatem of aeminorme:

An Op*-algebra is aaid to be closed, if $D\left[t_{\Omega}\right]$ is complete.
An Op*-algebra $A(\infty)$ can be equipped with different topologies (/2/, /3/). We will use:
the uniform topology τ_{D}, defined by the seminorms:

$$
A \longrightarrow\|A\|_{\mu}=\sup _{\varphi, \psi \in \mu}|\langle\varphi, A \psi\rangle|
$$

where μ runs over all subsets $\mu c D$, for which $\|A\|_{\mu}<\infty$ for all $A \in \mathscr{A}(D)$;
the strong topology τ_{g}, defined by the seminorms:

$$
A \longrightarrow\|A\|_{\varphi}=\|A \varphi\| \quad \text { for all } \varphi \in D
$$

A realization of $\mathcal{P}\left(x_{1}, \ldots, x_{n}\right)$ is an algebraical *-isomorphiam onto an appropriate Op*-algebra $\alpha(\infty)=P\left(A_{1}, \ldots, A_{n}\right)$ given by $x_{i} \longrightarrow A_{i}=A_{i}^{+} \in \mathcal{L}^{+}(D)$, $1 \leqslant i \leqslant n$. For brevity we also call the algebra $P\left(A_{1}, \ldots, A_{n}\right)$ realization of $P\left(x_{1}, \ldots, x_{n}\right)$.

The realization is said to be closed if $S\left(A_{1}, \ldots, A_{n}\right)$ is a closed Op*-algebra.

In considering the polynomial algebra $S\left(x_{1}, \ldots, x_{n}\right)$ we use the favourable notations of /5/. Hence, let J be the set N^{n} (we shall assume $0 \in \mathbb{N}$) with the following operations:

$$
i \pm j=\left(1_{1}, \ldots, 1_{n}\right) \pm\left(1_{1}, \ldots, j_{n}\right)=\left(1_{1} \pm 1_{1}, \ldots, 1_{n} \pm 1_{n}\right)
$$

Further, let $\pi(i)=i$ be a bijective map from J onto N with:

1. $\sum_{g=0}^{n} i_{\theta}<\sum_{g=0}^{n} j_{B} \quad \Longrightarrow \pi(i)<\pi(j)$
2. $\sum_{B=0}^{n} i_{s}=\sum_{B=0}^{n} j_{B}$ and $i_{B}<j_{B}$ for the amalleat s with

$$
\mathbf{i}_{\mathrm{g}} \neq j_{\mathrm{g}} \quad \Longrightarrow \quad \pi(i)<\pi(j)
$$

With the help of this mumeration map π one defines an order and a semiorder in J by:
(1) $j \Leftrightarrow i \longleftrightarrow \pi(j) \in \pi(i)$
(2) $j \propto 2 i \Longleftrightarrow j=\tau+\Delta, 0 \leq \pi(r), \pi(s) 屯 \pi(i)$

$$
(\pi(\pi), \pi(s)) \notin(\pi(i), \pi(i))
$$

Then $P\left(x_{1}, \ldots, x_{n}\right)$ is the linear span of the algebraical basis $\left\{x^{i}\right\}_{i \in J}, 1 . e$.

$$
\mathcal{P}\left(x_{1}, \ldots, x_{n}\right)=\left\{p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in J} \alpha_{i} x^{i}, \alpha_{i}=\alpha_{1_{1}} \ldots i_{n} c c\right\}
$$

equipped with the multiplication

$$
\left(\sum_{i \in J} \alpha_{i} x^{i}\right)\left(\sum_{j \in J} \beta_{j} x^{i}\right)=\sum_{i, j \in J} \alpha_{i} \beta_{j} x^{i+j}
$$

and the involution

$$
\left(\sum_{i \in J} \alpha_{i} x^{i}\right)^{+}=\sum_{i \in J} \overline{\alpha_{i}} x^{i}
$$

Then

$$
P\left(A_{1}, \ldots, A_{n}\right)=\left\{p\left(A_{1}, \ldots, A_{n}\right)=\sum_{i \in J} \alpha_{i} A^{i}, \alpha_{i}=\alpha_{\left.i_{1} \ldots i_{n} \in c\right\}} c\right]
$$

(where $A^{i}=A_{1}^{1} \ldots A_{n}^{i}$ and the operations are defined as above).
The order, aemiorder, resp. defined by (1), (2) can be transformed to $\left\{x^{i}\right\},\left\{A^{i}\right\}$. For example: $x^{i} \leqslant x^{i} \longleftrightarrow i \not a$ and $x^{i} \cdot \propto x^{2 i} \longrightarrow j<2 i$ and so on, (thus π can be interpreted as a map which preserves the degree, and within the set of elements with the same degree π preservea also the lexicographic order)

For an algebra \mathcal{R} with a countable algebraical basia $\left\{b_{i}\right\}$ the strongest locally convex topology $\tau_{g t}$ is given by one of the following systems of seminorms:

$$
X=\sum_{1} \beta_{1} b_{i} \rightarrow\|x\|\left(\gamma_{1}\right)=\sum_{1} \gamma_{i}\left|\beta_{1}\right|
$$

or

$$
x=\sum_{1} \beta_{i} b_{i} \longrightarrow\|x\|^{\prime}\left(\gamma_{i}\right)=\left(\sum_{1} \gamma_{i}^{2}\left|\beta_{i}\right|^{2}\right)^{1 / 2}
$$

where (γ_{i}) runs over all sequences of nonnegative numbers. It is clear that we can restrict ourselves to sequences $\left(t_{1}\right)$ with $1 \leqslant t_{0} \leqslant t_{1} \leqslant \gamma_{2} \ldots \ldots, \gamma_{i}$ naturals. For the countable case it is easy to see, that the aystems $\|\|.\left(t_{f}\right),\|\cdot\|_{\left(\gamma_{f}\right)}^{\prime}$ are equivalent, but we remark that for the uncouftable case i_{t} is not so. (/1/) In our case, i.e. for $\rho\left(x_{1}, \ldots, x_{n}\right), \rho\left(A_{1}, \ldots, A_{n}\right)$, resp. this topology $\tau_{a t}$ is defined by

$$
p\left(x_{1}, \ldots, x_{n}\right) \rightarrow \|_{p\left(x_{1}, \ldots, x_{n}\right) \|_{\left(\gamma_{i}\right)}=\sum_{i \in J} \gamma_{i} \alpha_{i}, \ldots}
$$

or

$$
p\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left\|p\left(x_{1}, \ldots, x_{n}\right)\right\|_{\left(\gamma_{i}\right)}^{\prime}=\left(\sum_{i \in J}{\left.t_{i}^{2}\left|\alpha_{i}\right|^{2}\right)^{1 / 2}, 0,1}^{2}\right.
$$

where $\left(\gamma_{i}\right)=\left(\gamma_{i_{1}} \ldots i_{n}\right)$ is an arbitrary sequence of naturals.
2. Now we can formulate our results.

Theorem 1

Let $A(D)=P\left(A_{1}, \ldots, A_{n}\right)$ be a realization of the algebra $\rho\left(x_{1}, \ldots, x_{n}\right)$ on D.
If for any given sequence $\left(\gamma_{i}\right)_{i \in J}$ of nonnegative numbers there
is a sequence $\left(\varphi_{i}\right)_{i \in J} \in D$ with

then on $\rho\left(A_{1}, \ldots, A_{n}\right)$ the uniform topology τ_{D} coincides with the strongest locally convex topology $\tau_{s t}$: $\tau_{\Delta}=\tau_{s t}$. Here $\rho(s)$ is fixed for all s and such that

$$
\sum_{s} \frac{1}{2^{s(s)}}<1
$$

Proof:

1. $\tau_{D} \prec \tau_{s t}$ is trivial.
2. To see $\tau_{s t}<\tau_{D}$ we show that for any given sequence
$\left(\gamma_{i}\right)$ there is a $t^{P}\left(A_{1}, \ldots, A_{n}\right)^{\text {-bounded set } \mu \subset D}$ with

$$
\left\|p\left(A_{1}, \ldots, A_{n}\right)\right\|_{\left(\gamma_{i}\right)} \leq \sup _{\varphi_{i} \psi \in \mu}\left|\left\langle\varphi, p\left(A_{1}, \ldots, A_{n}\right) \psi\right\rangle\right|
$$

Let $\left\|\|_{\left(\gamma_{i}\right)}\right.$ be a given seminorm. Then by the assumptions of our theorem there is a sequence $\left(\varphi_{i}\right) \in D$ with the properties (i) - (iii). Put
$\mu=\left\{\hat{\varphi}_{s}=\sum_{j<B} \varepsilon_{j} \varphi_{j}, \quad \varepsilon_{j} \in C, \quad\left|\varepsilon_{j}\right|=1, \Delta \Delta J\right\}$.
This set is $t_{\rho\left(A_{1}, \ldots, A_{n}\right)}$-bounded (because of (ii), (iii)):

$$
\begin{aligned}
& \sup _{\varphi_{L}<\Omega}\left|A^{i} \hat{\varphi}_{A} \|^{2}=\sup _{\varphi_{A} \in \mu} K\left\langle\hat{\varphi}_{S}, A^{2 i} \hat{\varphi}_{S}\right\rangle\right| \\
& \leq\left|\left\langle\sum_{F} \varepsilon_{i} \varphi_{i}, A^{2 i} \sum_{T} \varepsilon_{+} \varphi_{\tau}\right\rangle\right|
\end{aligned}
$$

$\leq\left|\left\langle\sum_{\leqslant \in 2 i} \varepsilon_{j} \varphi_{j}, A^{2 i} \sum_{T \in 2 i} \varepsilon_{T} \varphi_{T}\right\rangle\right|+1\left\langle\sum_{j>2 i} \varphi_{j}, A^{2 i} \sum_{T>2 i} \varphi_{T}\right\rangle \mid$
$\leq\left|\left\langle\sum_{j \leqslant 2 i} \varepsilon_{j} \varphi_{j}, A^{2 i} \sum_{T \in 2 i} \varepsilon_{\tau} \varphi_{+}\right\rangle\right|+\sum_{i>2 i} \frac{1}{2^{g(i)}}<\infty$
For a given polynomial $p\left(A_{1}, \ldots, A_{n}\right)=\sum_{i+\tau} \alpha_{i} A^{i}$ choose:

$$
\hat{\psi}_{p\left(A_{1}, \ldots, A_{n}\right)}=\sum_{j<t} \varepsilon_{i} \varphi_{j}, \quad \hat{\varphi}_{p\left(A_{1}, \ldots, A_{n}\right)}^{i<\psi}=\sum_{j<t} \varphi_{j}
$$

with complex numbers ε_{j} such that

$$
\varepsilon_{j} \alpha_{j}\left\langle\varphi_{j}, A^{i} \varphi_{j}\right\rangle=\left|\alpha_{j}\right|\left|\left\langle\varphi_{j}, A^{i} \varphi_{j}\right\rangle\right|
$$

With the help of the assumptions (i) - (iii) we estimate:
$\left\|p\left(A_{1}, \ldots, A_{n}\right)\right\|=\sup _{\mu} \mid\left\langle\hat{\varphi}\left\{\hat{\varphi}, p\left(A_{1}, \ldots, A_{n}\right) \hat{\psi}\right\rangle\right|$
$\Rightarrow\left|\left\langle\hat{\varphi}_{p\left(A_{1}, \ldots, A_{n}\right)}, p\left(A_{1}, \ldots, A_{n}\right) \hat{\psi}_{p\left(A_{1}, \ldots, A_{n}\right)}\right\rangle\right|$
$=\left|\left\langle\sum_{\Delta<t} \varphi_{s}, \sum_{i<t} \alpha_{i} A^{i} \sum_{j<\tau} \varepsilon_{j} \varphi_{j}\right\rangle\right|=\mid \sum_{i<t} \alpha_{i} \sum_{d, S<t} \varepsilon_{j}\left\langle\varphi_{S}, A^{i} \varphi_{j}\right\rangle$
$\Rightarrow\left|\sum_{i<T} \alpha_{i} \varepsilon_{i}\left\langle\varphi_{i}, A^{i} \varphi_{i}\right\rangle\right|-\sum_{i=T}\left|\alpha_{i}\right| \sum_{s, j<i}\left|\left\langle\varphi_{s}, A^{i} \varphi_{j}\right\rangle\right|$
$-\sum_{i<+}\left|\alpha_{i}\right| \sum_{i>i}\left|\left\langle\varphi_{j}, A^{i} \varphi_{j}\right\rangle\right|-2 \sum_{i<i}\left|\alpha_{i}\right| \sum_{i>\beta>i}\left|\left\langle\varphi_{s}, A^{i} \varphi_{j}\right\rangle\right|$

- $2 \sum_{i<t}\left|\alpha_{i}\right| \sum_{j<i}\left|\left\langle\varphi_{i}, A^{i} \varphi_{j}\right\rangle\right|-2 \sum_{i<i}\left|\alpha_{i}\right| \sum_{i>i}\left|\left\langle\varphi_{i}, A^{i} \varphi_{j}\right\rangle\right|$
$\Rightarrow \sum_{i=t}\left|\alpha_{i}\right|\left\{\gamma_{i}+1+\sum_{\Delta, j<i}\left|\left\langle\varphi_{\Delta}, A^{i} \varphi_{i}\right\rangle\right|\right\}$
$-\sum_{i=t}\left|\alpha_{i}\right| \sum_{S_{i, j}<i}\left|\left\langle\varphi_{s}, A^{i} \varphi_{j}\right\rangle\right|-\sum_{i<t}\left|\alpha_{i}\right| \sum_{j>i}\left|\left\langle\varphi_{j}, A^{i} \varphi_{j}\right\rangle\right|$
$\pm \sum_{i<t}\left|\alpha_{i}\right| \gamma_{i}=\left\|p\left(A_{1}, \ldots, A_{n}\right)\right\|_{\left(\gamma_{i}\right)}$

Q.E.D.

Now we consider the strong topology τ_{g} and formulate the following theorem.

Theorem 2

Let $A(D)=\rho\left(A_{1}, \ldots, A_{n}\right)$ be a realization of the algebra $\rho\left(x_{1}, \ldots, x_{n}\right)$ on D.
If for a given sequence $\left(\delta_{i}\right)_{i \in J}$ of positive numbers there is a $y \in D$ with
(i) $\|\varphi\|^{2} \geq \delta_{\sigma}$
(ii) $\left\langle\varphi, A^{2 i} \varphi\right\rangle \geqslant \delta_{i}\left[\max _{j \propto 2 i}\left\{1,\left|\left\langle\varphi, A^{i} \varphi\right\rangle\right|\right\}\right]^{\pi(i)+1}$
then on the algebra $P\left(A_{1}, \ldots, A_{n}\right)$ the strong topology τ_{s} coincides with the strongest locally convex topology $\tau_{s t}$: $\tau_{s}=\tau_{s t}$.
In this theorem and its proof for $\tau_{s t}$ the seminorms $\|\cdot\|_{\left(\gamma_{i}\right)}^{\prime}$
are used.
Proof:

1. $\tau_{g} \prec \tau_{g t}$ is trivial.
2. $\tau_{g t}<\tau_{g}:$

We will show: For a given sequence $\left(\gamma_{i}\right)_{i \in J}$ of nonnegative numbers there is a $\varphi \in D$ with

$$
\left\|p\left(A_{1}, \ldots, A_{n}\right)\right\|_{\binom{2}{\gamma_{i}}}^{\prime 2} \leq\left\|p\left(A_{1}, \ldots, A_{n}\right)\right\|_{\varphi}^{2}
$$

for all $p\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{P}\left(A_{1}, \ldots, A_{n}\right)$.
This is the same as

$$
\begin{aligned}
& \sum_{i} \gamma_{i}^{2}\left|\alpha_{i}\right|^{2}=\left\langle\sum_{i} \alpha_{i} A^{i} \varphi, \sum_{j} \alpha_{j} A^{j} \varphi\right\rangle=\sum_{i, j} \bar{\alpha}_{i} \alpha_{j}\left\langle\varphi, A^{i+j} \varphi\right\rangle \\
& \sum_{i, j}\left\{\left\langle\varphi, A^{i}+j \varphi\right\rangle-\gamma_{i}^{2} \delta_{j}^{i}\right\} \quad \overline{\alpha_{i}} \alpha_{j} \geq 0
\end{aligned}
$$

This means that the infinite matrix M must be positive definite. In the main diagonal of this matrix M we have expressions of the form

$$
\left.\left\langle\varphi, A^{2 \pi \pi^{-1}(i)}{ }_{\varphi}\right\rangle-{T_{\pi^{-1}(1)}^{2}}^{2}\left\langle\varphi, A^{2 i} \varphi\right\rangle-\right\rangle_{i}^{2}
$$

and the whole matrix M has the following form:

$$
M=\left(\begin{array}{ccc}
\langle\varphi, \varphi\rangle-\gamma_{\pi^{-1}(0)}^{2} & \left\langle\varphi, A^{\pi-1}(1) \varphi\right\rangle & \cdots \\
\left\langle\varphi, A^{\pi^{-1}(1)} \varphi\right\rangle & \left\langle\varphi, A^{2 \pi \pi^{-1}(1)} \varphi\right\rangle-\gamma_{\pi^{-1}(1)}^{2} \cdots \\
\left\langle\varphi, A^{\pi^{-1}(2)} \varphi\right\rangle & \left\langle\varphi, A^{\pi^{-1}(1)+\pi^{-1}(2)} \varphi\right\rangle & \cdots \\
\left\langle\varphi, A^{\pi^{-1}(3)} \varphi\right\rangle & \left\langle\varphi, A^{\pi^{-1}(1)+\pi^{-1}(3)} \varphi\right\rangle & \cdots \\
\cdot & \cdot & \cdots \\
\cdot & \cdot & \cdots
\end{array}\right)
$$

Now we still show that under the assumptions of our Theorem 2 every finite dimensional principle minor $\left\|M_{i}\right\|$ is a positive one. By $\left\|u_{i}\right\|=\left\|\left(m_{k 1}\right)\right\|, 0 \leqslant k, l \leq 1$, we denote this principle minor where $m_{11}=\left\langle\varphi, A^{2 i} \varphi\right\rangle-\gamma_{i}^{2}$.
By decomposition we get

$$
\left\|M_{i}\right\|=\left(\left\langle\varphi, A^{2 i} \varphi\right\rangle-\gamma_{i}^{2}\right)\left\|M_{i-1}\right\|+R_{i}
$$

In R_{i} there are products with factors of the form

$$
\left(\left\langle\varphi, A \cdots{ }_{\varphi}\right\rangle-\gamma_{, \ldots}^{2}\right) \text { and }\langle\varphi, A \cdots \varphi\rangle
$$

Let z_{i} be the number of terms (sumnands) which one gets multiplying all these producte. Then we can estimate:

Let now

$$
\left|R_{i}\right| \leqslant z_{i} \prod_{j<i} \gamma_{j}^{2}\left[\max _{j<2 i}\left\{1,1\left\langle\varphi, A^{i} \varphi\right\rangle \mid\right\}\right]^{i+1}
$$

$$
\delta_{i}=3 z_{i} \prod_{i \leq i} t_{i}^{2}
$$

and φ the element corresponding to this sequence according to the assumptions of our theorem.
By induction we show: $\quad\left\|\mathbb{M}_{1}\right\| \neq 1$

$$
\left\|u_{0}\right\|=\langle\varphi, \varphi\rangle-\tau_{0}^{2} \neq 1
$$

is trivial.
Let $H M_{n} \| \Rightarrow 1$ for $0 \pm n \leqslant 1-1$.
Then the above decomposition of $\left\|M_{i}\right\|$ and estimation of $\left|R_{i}\right|$ lead to
$\left\|m_{i}\right\| \geq\left(\left\langle\varphi, A^{2 i} \varphi\right\rangle-\tau_{i}^{2}\right)\left\|M_{i-1}\right\|-\left|R_{i}\right|$
$\Rightarrow\left\langle\varphi, A^{2 i} \varphi\right\rangle-f_{i}^{2}-z_{i} \prod_{j<i} \gamma_{j}^{2}\left[\max _{i \propto 2 i}\left\{1,\left|\left\langle\varphi, A^{i} \varphi\right\rangle\right| \|\right]^{i+1}\right.$
$\pm\left\langle\varphi, A^{2 i} \varphi\right\rangle+1-3 z_{i} \prod_{j \in i} \gamma_{j}^{2}\left[\max _{j<2 i}\left\{1, K \varphi, A^{i} \varphi\right\rangle| \rangle\right]^{i+1}$
$\pm\left\langle\varphi, A^{2 i} \varphi\right\rangle+1-\delta_{i}\left[\max _{j<2 i}\left\{1,\left|\left\langle\varphi, A^{j} \varphi\right\rangle\right|\right\}\right]^{i+1}$
$+\quad 1$
Q.E.D.

Remark

Analogously to /4/ there may be given examples which show that Theorem 2 is valid for closed and also for non-closed realizations.
3. In the following we will demonstrate under which conditions on the operators A_{i} and on the domain D the assumptions of our Theorem 1 and Theorem 2 are fulfilled. For simplicity we restrict ourselves to the case $n=2$.
We start with the following lemma. For brevity we omit the proof.

Lemna 3

Let $A_{1}, \ldots, A_{n}, B \in \mathscr{L}^{+}(D), \sup _{y \in \mu}|\langle\varphi, B \varphi\rangle|=\infty$ where
$\mu=\left\{\varphi \in D: 1\left\langle\varphi, A_{i} \varphi\right\rangle \mid \leqslant 1,1 \leq 1 \leqslant n\right\}$. Purthermore let \mathcal{H}_{0}
be a subspace of D of finite dimension.
Then for $\mu_{0}=\mu \cap\left(\mathcal{H}_{0}^{\perp} \cap D\right)$ also

$$
\sup _{\varphi \in \mu_{0}}|\langle\varphi, B \varphi\rangle|=\infty .
$$

Now we can prove the following proposition.

Proposition 4

Let $A_{1}, A_{2} \in \sum^{+}(D),\left[A_{1}, A_{2}\right]=0$ on Δ. If for all i $\in J=N \times N$ $\sup _{\varphi \in \mu_{i}}\left|\left\langle\varphi, A^{4} \varphi\right\rangle\right|=\infty$ where $\mu_{i}=\left\{\varphi \in D:\left|\left\langle\varphi, A^{t} \varphi\right\rangle\right| \leqslant 1\right.$ for all $j<i\}$, then the assumptions (i) - (iii) of Theorem 1 are fulfilled, i.e. on $\rho\left(A_{1}, A_{2}\right)$ the uniform topology τ_{D} coincides with the strongest locally oonver topology $\tau_{8 t}$.

Proof:

We show by induction the existence of a sequence $\left(\varphi_{j}\right) \in D$ with
(1) $\left|\left\langle\varphi_{j}, A^{j} \varphi_{j}\right\rangle\right|>\boldsymbol{\gamma}_{j}+1+\sum_{i, \Delta<j}\left|\left\langle\varphi_{T}, A^{j} \varphi_{s}\right\rangle\right|$
(ii) $\left|\left\langle\varphi_{s}, A^{i} \varphi_{s}\right\rangle\right|<\frac{1}{2 \rho^{(s)}}$ for $j<s$
(iii) $\left\langle\varphi_{j}, A^{\psi} \varphi_{S}\right\rangle=0$ for $+<j, \Delta<j$

Let $\varphi_{\theta} \in D$ with $\left|\left\langle\varphi_{\theta}, \varphi_{\theta}\right\rangle\right| \geq \gamma_{\theta}+1$. If $\varphi_{j}, j<t$ are
chosen then put

$$
\mathcal{H}_{\tau}=\mathcal{L}\left\{A^{A} \varphi_{j}, s \leqslant \tau, j<+\right\}(\mathcal{L} \text { means "linear span") }
$$

and take $\varphi_{+} \in D_{+}=D \cap \mathcal{X}_{+}^{+}$so that
and

$$
\left|\left\langle\varphi_{+}, A^{+} \varphi_{+}\right\rangle\right|^{\top}>\gamma_{+}+1+\sum_{i, j<+}\left|\left\langle\varphi_{i}, A^{+} \varphi_{j}\right\rangle\right|
$$

$$
\left|\left\langle\varphi_{+}, A^{A} \varphi_{+}\right\rangle\right|<\frac{1}{2^{\rho(t)}}
$$

$$
\text { for } s<\tau
$$

This is possible because of our asaumptions and Lemma 3 (applied to $\mu_{+} \cap D_{+}$).
It is easy to see that (iii) also holds by the construction above.

Remark 5

From the proof of Proposition 4 it can be seen that the commutativity of A_{1}, A_{2} is not used (as in Theorem 1, too!). Hence, if A is an arbitrary $0 p *$ algebra with algebraic basis $\left\{B_{1}\right\}$ and gup $\mid\left\langle\varphi, B_{k} \varphi\right\rangle=\infty$ with $\mu_{k}=\left\{\varphi \in D: K \varphi, B_{i \varphi}\right\rangle \mid=1$, $i<k\}_{\text {then }} \tau_{g}=\tau_{s t}$ on Q.
The analogous proposition for the strong topology reads as follows:

Proposition 6

Let $A_{1}, A_{2} \in \mathscr{L}^{+}(D),\left[A_{1}, A_{2}\right]=0$ on $D, D\left[t_{S\left(A_{1}, A_{2}\right)}\right]$ complete. If for all $i \in J=N \times N \sup _{y \in \mu_{4}}\left|\left\langle\varphi, A^{2 \ell} \varphi\right\rangle\right|=\infty$ where $\mu_{i}=\left\{\varphi \in D: K \varphi, A^{i} \varphi\right\rangle \mid \leqslant 1$ for all $\left.j \propto 2 i\right\}$ then the assumptions (i) and (ii) of Theorem 2 are fullfilled, i.e.
$\tau_{s t}=\tau_{s}$ on $P\left(A_{1}, A_{2}\right)$.

The proof is similar to that of Proposition 4. The element φ is constructed as $\varphi=\sum_{j} \varphi_{j}, \varphi_{j} \in \mu_{j}$. To be sure that $\varphi \in D$ the assumption " $D\left[t_{\rho}\right]$ complete" is used.

The following proposition gives more transparent conditions which guarantee that $\tau_{\infty} \Rightarrow \tau_{s}=\tau_{s t}$ on $\rho\left(A_{1}, A_{2}\right)$.
To formulate this result we use the following (may be somewhat "non-standard") definition.

Definition 7

Let $A_{1}, A_{2} \in \mathscr{L}^{+}(D),\left[A_{1}, A_{2}\right]=0$ on D. By the common spectrum $\sigma\left(A_{1}, A_{2}\right)$ in the strong sense we mean the following set:

$$
\sigma\left(A_{1}, A_{2}\right)=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in R^{2}: \exists\left(\varphi_{i}\right) \in D,\left\|\varphi_{i}\right\|=1,\right.
$$

$$
\left\|\left(A^{\top}-\lambda^{\top}\right) \varphi_{i}\right\| \quad \longrightarrow 0 \text { for } i \longrightarrow \infty
$$

$$
\text { for all } t \in \mathbb{N} \times \mathbb{N}\}
$$

$\left(T=\left(r_{1}, r_{2}\right), \quad \lambda^{\top}=\lambda_{1}^{r_{4}^{4}} \lambda_{2}^{r_{2}}\right)$.
Remark, that the sequence $\left(\varphi_{i}\right)$ depends only on λ but not on +1

Proposition 8
Let $A_{1}, A_{2} \in \mathscr{L}^{+}(D),\left[A_{1}, A_{2}\right]=0$ on D. Further suppose that $\sigma\left(A_{1}, A_{2}\right)$ is such that for any $\alpha, 0<\alpha<1$ there is a β,
$\alpha<\beta<1$ and between the curves $\lambda_{2}=\lambda_{1}^{\alpha}$ and $\lambda_{2}=\lambda_{1}^{\beta}$ lies an unbounded subset of $\sigma\left(A_{1}, A_{2}\right)$. Then
(i) on $P\left(A_{1}, A_{2}\right)$ the uniform topology τ_{D} coincides with the strongest locelly convex topology $\tau_{s t}$.
(ii) If moreover $D\left[t_{\rho\left(A_{1}, A_{2}\right)}\right]$ is complete, then on $P\left(A_{1}, A_{2}\right)$ the strong topology τ_{σ} coincides with the strongest locally convex topology $\tau_{s t}$.

Roughly speaking this Proposition 8 says that $\tau_{D}=\tau_{s}=\tau_{B t}$ if $\quad\left(A_{1}, A_{2}\right)$ is rich enough.
In the proof we use the following lemma for which the proof is omitted.

Lemma 9
(i) For any $i=\left(i_{1}, i_{2}\right) \in J$ there are $0<c_{1}<1, V>0$ with

$$
\begin{aligned}
& \lim _{\lambda_{1} \rightarrow \infty} \lambda_{1}^{i_{1}+\rho i_{2}-\vartheta}=\infty \\
& \lim _{\lambda_{1} \rightarrow \infty} \lambda_{1}^{j_{1}+\rho j_{2}-\vartheta}=0 \quad \begin{array}{l}
\text { for all } j<i \text { and all } \\
\text { fixed } \rho \in\left(\varepsilon_{1}, 1\right) .
\end{array}
\end{aligned}
$$

(ii) For any $i=\left(i_{1}, i_{2}\right) \in J$ there are $0<\varepsilon_{1}<1, \mathcal{v}>0$ with

$$
\begin{aligned}
& \lim _{\lambda_{1} \rightarrow \infty} \lambda_{1}^{2 i_{1}+2 \rho i_{2}-2 v}=\infty \\
& \lim _{\lambda_{1} \rightarrow \infty} \lambda_{1}^{j}+\rho j_{2}-2 v \\
& =0 \quad \begin{array}{l}
\text { for all } j \propto 2 i \text { and all } \\
\text { fixed } \rho \in\left(\varepsilon_{1}, 1\right) .
\end{array}
\end{aligned}
$$

Proof of Proposition 8:

(1) Let $\left(\lambda_{1}, \lambda_{2}\right)=\left(\lambda_{1}, \lambda_{1}^{\rho}\right) \in \sigma\left(A_{1}, A_{2}\right), \lambda_{1}>0, \rho>0$.

Then there is a sequence $\left(\varphi_{1}(\lambda)\right)=\left(\varphi_{1}\right)$ with $\left\|\varphi_{i}\right\|=1$ and

$$
\left\|\left(A_{1}^{r_{1}} A_{2}^{r_{2}}-\lambda_{1}^{r_{1}} \lambda_{2}^{r_{2}}\right) \varphi_{1}\right\| \quad \rightarrow \quad 0 \quad \text { for } i \longrightarrow \infty .
$$

Therefore

$$
\left|\left\langle\varphi_{1},\left(A_{1}^{r_{1}} \mathbf{A}_{2}^{r_{2}}-\lambda_{1}^{r_{1}} \lambda_{2}^{\mathbf{r}_{2}}\right) \varphi_{1}\right\rangle\right| \leqslant \varepsilon \quad \text { for } \quad i \neq 1_{0}(\lambda, \varepsilon)
$$

Hence

$$
\lambda_{1}^{r_{1}+\rho r_{2}}-\varepsilon<\left\langle\varphi_{1}, A^{+} \varphi_{1}\right\rangle\left\langle\lambda_{1}^{r_{1}+\rho r_{2}}+\varepsilon\right.
$$

or if we divide by $\lambda_{1}^{v}, \downarrow>0$:
(3) $\lambda_{1}^{r_{1}+\rho r_{2}-v}-\frac{\varepsilon}{\lambda_{1}^{\psi}}<\left\langle\frac{\varphi_{i}}{\lambda_{1}^{\nu / 1}}, A^{r} \frac{\varphi_{i}}{\lambda_{1}^{\phi_{2}}}\right\rangle<\lambda_{1}^{r_{1}+\rho r_{2}-\vartheta}+\frac{\varepsilon}{\lambda_{1}^{v}}$.
(4) $\lambda_{1}^{\theta_{1}+\rho^{\theta_{2}}-v}-\frac{\varepsilon}{\lambda_{1}^{\psi}}<\left\langle\frac{\varphi_{i}}{\lambda_{1}^{\psi / 2}}, A^{\hat{s}} \frac{\varphi_{i}}{\lambda_{1}^{j_{2}}}\right\rangle<\lambda_{1}^{\theta_{1}+\rho^{\theta_{2}}-v}+\frac{\varepsilon}{\lambda_{4}^{v}}$.

Using Lemma 9 we can find $\rho>0, \mathcal{v}>0$ such that in (3) the left-hand side and the right-hand aide go to infinity while in (4) the corresponding expreamions go to zaro if $\lambda_{1} \longrightarrow \infty$.

Moreover the asaumptions of Proposition 8 and Lemma 9 mean that
ρ and \mathcal{V} can be chosen such that $\left(\lambda_{1}, \lambda_{1}^{\varphi}\right)$ belongs to an unbounded subset of $\sigma\left(A_{1}, A_{2}\right)$ which lies in the strip

$$
\lambda_{1}^{\alpha} \leqslant \lambda_{1}^{S} \leqslant \lambda_{1}^{\beta}, \quad 0<\alpha<\beta<1, \quad 0<\lambda_{1}<\infty .
$$

Therefore, for any fixed $\varepsilon>0$ (for example let $\varepsilon=1 / 2$) we can choose a sequence $\left(\psi_{k}\right)$ such that

$$
\begin{aligned}
& \qquad\left|\left\langle\psi_{k}, A^{+} \psi_{k}\right\rangle\right| \geq k \\
& 0 \leq\left|\left\langle\psi_{k}, A^{s} \psi_{k}\right\rangle\right| \leq 1 / 2 \quad \text { for all } s<+ \\
& \text { i.e. } \left.\left(\psi_{k}\right) \in \mu_{+}=|\varphi \in\rangle:\left|\left\langle\varphi, A^{s} \varphi\right\rangle\right| \leq 1 \text { for all } s<+\right\} \\
& \text { and } \sup _{k}\left|\left\langle\psi_{k}, A^{\top} \psi_{k}\right\rangle\right|=\infty \\
& \text { oonsequently: } \sup _{\psi \in \mu_{+}}\left|\left\langle\psi, A^{+} \psi\right\rangle\right|=\infty . \\
& \text { (The vectors } \psi_{k} \text { are appropriate } \lambda_{1}^{-\nabla / 2} \varphi_{i}\left(\lambda_{1}\right) \text { for } \lambda_{1} \longrightarrow \infty, \\
& \left(\lambda_{1}, \lambda_{1}^{\rho}\right) \in \sigma\left(A_{1}, A_{2}\right) .
\end{aligned}
$$

Thus we have proved that the assumption of Proposition 4 is fulfilled, i.e., $\tau_{D}=\tau_{B t}$.
The proof of (ii) is quite analogous and uses Lemma 9 (ii).
Q.E.D.

Acknowledgement

I wish to thank Prof. G. Lasener and Dr. W. Timmermann for helpful remarks and discussions. The author is grateful to the Directorate of the Laboratory of Theoretical Physics, JINR, Dubna, for kind hospitality.

References

1. R.M.Brooks. Some Algebrae of Unbounded Operators, Preprint, Dep. of Math., University of Utah, Salt Lake City, Utah 1971.
2. G. Lassner. Topological Algebras of Unbounded Operators, JINRPreprint E5-4606, Dubna 1969, Rep.Math. Phys. 3(1972), 279-293.
3. 9.Lasener. O*-Topologies on the Test Function Algebra, Publ. Dep.Math. Lyon 12(1975),25-38.
4. -, B.Timmermann, The Strong Topology on the Algebra of Polynomiale, JINR-Preprint E2-9609, Dubna 1976, Rep, Math. Phys. 11 (1977), 81-87.
5. K.Schmudgen. Uniform Topologies and Strong Operator Topologies on Polynomial Algebras and on the Algebra of CCR, Rep.Math. Phys. 10(1976) 369-384.

Received by Publishing Department on June 28, 1977

