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In this paper we continue the investigations on ideals in alge-
bras of unbounded operators begun in /6/ and /7/ in a more systema-
tic way. The first section deals with the description how one can
get ideals in £* () starting with ideals in B ("3¢). We give the
definition of two types of ideals: one contains only bounded opera-
tors, to the other belong also unbounded operators.

In section 2 some algebraic properties of ideals Ji (D) de-
rived from the well-known symmetrically normed ideals J§ are inve-
stigated.

Topologies in such ideals are introduced in the last section.
There are also mentioned some results connected with topological
properties of these ideals.

1, PRELIJMINARTES AND BASIC DEFINITIONS

We use the following notions and notations (cf. /1/,/2/). For a
dense linear manifold ¥ in a separable Hilbert space # we denote
by &£'(I) the # -algebra of all operators A (bounded or not) for
which AB< B and A* D D « The involution is given by A —» A'=
= A"1® ., &' (D) defines a natural topology t on the domain I
given by the directed system of seaminorms &  —> AN for all
Ae &* (D). &£* (D) is said to be closed if JLtl is a complete

space,or equivalently, if 3 =A/> E)i &) . L£'(D) is said to de
(¥ Add

selfadjoint if B = Q‘E (A" ). By F (B) we denote the set of
¢

finite dimensional operators of &£*' (¥). F (¥ ) is the two-sided
minimal % -ideal of £* (¥ ).



For a completely continuous operator T ¢ ® (%) by (sn(T)) we de-
note the sequence of s-nuabers, s](’[‘) > s2(T) 2 ... (each number

repeated according to its aultiplicity). & (.) stands for asymme-
tric norming function and d’§ () or simple g denotes the cor-
responding symnnetrically-norned ideal with the nora W W3 given by

NTlg = g (s, (D),5,5(T),.us )

The ideals fo. (), J, (R), p*1, are special cases of
such syanetrically-noramed ideals, For details the reader may consult
/1/. Now we give a general procedure to generate ideals in £* (&).
Definition 1

Let 3 = J(3#) be a two-sided # -ideal in ® (), By T(I) we
denote the set

J(T) = {TeY(B): XTY ¢ 3 (R) for all X,¥ ¢ &' (H))
(Clearly, to be more exact, we had to write: XTY bounded on ¥ and
XTY ¢ J (¥). For simplicity let us use the notation mentioned above)

Lenma 2

i) The set J (8) given in Definition 1 'is a two-sided x-ideal in
L* (7)), called the corresponding ideal to ] (), I(DH) <
J(®).,

ii) If LY (X)) is selfadjoint, then from XTY € J (R) for all X,Ye
¢ LT(D) it follows T e £°(T).

Proof;

i} The linearity is clear, the x-property follows because XTYe¢ J('3)
iplies (XTY)* = ¥*T"x* = Y'T*X* (when restricted to & ) also in
3 (%), but this means T'¢ I (U ). Let A,De &£ () be arbitrary
overators, then from X(ATB)Y = UTV, U,V ¢ X" (), it is seen that
ATD € 3 (8 ), Fromn X =Y = T it follows Te J(3) if Te (D),
i1)ATY € 3(D) means especially XT and TY bounded for all X,Ye £*(¥)
and dense defined, Then Lemma 1.1 from /4/ gives T*g < X (Y*)
for all Y ¢ £%(J ), but this means T*# < I ( as $* (I ) is self-
adjoint), A slight generalization of /4/,Lemma 1.2 shows that
T3® < B(X) for all Xe £* (D), i.e. TR<DT . S0, T and T* map
¥ in 8 , hence T ¢ &"(D).

<.E.D,

Remark 3
i) If B =& , then it is well-known /2/ that LY (3) = B(R)
and consequently J(B) = J (). In general it is not so that
() = L* ()N A(R) (to such a reading the notation I (¥ )
could lead). For example, if £* (1) contains unbounded operators,
then T € 2*(®) A B(HR) but, of course, I§ B (D).
ii) As it can be seen from the proof of Lemma 2 it is not necessary
for J(3) to be a x -ideal to obtain an ideal J(¥ ) in the men-
tioned manner. It would be sufficient if J(R) were a linear x-
space, But this seems to be too general, because we like to atart
with "well-known” substructures of B () (as 3 (X)) to get
substructures of £* (I ) which have also good properties.

The following lemma shows, roughly speaking, that in £%(3)
there are many distinct ideals if the operators are not "too unboun-
ded".

Lemma 4

Let £* (D) be such that there is an Ne 2*(D ) with N ' ¢
¢ 3 (%) for some ideal of & (). Then J(T) = '} (D) for all

ideals 3 with 1 () « '} (R).

Proof':
It is enough to show J (¥) = ® (I ), But this follows from XTY =

= xTY8N"' = BN"', where T ¢ (B ), i.e. XTYN is bounded, consequent-

1y BN 'e I (&). Hence Te 1 (D).
Q2.E.D.

Next we define ideals which contain glso unbounded operators

‘(by ideals in what follows we always mean two-sided » -ideals).

Definition 5
Let J(®), '} (R) be two ideals in W (&), 3 (J), '3 (I)
the corresponding ideals in £* (I ). Put
M3 (D), 3 (D)) =: (I ,} ) ={Aed*(D): AT, A'Te J (D)
for all Te B (D)} .

Now we collect some simple properties of these sets, then we gi-
ve an example,



Lemna 6

i) 7 w( 3 (B), } (B)) is an ideal in LY (Db

i)y If 3(w) $(R), sow( I ,F) L (D).

iii) If 3(%e) 5,(R), sow( 3, ,19 ) (3, ,3 ).
I 7§ (e) 1.(%), so AT ,3,) Me3 ,%,).

]

in oo
in 0

Proof:
11) and iii) are trivial consequences of the definition.
i) The x —property and linearity are clear., Let X e £"(D), A€
¢l(3 ,% ), Teld(H), then (AX)T = AS with 5 e 3(B), hence AS€
¢ 3 (D). AT = x"A'T = "R with Re 3 (5 ), hence X'Re 3 (D).
Therefore AX ¢ #( 3 , %} ) end analogously XAeu( 3 ,3% ).

: Q.E.D.
We state an equivalent characterization of #i( 1 , ‘3, ). The simple
proof is omitted.

Lemna 7
WD, ) ={A ¢ 27(D): XaT, TAX € (D) for all Xe 2 (D) and
all Te¢ 3(D)Y.

Next we give an exaunle which shows that M( 3 ,’} ) can contain al-

so unbounded operators.

Example 8

Let D = /;\ D(@EYM, R=Rr {(rn),( %.,) % 2 I a diagonal operator
such that sup r =<0 but (rn) does not increase "too fast"; for

example, ¥ is for all k nq‘t nuclear. Regard k( oo (8), f, (I )).
Let (r, ) be such a subsequence of (r ) that 2 r* <o, The

1 !
diagonal operator A = A{(an),( &)} with
r ifi=n
% ={onl ifi# nl
1
belongs to M( o (B), F,(D)). To see this, remark that B =
= }3{(bn),(ép,l )Y with

r if i = n
b.l={“1 1

0 if 1 # oy
is nuclear and for all natural k: RE = BRkHA. Let C € ool B ), then
REAC = B(RX*'AC) is nuclear for all k because RXT'AC is bounded “

(even completely continuous). -For an arbitrary { € &£%(T ) the closed
gravh theores gives | AACH N & K HX"AC &\l for all ¢ ¢ T , suitable m
ané constant K. 3Because the operator on the right-hand side is boun-
ded this estimation is valid for all & ¢ & , The nuclearity of
R®AC then iaplies the nuclearity of XAl. Therefore, {(AC)Y = XAD ,
Dé fo(T) is nuclear for all X,Y € L* (T ), Ce& oo (D). This means
AC € J, (D), hence A = "¢ L(dou(D), £,(D)) and 4 is unbounded.
Qe BsDs

Remark 9

There is a lot of possibilities to introduce LK- or IK* -topolo-
gies in Y (D) and w( J , 4 ). How to do this we demonstrate in the
following section for J (D) in the case where I (D) = 0°§ (D).
Some further topologies on .f§ (3 ), topologies on .( 3 , P ) and
duality properties of these ideals will be investigated in a forth=-
coming paper,

We start with the consideration of algebraical properties of ofg (J).

2. THE IDEALS ':fi (3) (ALGEBRAICAL PROPERTIES

In this section we investigate algebraical properties of the
iceals B (D), L3 (B), corresponding to ® (®) and to the syn-
metrically-normed icdeals (F§ (R) <« ©(R). As mentioned in /3/,/4/,
/5/ the ideal &, (D) plays a key role in the investigation of phy-
sical observables-states-systems, other ideals are connected with
the classification of domains of operator algebras.

The main point of this section is to give an equivalent charac~
terization of ,j’§ (B ) which can be better handled than that given
in Vefinition 1, For the remainder of this paper we suppose &% (T )
to be selfadjoint. Let us mention the following fact used in the
sequel, If T € f5 (%) and T =(T1-T2) + i(T3-T4) is the decomposition
of T such that TJ. 20, (T]_TQ) = (1/2)(T+T*), (I‘3-T4) = (1/21) »

, 1234 (use W3 ng =llS'l\§), Wwore—

o (T-TH™ £
(T-T"), so uTJ.u§ WTug
over, A & f3(#), HUDvY =UAvh for all ¥ € 'R implies Be I (R)

and W 3ug % llAbg . We begin with a provosition on ® (B ) and
doo (D) which we use permanent in the sequel. Then the main lemme
will be proved which is the base of the equivalent characterization

of §g (I).



Proposition 10

1) IfO+£T=2T"eR(D), then T e R (V) for all &« > O, .doreover,
for Te £*(3) any of the following equivalent conditions is
equivalent to T &€ 8 (B ):
a) TA, T*A bounded for all A €& L£7(D)
b) AT, AT™ bounded for all A ¢ £*(D)
)T eR(R), THcD , T*"H D.

i1) IF 0 2 T = T* €l (D), then T e Lo (D) for all « > O, .doreover,
for Te £*(2 ) any of the following equivalent conditions is
equivalent to T & Feo (D ):
a) TA, T*A completely continuous for all A € £%(D)
b) AT, AT™ completely continuous for all 4 € £%( D)
) Te (R, TR D ,T*"R <D,

Proof':

i) Fron /4/ (Lemmata 1.1 and 1.2) T e R (D) implies T#< D , T*X
< B . The selfadjointness of &£% (D ) and the Kato-Heinz-inequali-
ty /8/ imply that fron T = T* 2 0, T# =T one can conclude T™ 3
< D for all & > 0. But then /4/ gives us T*e®(T ) for all x>0,
This proves the [irst assertion. Once again referring to /4/ we ha-
ve the fellowing implications: T¢ ¥ (D) —= a),b),c); a) «—>b)
(by the selfadjointness of £* (3)); a) and b) —» ¢c); c)—>a)

and b), Hence it remains to see that ¢) — T € (L), Because T
and T* map ® in D we may suppose T = T®, JMoreover, the decom-
position T =T - T_ leads to operators T _ and T_ wh%;:g also :??g
¥ in ¥ ., Hence our first assertion implies that T, and T_

map ® in D and consequently AT B = (ATl/z)(Tl/2B) and AT B are
bounded operators for all 4,3 ¢ £ (¥ ), that means ATB is bounded.
Therefore T ¢ V(D).

ii) Remark that 0 £ T = T* e £,(%) implies T® ¢ Jo. (3) for all
o > 0. All considerations are similar to those of 1). To see the

implication ¢) —> T € fou (D ) suppose again T 2 0, but then

A8 = (a7"/3) 13 (1'/%8) = ur'/7v, where U,V are bounded by i)
and /3 is completely continuous. Hence ATB € fao (R ) which means
T € (D).

<eE.D.

itain Lemaa 11

Let A€ £'(B), © £ T=T* ¢ L (D). For fixed §y € R(T)® N(T)
the function f(z) = <&, TZAT1-Z"\' > fulfils on the strip 3 =
={z = x+iy: 0 € x £ 1} the sssusmptions of Hadamard's three line
theorem /9/, namely
i) f(z) is analytic in the interior of 3

ii) f(z) is bounded on S
iii) f{(z) is continuous on 3.
Proof:
. _ iy _
Let us premise some remarks, T = >\“< $, 57 $, and T =

=2 3% <o, > % ioply that for all y: N (T) = & (1Y), R(D)=

= R(le), Y is a partially isometric operator mapoing R (T) iso-

metrically onto itself, Moreover, T° = Z'(‘\’n.‘?‘\’n is the projec-
tion P on R (T) (the closed subspace spanned by (&, )). Now we go
on to the proof of the Lemma,

1

i) For any 0 < € < 1 the function f(z) = <& , T ¢pr'~ 2>

with B = T8 A (which is bounded according to Proposition 10) is

‘analytic in the strip { z: €<x<1-¢€¢} , hence f(z) is analytic in

the interior of the strip S.
ii) The boundedness of the function f(z) can be seen as follows.

£z = 1<q, TTRAT' 0L o) 2 Ng ) T¥AT X iyt We show
sup {\\TXATI_x h: 02x%1 Y<°o | sup || T*AT W ¢ max { sup \\TXAT,_X\\,

o#Xx 112

sup \\TxATl'xﬂ} . But sup eT%ar! ¥y < sup NTHX sup paT! ¥y ¢
Ot X 442 O&kXGaiie Ot X4 iz

O Xaify
= sup UTHX sup WA/ 414X eyru™¥4 g ar' <o,
The estimation of the other term follows analogously. Thus, ii) is
proved,
iii) It is easy to see that

(1a) ™ — 1'% ( for y —>y, )
(i) ¥ — 7 ( for x — 0 )
(1le) ™ — P ( for x —» 0 )

in the sense of strongly convergence on ® . Clearly, according
to 1) we must show the continuity of f(z) only on the boundary of



the strip 5, say for x = O ( the case x = 1 is got by syammetry). We

estimate | £(z) ~ f(i.yo)l for fixed Yy i.e.

<& , (TT¥ar!*r71Y - plYoparr=i¥o) >\ . Using the identity

pLYp¥ar! X171 _ pl¥oparrmiVo = (plypXar!=Xp-1¥ | plyopXapl-xp-iy),
1-x_ -1y

+ (Tor¥ar ' %7 - 7parT™ Y0 ) one gets | f(2) - fliy )\ & ' ‘

(2)  £1<d, (PYor*ar'*r 1Y _ ¢l¥oparr=iVo) ny>\ 4

(%) +\<&, (PTRAr! XY _ pl¥opXpp!-Xpmiy) . 54
First we show that (3) — O asy — y, .

(3) = V< (rY CrmWoye | (rXar' N1 iV £ w (oo gy,
\\TXAT‘-XW Y . Thus ii) and(1a) give the desired result. Now we
show that (2) — C as y —> Yo » X —> 0. Simple manipulations
give (2) £ 1< T o | par(r or Woyml+ \r Vo g, (r¥ar! X
- PA’I‘)T_iy'\irN . The first term tends to zero because

1< (Aan* T V0 g (TWor Yoy mst £ g (r Yooy g L
The second teri can be written as \(T_iyo &, (T*AT' "% & T¥ar -

- TAT = PAT)T W g>| £ \¢ (T%A)* 1~ Y0 &, (T X V>t .

+ 1 P-TT Vo &, aTT" W51 ey (1¥a)* "o W(r'¥ - 7).
c TN e-T)T Y0 @ UAT U UT T w | . Using (1), (1c)
this expression goes to zero if we show that W (T*a)* T'iyo du ¢y

for all x, O £ x £ 1, Now it will be used that & € R(T)® N (T),1i.e.
= b+ b, P eQUT), & el (T), It is B A*T T Yo g4 =

= AT* T Yo e, 1t = 1A' T*T"YOT X 1t for some A€M because $ =
=TX 4 so WA*T*T™ ™o &\ £ UA"TU W T*WAWXW . Hence the conti-
nuity is proved. Q.E.D.

From this Lemma we deduce an important result. Before doing this,
let us remark the following fact which can be proved by simple
estimations. Let ® be an arbitrary dense menifold in % , ¥ (%)
c LY (P), T < B(R) the corresponding sets of all finite di-

mensional overators contained in £* (&), B (X ) resp.. If I 1

is a symmetric norming function, then F (D) is w %3 -dense in .

F . Now we prove the equivalent characterization of £§ (D). 3
10

Proposition 12

Let & be a symmetric norming function, then
Jp(D) ={Te £(D): AT, AT " € L5(R) for all A€ £ (D)},

The case where U Mg is equivalent to the operator norm, i.e.dg ()
= foo (¥ ) was regarded in Proposition 10, Thus, let u W3 be non-
equivalent to the operator norm. The selfadjointness of &% (D)
implies again {T € £* (D ):AT,AT* ¢ £5 (R) for all 4 € £¥ (D ) =
={Te £*(D): TA,T*A € ofg (R) for all A€L* (D)) . doreover,
as in the proof of Proposition 10, AT,AT* € g (%) implies that
the decomposition T=(TI-T2)+i(T3-T4), Tj-‘-O, j=1,2,3,4 leads to ope-

rators Tj with ATJ. € fg (R), too. Consequently, we can restrict

ourselves to operators T = T™ 2 0 and must show that AT & Jg (8)
implies ATD € g (®) for all 4,P € £%(D). Let D = R(TIeN(T),
n

F € ¥(¥) arbitrary, F = 7_ Biu<@ere > X1 (@ )y (X)) orthonoraal
=
systems in B' . Consider the function

=2,

g(z) = Tr T?AT ~2F  on the strip 5 = { z=x+iy: 0%x%1, - < y <oo],

n
Because Tr TZAT'~%F = 2 Bul8y s TZATI_Z'XK> y &(z) is the 1li-
k=1

near combination of n functions satisfying on J the assumptions of
Lemma 11, hence for g(z) the three linetheorem is avalable. Using
F = (FI'FZ) + i(F3—F4) on the line x = O we have the estimation

toe ?¥arrYpr e 2 dr AT r 1 = > NTYATT Vi Wl
‘]=

= 4 WATHy "UF g ( because KT = WT™*Y W = 1). Analogously, on
the iine x = 1: 1 Tr TATT™ R £ 4 Talg W¥lgs . Here " is
the synmetric norming function conjugate to § and the estimations

follow from the corresponding properties of % and % (cf./1/).
The three line theorem now gives:

2 172

tee 12120 | £ (4 naTig VEIg) Y2 (4 nTaNg U F )

£4UFlge (MATWg +UTANg ). Thus,

11



1/2..1/2
L Tr T/ “AT'/ °F\
H;gg') T T e— F“E' £ 4(|\AT|§ +\lTA\\§ ) <= , Together

with the renark before Proposition 12 and /1/ (chap,III,Lemma 12,1)

1
/2412 ¢ 35 (%) for all A € £(D).
1/2,01/2

this estimation gives us

1/2
Then (7' B)(ATVz) € f3 (#£) and consequently, AT

e 5 (¥) for all 4,3 € £'(B).

(T'"“B) e

<.E.D.

This characterization of .f§ () will be useful for the investiga~
tion of topologies on (- ,-) and in duality-considerations. We re-
mark that the above result can be obtained at least for «, (5 ) and
&, (D) by direct computation without using interpolation methods.
rurthermore, the proof of Proposition 1?2 gives us the possibility to
derive elements of a functional calculus for the ideals d’P (D)
analogous to the case of J, (#). We collect some results in the
following Proposition,

Proposition 13
Let
i) If

.

€ Fo (D), so e Fo (D) for all naturals n.

1
T

i) IFC2T=T"ef(D), so T¥e ¢, (F) for alla> O.

i) If 5 eofp(D), T €d, (I), so 3T ¢ . (D), 1/r = (1/p)+(1/q).

£ pcoe

Proof:

i) Let n 2 2, then it is for AT"B = aTT"™2

Tn—?

T3y AT,TB € £, () and
ESP,n_l (¥ ) in consequence of the well-known properties of the

ideals e (R). Thus ATD € fq () with 1/q = (1/p)+(1/p)+(n-2/p)=

= n/p. Therefore, i) is proved.iii) follows analogously.
ii) To prove this, we renark that C&p=T% €f (B5) implies
[

1/2,+,.1/2
TCATAT e P () for all A€ LY (D) (see the end of the proof
nliz, )

of Proposition 12), Consequently, T''*A and AT Yt € Lo (B), i.e
oAtz . 2-n ’ e
EJ,_P (d), and general: T EJ,p(B). Hence, let « > O be

arbitrary, « = (2/2%) + @ for some natural n and @ > O. Then
: -n - |
AT= 3 = (AT%" )T® (727" 9) belongs to dq {(3) with 1/q = (B/p)

© (27%0) + (2T/p) = 4/p, tiel T €y (D).
Q.2.D.

12

We conclude the investigation of algebraical properties with a
result which can be roughly expressed as follows: The orthonormal
system occuring in the representaticn T = Z Anl&n, > ¥, of an ar-
bitrary operator T € dos (D) are the same for all ideals gz (D).
Or in other words: if Te Jw(X), then only the decrease of the
sequence ( A,) decides whether T ¢ d’!(ﬁ) or not. sore precisely:

Lemna 14

Let T = ZAn{ ®n, >%% € £o(8), T 2 0. Then there is a con-
tinuous function f with f(x)> 0 for x>C such that

£(D) = 2 £(0n) <dny - >&n e A(D).
Proof:
It is easy to see that there is a continuous function g with the
properties: g(x) >0 for x>0 and S g A.)<ee , Then f with f(x)=
= xg(x) is the desired function. To see this we show Af(T) nuclear
for all A€ £°(B). Tt is 2 _NAF(T)&. W\ €3 g(,) WATH. N &
£ 0% gla,)<ee since AT € $(T), i.e. AT bounded, Therefcre,

the bounded overator Af(T) is nuclear.
Q.E.D.

3. TOPOLOGIES ON g (J)

In this section we introduce some topologies on o3 (¥ ). They
are more or less suggested already by the ideal structure. Let us
remark that there are many possibilities for defining a topology
on these ideals and the choice of the tonology depends on the pro-
blem we are dealing with. In a forthcoming paper where we will con-
sider the ideals 4( , ) and questions concerning duality some other

topologies will be useful.

Definition 15
Oon B(I), ‘Pi‘ (D) the following topologies (given by genera-

ting systems of seminorms) are introduced:
T r fp(DI>T — WTU, g =WTAllg for all Ae £7(D)
NATWg for all ae £¥(D)

T LH(DIaT — T3
Tz :  fp(B) 3T —=  max(WATNg , UTaNg) for all Ac £7 (D)
¥ FR(D) 3T —> UTW, (5= WATBNg for all 4,3 € L(D).

13



Cn B(I) the saae seainoras as on e (D) are used.
‘he followinz Lemna suunarizes some sizple properties.

Lemma 16

i) All systems of sezinoris are directed; t;<t§<t§ ,'r'f§<'t§ ¥,
1l) The ideals equipped with these topologies become locally convex
algebras with separately continuous aultiplication. The involu-
tion is continuous with respect to Tg and L5
11i1)If the tonology t is given by the systea of norms {1 W, =

“
=\ \\A‘ . % e®|, then any of the topologies defined above can be

given in which there occur only operators Ag €Ol , Especial-
ly, if t 1s metrizable, so also any of these topologies.

Proof:

¥irst of all let us regark the following fact: If ®,S ¢ B (%),

S f3 (R) and WX & W3&W  for all ¢ ¥ , then Redg(R)
and YR g 91\3\\§ .

i) Given 4,0 € 2" (X)), As the systenm defining t is directed, there
is ale L£YD) with VASH £ 0T W, D &N £NC&U for alléeDd ’
hence for T & Fg(B): WATHN % WCT&N , UDTH N £ WCTHH By
the remark above: WaTllg £WCTWg , WBTAF £ QT V3 . Using the
fact that WRUg =WR*Wg it is easy to derive that the systems of
seainorms defining the other topologies are also directed.

g <g » T 4NE is trivial. Let 4 € £'(N), then max( WAT Vg
WTAWg ) € WATHg . + WThlg = \\T\\A’I’-§ + \\T\\I’A,§ . Hence
T < Tk,

iii) follows froa i).
11) Only the assertions sbout multiplication and the involution
wust be varified., Let 3,7 ¢ f5(D), a4 e £* (D ), then

% 2Ta ll§ SUSW WTaA \\§_ , WITA Wy ¢ \\Sl\§ WTan ané similarly,
the assertions for the other topologies follow. For the involution
it is max CWAT U ,uTTANg ) = aex (WTahg LAty )
ané analogouslv for n® weo-taie

Lemma 17

ifi(lﬁ )Lx®) ang F5 (3 )LT%) are couplete locally convex

spaces.
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Proof:

Let (T, ) be a generalized sequence in a’§ (D) which is a «® -
Cauchy sequence ( in the case of the topology Tg all conslderf—
tions are similar). Decause T —> T' is x¥ -continuous, T =T
zay be assuned, Thus, for 4,3 € (D), (iT, B) and (T, ) are wig~-
Cauchy sequences and since ;_fi(at) is 4 wg -complete: ATy B —> 3,
T, — T; S,T € fp(3). It must be shown that ATD = 5. For this it
is sufficient to see that AT. B converges on I weakly to ATD
(since then AT, P converges on # weakly to ATD and we can apply
/1/, chap.III,Theoremn 5.1). BDut the weak convergence follows from
V< (ATy B - ATB) & ,% >0 = \<(Ty - T)34%, A4 >\, Hence ATD = 3
and consequently T & §5 (D). The only gap in the proof is to show
that ATR makes sense on D . For this we show T3 <« . Let e &
be arbitrary, then Ta ¢ =%« converges to T4 . doreover, for
any A e X' (D), AT, & 1is a Cauchy sequence in '3 (because AT,
is a Cauchy sequence with respect to w w%§). A closable and T, ¢ =
=N € D (A) imply AT, & —> AT ¢ and T¥ e D (A). Hence,
T3 < B(A) for all Ae L* (D), Since £* (D) was assuned to be
selfadjoint the assertion follows.
el

The lennas below give sone examples how these topologies can be
applied to get results analogous to the case d’-ﬁ (R) (cf. /1/,
chap.IIT),
Lemna 18
i) For each T e fg(D), 4,0 ¢ 2N (D)

(4) min {\T-F x\;&}: E (541 (TA),s S (TA),een )

(5) min {0T-F Wy g}= & (s, (AD),s ,(AT),... )

(6) ain8T-¢ W % (s, ne2(ATB) oo ).

The minimun in (4)-(6) is taken over all f & ¥, (D) ={GecF (D)

dim 3 £n Y} .
{i) If & is mono-norning, then TF () is dense in .f§ (V) with

respect to t§ ’Té » Xy » and «®

(AT?),s

Proof:

The properties of & and Tg < v ¥ give the implication i) — ii).
To prove 1) we restrict ourselves to (4) since the other state-
nents are established in the same way. Remark that TA is completely
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continuous on ® |, so TA = J_ JLJ- <%;, «>N; with orthonormal sy-
stems ($;) , (¥;) in 3 . (4) follows from the analogous result
for 3§ (¥ ) used for TA, The only point where we nust be careful
is the restriction Fe ¥, (¥), Thus, we will show that there is an

n
Fe¥F.(B) such that FA = E Aj<&;, > % » then all is clear,
J=1

n
Set F = JZ=1 Ai<9j , '>*.i and determine £ in the necessary way,

The desired operator F is obtained for gj = K}‘ T+~\ré which is
easy to verify using the equation

n
FA =E13<A+gi RN TR Q.E.D.
J:

As in case d’§ (¥) one could introduce the 'tg ~y seuy ¥ _closu-
res of ¥ (1) in I3 () and would get corresponding one- or

two-sided ideals in £* (I). woreover one could prove some results
about separability of the so-obtained ideals. For brevity we indi-
cate such a result for mono-noraing

Lemma 19

Let ® be mono-noraing. If B[ t] is separable, then Jg (J)
s separable when equipped with any of the tobologies t% , % ,
Ti 1) 't§ .

Proof':

Jecause of Leama 15 i) it is sufficient to consider the topology 'l:‘.
Let N' be an arbitrary countable t-dense subset of ¥ and put

Moo= {F = ,Zw;,.)w,,' %%y e N Ye T (D),

finite

Je show that M is * ¥ _gense in T ‘D) and so as a consequence
of Lemma 18 ii) the Leana is proved.

n
LetG:Z} T .\,'xje?(n) y A,0€ LY(D), € >C be arbi-
J:

trarily given, If there is an f ¢ w0 : | G-F 4, < & then we
4,0,

arrive at the desired result because the system of seninoras for
¥ is directed.

n
4 ‘—E : : inati WG - r Ul =
ror F = e <¢‘ ")*J the estimatlion A,B,§

+ .
=h§ (¢<n¥e;, .>Ax; -<B &, > Ay Vg e > nen (g, ~ & )rerhX
4 =1

< + R W . W+
+<B+¢‘j s o+ (AX; - A )l g —Z{I\B (g; —< -1 Axgl
+“B+4’3‘“ WA(X; =44 )0 ) shows that the &; , % can be chosen

- L £ .
so that WG - F “A,“,§

We conclude with some criteria (corresponding to those for cfi (%))
for T e qf§ ().

Lemma 20
Let  be such that g () # LX), . 1
i) If (T ) < fg (W) converges on T weakly to T & L¥ (D) and
m

= < oo € i- (b ) then
sup i) \l SID“A Bh§ for all A,B )
m m \A,B,§ il

T & ifg( b). ' . .
ii) If £* (¥ ) contains a monotonically anreas;ng;.sequence n
of finite diuensional orthoprojections converging t-strongly

i 11 $e¢d A &L (D)
to I, i.e, 1l A(Pn-I)tb\\ -—> 0 for all ¢ ,

and (P TP_) is T® -bounded for some T &€ £ (X ), then Te& f5(¥)
n ' n .
. .. + - is t® _boun-
iii) Let (Pn) be as in ii), S,T € £(D). If ("PnTPn) is 0

ded, then ST & I (T ).

Proof:

e will only prove i) since the other assertions follow by siallar
considerations. In /1/ (Theorem 5.1,chap.III) it is shown th(?t .
(Sm)c do§(3€ ) Su — 5 (weakly on & ) and sup\ S g <= iaplies
Se Jp(3). Applying this result to the sequence AT;H‘{B it remains
to show that AT,nB converges on ¥ weakly to ATD, It is

~N i E A =< A > for all
lim <ATnB $ ,%> = linm <Tm362 , A > <AT3® ,%

— 5 T B) is b -
%4ed . Hence AT B ATB weskly on B ., Because (AI‘mW) is boun

ded with respect to the operator norm this sequence is also weakly

convergent on 3 to the bounded operator ATE. “.E.D.
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Remark that the existence of a sequence (Pn) such as mentioned in
ii) and iii) of the above Lemma is guaranteed for example in the
important case where O = l;\ 3 (R™), R = R" ,
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