ОБЪЕАИНЕННЫЙ ИНСТИТУТ
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

АУБНА

$$
\begin{aligned}
& \frac{C 324.3}{T-58} \\
& 3850 / 2-77 \\
& \quad \text { w.Timmermann }
\end{aligned}
$$

IDEALS
IN ALGEBRA OF UNBOUNDED OPERATORS

E5-10758

W.Timmermann

IDEALS
 IN ALGEBRA OF UNBOUNDED OPERATORS

Submitted to Mathematische Nachrichten

Ндеалы в алгебрах неограниченных операгоров
Дается обшая конструкция идеалов в алгебрах неограниченных операторов на основе идеөлов в: $:(\not)$. Исследуются алгебраические и топологические свойства таким образом полученных идеалов, порожденных хорошо иэвестными симметрично-нормированными идеалами ${ }^{5} \Phi^{\prime}$ Н)

Работв выполнена в Лаборетории теоретической физики ОИЯИ.

Препринт Объединенного пнствтута ядерных псследовандй. Дубна 1977

Timmermann W.

E5 - 10758

Ideals in Algebras of Unbounded Operators
A general procedure is given to get ideals in algebras of unbounded operators starting with ideals in $\mathfrak{H}(\boldsymbol{H})$. Algebraical and topological properties of ideals obed in this manner from the well-known symmetri-cally-normed ideals $\delta_{\Phi}(H)$ are described.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1977

In this paper we continue the investigations on ideals in algebras of unbounded operators begun in /6/ and /7/ in a more systematic way. The first section deals with the description how one can get ideals in $\mathscr{L}^{+}(\mathbb{D})$ starting with ideals in $B(\mathcal{H})$. We give the definition of two types of ideals: one contains only bounded operators, to the other belong also unbounded operators.

In section 2 some algebraic properties of ideals $\mathcal{S}_{\mathbf{I}}$ (I) derived from the well-known symmetrically normed ideals of are investigated.

Topologies in such ideals are introduced in the last section. There are also mentioned some results connected with topological properties of these ideals.

1. PRELISTNARIES AND BASIC DEFINITIONS

We use the following notions and notations (cf. /1/,/2/). For a dense linear manifold I in a separable Hilbert space \mathcal{J} we denote by $\mathscr{L}^{+}(\mathbb{D})$ the *-algebra of all operators A (bounded or not) for which $A D \subset D$ and $A^{*} D \subset D \quad$. The involution is given by $A \longrightarrow A^{+}=$ $=A^{n} \mid \delta \quad . \quad \mathcal{L}^{+}(\mathbb{D})$ defines a natural topology t on the domain D given by the directed system of seninorms $\phi \longrightarrow\|A \phi\|$ for all A€ $\mathscr{L}^{+}(\mathbb{D}) . \mathscr{L}^{+}(\mathbb{D})$ is said to be closed if $\mathscr{D}[t]$ is a complete space, or equivalently, if $\mathscr{D}=\bigcap_{A(\mathcal{X}+(D)}(\bar{A}) \quad . \quad \mathcal{L}^{+}(D)$ is said to be selfadjoint if $D=\bigcap_{A\left(\mathcal{L}^{*}(D)\right.}\left(A^{n}\right)$. By $\mathcal{F}(D)$ we denote the set of
finite dimensional operators of $\mathscr{L}^{+}(\mathbb{D})$. $\mathcal{F}(\mathbb{D})$ is the two-sided minimal * -ideal of $\mathscr{L}^{+}(\mathbb{D})$.

For a completely continuous operator $T \in B(\mathcal{H})$ by $\left(S_{n}(T)\right)$ we denote the sequence of s-nuabers, $s_{1}(T) \geqq s_{2}(T) \geqq \ldots$ (each number repeated according to its aultiplicity). $\Phi($.$) stands for asymme-$ tric norming function and $\mathcal{f}_{\Phi}(\mathcal{H})$ or simple \mathcal{S}_{Φ} denotes the corresponding symatrically-norned ideal with the nora $\|$ " Φ given by

$$
\|T\|_{\Phi}=\Phi\left(s_{1}(T), s_{2}(T), \ldots\right)
$$

The ideals $\boldsymbol{\mathcal { f }}_{\infty}(\mathscr{X}), \mathcal{f}_{\rho}(\not \mathscr{X}), p \neq 1$, are special cases of such syanetrically-noraed ideals. For details the reader may consult /1/. Now we give a general procedure to generate ideals in $\mathcal{L}^{+}(\boldsymbol{D})$. Vefinition 1

Let $J=J(\mathcal{H})$ be a two-sided $*$-ideal in $囚(\not \subset)$. By $J(D)$ we denote the set
$J(J)=\left\{T \in \mathcal{L}^{+}(D): X T Y \in J(\mathcal{H})\right.$ for all $\left.X, Y \in \mathcal{L}^{+}(X)\right\}$ (Clearly, to be nore exact, we had to write: XTY bounded on \mathcal{D} and $\overline{X T Y} \in J(\mathcal{H})$. For siaplicity let us use the notation mentioned above)

Lenna 2

i) The set J (D) given in Definition 1 is a two-sided *-ideal in $\mathcal{L}^{+}(\mathbb{D})$, called the corresponding ideal to $J(\mathcal{H}) ; ~ J(D) \subset$ $J(H)$.
ii) If $\mathcal{L}^{+}(\mathbb{D})$ is selfadjoint, then from $X T Y \in \mathcal{J}(\mathcal{H})$ for all $K, Y \in$

Proof:
i) The linearity is clear, the n-property follows because XTY $\in J(\mathcal{H})$ i.aplies $(X T Y)^{*}=Y^{*} T^{*} X^{*}=Y^{+} T^{+} X^{+}$(when restricted to \mathcal{D}) also in $J(\mathcal{H})$, but this means $\mathrm{T}^{+} \in J(\mathbb{D})$. Let $A, B \in \mathscr{L}^{+}(D)$ be arbitrary operators, then from $X(A T B) Y=U T V, U, V \in \mathcal{L}^{+}(D)$, it is seen that ATB $\in J(D)$, Fron $X=Y=I$ it follows $T \in J(\nVdash)$ if $T \in J$ ($\mathbb{D})$.
ii) $X T Y \in J(\mathbb{D})$ means especially $X T$ and $T Y$ bounded for all $X, Y \in \mathcal{L}^{+}(\boldsymbol{J})$ and dense defined. Then Lemna 1.1 from /4/ gives $T^{*} \mathcal{H} \subset \mathbb{J}\left(Y^{*}\right)$ for all $Y \in \mathscr{L}^{+}(\mathbb{D})$, but this means $T^{*} \not \mathscr{H}^{C} \subset \mathbb{D}\left(\right.$ as $\mathscr{L}^{+}(\mathbb{D})$ is selfadjoint). A slight generalization of $/ 4 /$, Lemna 1.2 shows that $T \mathcal{H} \subset \mathcal{D}(\bar{X})$ for all $X \in \mathcal{L}^{+}$(D), i.e. $T \notin \subset \mathbb{D}$. So, T and T^{*} map \mathfrak{J} in \mathbb{D}, hence $T \in \mathcal{L}^{+}(\mathrm{d})$.
2.E.D.

Remark 3

i) If $\mathbb{J}=\mathscr{H}$, then it is well-known $/ 2 /$ that $\mathscr{L}^{+}(\mathbb{J})=\mathbb{Q}(\not)$
and consequently $J(\mathbb{D})=J$ (J). In general it is not so that
$J(\mathbb{I})=\mathcal{L}^{+}(\mathbb{D}) \cap J(\mathbb{L})$ (to such a reading the notation $J(\mathbb{D})$ could lead). For exanple, if $\mathcal{L}^{+}(\mathbb{D})$ contains unbounded operators, then $I \in \mathcal{L}^{+}(\mathcal{D}) \cap B(\mathcal{H})$ but, of course, I $B(\mathbb{D})$.
ii) As it can be seen from the proof of Lemma 2 it is not necessary for $J(\nexists)$ to be a *-ideal to obtain an ideal J (\mathcal{J}) in the mentioned manner. It would be sufficient if $J(H)$ were a linear $*-$ space. But this seems to be too general, because we like to atart with "well-known" substructures of $ఔ(\mathcal{H})$ (as $\mathcal{f}_{\Phi}(\mathcal{H})$) to get substructures of $\mathcal{L}^{+}(\mathbb{D})$ which have also good properties.

The following leinna shows, roughly speaking, that in $\mathscr{L}^{+}(\mathbb{D})$ there are many distinct ideals if the operators are not "too unbounded".

Lemma 4

Let $\mathscr{L}^{+}(\mathbb{D})$ be such that there is an $N \in \mathscr{L}^{+}(\mathbb{D})$ with $N^{-1} \in$ $\in J(\not)$ for some ideal of $B(\mathbb{X})$. Then $J(\mathbb{J})=\mathcal{J}(D)$ for all ideals J with $J(\mathcal{H}) \subset Y(\not)$.

Proof:

It is enough to show $\mathcal{J}(\mathbb{D})=\varnothing$ ($\mathbb{D})$. But this follows from XTY $=$ $=X_{T Y N N}{ }^{-1}=\mathrm{BN}^{-1}$, where $\mathrm{T} \in \mathcal{B}(\mathcal{J})$, i.e. XTYN is bounded, consequently $\mathrm{BN}^{-1} \in J(\not)$. Hence $T \in I(\mathcal{D})$.
Q.E.D.

Next we define ideals which contain also unbounded operators (by ideals in what follows we always mean two-sided n-ideals).

Definition 5

Let $J(\mathcal{H}), \mathcal{J}(\not)$ be two ideals in $\gamma(\mathcal{H}), J(J), \mathcal{J})$
the corresponding ideals in \mathscr{L}^{+}(J). Put
$\begin{aligned}M(D), J(D))=: M(J, J)= & \left\{\operatorname{AE} \mathcal{L} \mathcal{L}^{+}(D): \operatorname{AT}, A^{+} T \in J(D)\right. \\ & \text { for all } T \in \mathcal{Z}(D)\} .\end{aligned}$
Now we collect some simple properties of these sets, then we give an example.

Lemáa 6

i) $\mathcal{J}(J), f(D))$ is an ideal in $\mathcal{L}^{+}(D)$.
ii) If $J(\mathcal{H}) \subseteq y(J)$, so $\operatorname{in}(J, J)=\mathcal{L}^{+}(J)$.
iii) If $J_{1}(\mathcal{X}) \subseteq J_{2}(\mathcal{X})$, so $H\left(J_{2}, J\right) \subseteq w\left(J_{1}, \mathcal{J}\right)$.

If $J_{1}(\mathcal{H}) \subseteq \mathcal{J}_{2}(\mathscr{H})$, so $\mathbb{M}\left(J, J_{1}\right) \subseteq M\left(J, J_{2}\right)$.

Proof:

ii) and iii) are trivial consequences of the definition.
i) The x-property and linearity are clear. Let $X \in \mathscr{L}^{+}(\mathbb{D}), A \in$
$\in \mathrm{h}(J, \mathcal{J}), \mathrm{T} \in \mathcal{J}(\mathrm{D})$, then $(\mathrm{A}) \mathrm{T}=\mathrm{AS}$ with $\mathrm{S} \in \mathcal{J}(\mathcal{D})$, hence $\mathrm{AS} \in$ $\in \mathcal{Z}(D) .(A X)^{+} T=X^{+} A^{+} T=X^{+} R$ with $R \in \mathcal{Z}(D)$, hence $X^{+} R \in \mathcal{Z}(D)$. Therefore $\operatorname{AXCi}(y, y)$ and analogously $x_{A} \in \mathcal{M}(y, y)$.
Q.E.D.

We state an equivalent characterization of $w(J, Z)$. The simple proof is omitted.

Lemna 7

$M(J, \mathcal{J})=\left\{A \in \mathcal{L}^{+}(D):\right.$ XAT, $\operatorname{TaX} \in \mathcal{J}(D)$ for all $X \in \mathcal{L}^{+}(\mathbb{D})$ and all $T \in \mathcal{J}(D)\}$.

Next we give an exannle which shows that $: 3, \mathcal{Z}$) can contain also unbounded operators.

Exanple 8

Let $\mathbb{D}=\hat{n}_{n} D\left(R^{n}\right), R=R\left\{\left(r_{n}\right),\left(\phi_{n}\right)\right\} \geq I$ a diagonal operator such that sup $r_{n}=\infty$ but (r_{n}) does not increase "too fast"; for example, $\mathrm{R}^{-\mathrm{k}}$ is for all k not nuclear. Regard $\mathfrak{K}\left(\mathcal{S}_{\infty}(\mathbb{D}), \mathcal{S}_{\wedge}(J)\right)$. Let $\left(r_{n_{1}}\right)$ be such a subsequence of $\left(r_{n}\right)$ that $\sum r_{n_{1}}^{-2}<\infty$. The
diagonal operator $A=A\left\{\left(a_{n}\right),\left(\phi_{n}\right)\right\}$ with

$$
a_{i}= \begin{cases}r_{n_{1}} & \text { if } i=n_{1} \\ 0 & \text { if } i \neq n_{1}\end{cases}
$$

belongs to $\mathfrak{w}\left(\mathcal{f}_{\infty}(\mathbb{D}), \mathcal{P}_{1}(\mathbb{D})\right)$. To see this, reark that $B=$ $=D\left\{\left(b_{n}\right),\left(\phi_{n}\right)\right\}$ with

$$
b_{i}= \begin{cases}r_{n_{1}} & \text { if } i=n_{1} \\ 0 & \text { if } i \neq r_{1}\end{cases}
$$

is nuclear and for all natural $k: R^{k}=S R^{k+1} A$. Let $C \in \mathcal{S}_{\infty}(\mathbb{I})$, then $R^{k} A C=B\left(R^{k+1} A C\right)$ is nuclear for all k because $R^{k+1} A C$ is bounded
(even completely continuous). For an arbitrary $\mathrm{X} \in \mathscr{L}^{+}(\boldsymbol{J})$ the closed
 and constant K. Jecause the operator on the right-hand side is bounded this estination is valid for all $\phi \in \notin$. The nuclearity of
 $D \in \mathscr{A}_{\infty}(\mathcal{Z})$ is nuclear for all $X, Y \in \mathcal{L}^{+}(\Sigma)$, $\mathbb{C} \in \mathcal{f}_{\infty}(\mathbb{D})$. This means $A C \in \mathcal{S}_{1}(D)$, hence $A=A^{+} \in \operatorname{Lin}\left(\mathscr{f}_{\infty}(D), \mathcal{f}_{1}(D)\right)$ and A is unbounded.
«.E.D.
ienark 9
There is a lot of possibilities to introduce $L K$ - or LK *-topologies in $J(D)$ and m($J, J)$. Ho: to co this we denonstrate in the following section for $J(D)$ in the case where $J(D)=\mathcal{J}^{\circ}(J)$. Jome further topologies on $\mathcal{S}_{\Phi}(\mathcal{D})$, topologies on ... $\boldsymbol{J}, \mathcal{J}$) and duality properties of these ideals will be investigatec in a forthcoming paper.
We start with the consideration of algebraical properties of of $f_{\Phi}(\mathbb{J})$.
2. THE IUEALi $\mathcal{J}_{\Phi}(\Phi)$ (algezratcal propertiei)

In this section we investigate algebraical properties of the ideals $B(D), f_{\Phi}(D)$, corresnonding to β (\mathcal{X}) and to the sy:n-metrically-norned ideals $\mathcal{S}_{\Phi}(\nexists) \subset X(H)$. As mentioned in $/ 3 /, / 4 /$, $/ 5 /$ the ideal $\mathcal{S}_{1}(\mathbb{D})$ plays a key role in the investigation of physical observables-states-systeas, other ideals are connected with the classification of domains of operator algebras.

The main point of this section is to give an equivalent characterization of $\mathscr{f}_{\boldsymbol{\Phi}}(\boldsymbol{J})$ which can be better handled than that given in Definition 1. For the renaincer of this paper wo suppose \mathscr{L}^{+}(J) to be selfadjoint. Let us mention the following fact used in the sequel. If $T \in \mathscr{P}_{\underline{I}}\left(\mathcal{H}_{\mathrm{O}}\right)$ and $\mathrm{T}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)+\mathrm{i}\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right)$ is the decomposition of T such that $T_{j} \geq 0,\left(T_{1}-T_{2}\right)=(1 / 2)\left(T+T^{*}\right),\left(T_{3}-T_{4}\right)=(1 / 2 i)$. $\cdot\left(T-T^{*}\right)$, so $\left\|T_{j}\right\|_{\Phi} \leq\|T\|_{\Phi}, 1 \leq j \leq 4 \quad$ (use $\|J\|_{\Phi}=\left\|J^{*}\right\|_{\Phi}$). dioreover, $A \in \mathcal{S}_{\Phi}(\nVdash),\|B \psi\| \leq\|A \psi\|$ for all $\psi \in \mathcal{H}$ implies $B \in \mathcal{S}_{\Phi}(\mathcal{H})$ and $\|J\|_{\Phi} \leq\|A\|_{\Phi}$. de begin with a provosition on $\nless(\mathbb{D})$ and $\mathcal{f}_{\infty}(\mathcal{D})$ which we use vernanent in the sequel. Then the main lemma will be proved which is the base of the equivalent characterization of \mathcal{J}_{Φ} (コ).

Proposition 10

i) If $0 \leq T=T^{*} \in \beta(J)$, then $T^{\alpha} \in B(J)$ for all $\alpha>0$. Aoreover, for $T \in \mathcal{L}^{+}(\mathbb{D})$ any of the following equivalent conditions is equivalent to $T \in ß(D)$:
a) $\mathrm{TA}, \mathrm{T}^{*} \mathrm{~A}$ bounded for all $\mathrm{A} \in \mathcal{L}^{+}(\mathbb{D})$
b) AT, AT* bounded for all $A \in \mathcal{L}^{+}(D)$
c) $T \in \mathcal{B}(H), T H \in D, T * H \in D$.
ii) If $0 \leq T=T^{*} \in \mathcal{P}_{\infty}(\mathbb{D})$, then $T^{\alpha} \in \mathcal{S}_{\infty}(D)$ for all $\alpha>0$. Aoreover, for $T \in \mathcal{L}^{+}(D)$ any of the following equivalent conditions is equivalent to $T \in \mathcal{J}_{\infty}(D)$:
a) TA, T*A completely continuous for all $A \in \mathscr{L}^{+}(D)$
b) AT, AT* completely continuous for all $A \in \mathscr{L}^{+}(\mathbb{D})$
c) $T \in \mathcal{S}_{\infty}(\mathcal{H}), T \mathrm{~T} \subset \mathrm{D}, T * \notin \mathcal{D}$.

Proof:

i) Fron $/ 4 /$ (Lemnata 1.1 and 1.2) $T \in \notin(\mathbb{D})$ implies $T \notin \subset, T * \nVdash$
$\subset \mathbb{D}$. The selfadjointness of $\mathcal{L}^{+}(\mathbb{D})$ and the Kato-Heinz-inequality /8/ imply that from $T=T^{*} \geq 0, T \not \subset C D$ one can conclude $T^{\alpha} z_{e}$ CD for all $\alpha>0$. But then $/ 4 /$ gives us $T \alpha \in \mathbb{B}(\mathbb{I})$ for all $\alpha>0$. This proves the first assertion. Once again referring to /4/ we have the following inplications: $T \in \beta(D) \longrightarrow a), b), c) ; a) \longleftrightarrow b$) (by the selfadjointness of $\mathcal{L}^{+}(\mathbb{J})$); a) and b) \longrightarrow c); c) \longrightarrow a) and b). Hence it remains to see that $c) \longrightarrow T \in \not \subset(D)$. Because T and T^{*} map 敢 in D we may suppose $T=T^{*}$. Aoreover, the decomposition $T=T_{+}-T_{-}$leads to operators T_{+}and T_{-}which also map \mathcal{H} in \mathcal{D}. Hence our first assertion implies that $T_{+}^{1 / 2}$ and $T^{1 / 2}$ nap \mathcal{H} in D and consequently $A T_{+} \mathrm{B}=\left(\mathrm{AT}_{+}^{1 / 2}\right)\left(\mathrm{T}_{+}^{1 / 2} \mathrm{~B}\right)$ and $A T_{-}^{-}$are bounded operators for all $A, B \in \mathcal{L}^{+}(\mathbb{D})$, that means $A T B$ is bounded. Therefore $T \in \nless(D)$.
ii) Remark that $0 \leq T=T^{*} \in \mathscr{L}_{\infty}(\nexists)$ implies $T^{\alpha} \in \mathcal{S}_{\infty}$ (ł) for all $\alpha>0$. All considerations are similar to those of i). To see the implication $c) \longrightarrow T \in \mathcal{P}_{\infty}(\mathcal{D})$ suppose again $T \geq 0$, but then ATB $=\left(A^{1 / 3}\right) T^{1 / 3}\left(T^{1 / 3} B\right)=U T^{1 / 3} V$, where U, V are bounded by i) and $T^{1 / 3}$ is completely continuous. Hence ATB $\in \mathcal{S}_{\infty}(\mathfrak{Z})$ which means $T \in \mathscr{L}_{\infty}(\mathcal{D})$.
Q.E.D.

ifain Lequa 11

Let $A \in \mathscr{L}^{*}(D), 0 \leq T=T^{n} \in \mathcal{S}_{\infty}(D)$. For fixed $\phi_{i} \psi \in \Omega(T) \oplus \mathcal{N}(T)$
the function $f(z)=\left\langle\phi, T^{z_{A T}}{ }^{1-z} \psi\right\rangle$ fulfils on the strip $\mathcal{J}=$ $=\{z=x+i y: 0 \leq x \leq 1\}$ the assumptions of Hadanard's three line theorem /9/, namely
i) $f(z)$ is analytic in the interior of s
ii) $f(z)$ is bounded on S
iii) $f(z)$ is continuous on 3 .

Proof:

Let us premise some remarks. $T=\sum \lambda_{n}\left\langle\phi_{n}, \cdot\right\rangle \phi_{n}$ and $T^{\text {iy }}=$ $=\sum \lambda_{n}^{i y}\left\langle\phi_{n}, \cdot\right\rangle \phi_{n}$ imply that for all $y: \mathcal{N}(T)=\mathcal{N}\left(T^{i y}\right), \overline{R(T)}=$ $=\bar{R}\left(\mathrm{~T}^{\mathrm{iy}}\right), \mathrm{T}^{\mathrm{i} y}$ is a partially isometric operator mapoing $\overline{R(T)}$ isometrically onto itself. Moreover, $T^{0}=\sum\left\langle\phi_{n} \cdot\right\rangle \phi_{n}$ is the projection P on $\overline{Q(T)}$ (the closed subspace spanned by (ϕ_{n}). Now we go on to the proof of the Lema.
i) For any $0<\varepsilon<1$ the function $f(z)=\left\langle\phi, T^{z-\varepsilon} B T^{1-z} \psi\right\rangle$ with $B=T^{\varepsilon} A$ (which is bounded according to Proposition 10) is analytic in the strip $\{z: \varepsilon<x<1-\varepsilon\}$, hence $f(z)$ is analytic in the interior of the strip S.
ii) The boundedness of the function $f(z)$ can be seen as follows. $|f(z)|=\left|\left\langle\phi, T^{i y_{T}}{ }_{A T}{ }^{1-x^{2}} T^{-i y} \psi\right\rangle\right| \leq\|\phi\| \cdot\left\|T^{x} A T^{1-x}\right\| \cdot\|\psi\|$. We show

 $=\sup \|T\|^{x} \sup \left\|A T^{1 / 4} T^{3 / 4-x}\right\| \leq\|T\|^{3 / 4}\left\|A T^{1 / 4}\right\|<\infty$.
The estimation of the other term follows analogously. Thus, ii) is proved.
iii) It is easy to see that
(1 a) $T^{\text {iy }} \longrightarrow T^{\text {iy }} \quad\left(\right.$ for $y \longrightarrow y_{0}$)
(ib) $T^{1-x} \longrightarrow T \quad($ for $x \longrightarrow 0)$
(1c) $T^{x} \longrightarrow P \quad($ for $x \longrightarrow 0$)
in the sense of strongly convergence on fe . Clearly, according to i) we must show the continuity of $f(z)$ only on the boundary of
the strip \mathcal{S}, say for $x=O$ (the case $x=1$ is got by symmetry). Ne estimate $\left|f(z)-f\left(i y_{0}\right)\right|$ for fixed y_{0}, i.e.
$1<\phi,\left(T^{i y_{T} X_{A T}}{ }^{1-x_{T}} \mathrm{~T}^{-i y}-T^{i y_{0}}{ }_{P A T T}{ }^{-i y_{0}}\right) \psi>1$. Using the identity
 $+\left(T^{i y_{O T} X_{A T}}{ }^{1-x_{T}}{ }^{-i y}-T^{i y_{o P A T T}}{ }^{-i y_{0}}\right)$ one gets $\left|f(z)-f\left(i y_{0}\right)\right| \leqslant$
(2) $\left.\leqslant 1<\phi,\left(T^{i y_{o T}}{ }_{A T}{ }^{1-x_{T}} T^{-i y}-T^{i y_{o P A T T}}{ }^{-i y_{0}}\right) \psi\right\rangle \mid+$

First we show that $(3) \longrightarrow 0$ as $y \longrightarrow y_{0}$.
$(3)=1\left\langle\left(T^{-i y}-T^{-i y_{0}}\right) \phi,\left(T^{x} A T^{1-x}\right) T^{-i y} \psi\right\rangle \mid \leq\left\|\left(T^{-i y_{-}}-T^{-i y_{o}}\right) \phi\right\|$ $\left\|T^{x_{A T}}{ }^{1-x} \psi\right\|$. Thus ii) and(la) give the desired result. Now we show that (2) $\longrightarrow 0$ as $y \longrightarrow y_{0}, x \longrightarrow 0$. Simple manipulations give ($?$) $\left.\leqslant 1<T^{-i y_{0}} \phi, \operatorname{PAT}\left(T^{-i y_{-}} T^{\left.-i y_{0}\right)}\right) \psi\right\rangle|+|\left\langle T^{-i y_{0}} \phi,\left(T^{X_{A T}} T^{i-x}-\right.\right.$ - PAT) $\mathrm{T}^{-\mathrm{i} y} \psi>1$. The first term tends to zero because
$\left|\left\langle(\operatorname{PAT})^{*} T^{-i y_{0}} \phi_{\phi},\left(T^{-i y_{-}}-P^{-i y_{0}}\right) \psi\right\rangle\right| \leq K\left\|\left(T^{-i y_{-}}-T^{-i y_{0}}\right) \psi\right\|$.
The second teria can be written as $\ll T^{-i y_{o}} \phi,\left(T^{x} T^{1-x}+T^{x_{A T}}-\right.$
$\left.-T^{x} A T-P A T\right) T^{-i y} \psi>1 \leq 1<\left(T^{x_{A}}\right)^{*} T^{-i y_{0}} \phi,\left(T^{1-x}-T\right) T^{-i y} \psi>1+$

- $T^{-i y} \psi\|+\|\left(P-T^{x}\right) T^{-i y_{o}} \phi\| \| A T\|\cdot\| T^{-i y} \psi \|$. Using (1b),(1c)
this expression goes to zero if we show that $\|\left(T^{x} A\right)^{*} T^{-i y_{o} \phi \| \leq L}$ for all $x, 0 \leq x \leq 1$. Now it will be used that $\phi \in R(T) \notin \mathcal{N}(T), i . e$. $\phi=\phi_{1}+\phi_{2}, \phi_{1} \in R(T), \phi_{2} \in \mathbb{U}(T)$. It is $\left\|A^{*} T^{x^{x}} T^{-i y_{o}} \phi\right\|=$ $=\left\|A^{*} T^{x_{T}} T^{-i y_{O}} \phi_{1}\right\|=\| A^{*} T^{x_{T}} T^{-i y_{O T} x \|}$ for some $x \in \mathcal{X}$ because $\phi_{1}=$ $=T X$, so $\left.\| A^{*} T^{x} T^{-i y}\right\rangle \phi\|\leq\| A^{*} T\| \| T^{x}\| \| x \|$. Hence the continuity is proved. Q.E.D.

From this Le:nma we deduce an important result. Before doing this, let us remark the following fact which can be proved by simple estimations. Let D be an arbitrary dense manifold in \mathcal{H}, \mathcal{F} (\mathbb{I}) $\left.\subset \mathscr{L}^{+}(\mathbb{D}), \mathcal{F} \subset \mathbb{(}\right)$ the corresponding sets of all finite dimensional oderators contained in $\mathcal{L}^{+}(\mathbb{D}), \mathcal{B}(\mathbb{R})$ resp.. If Φ is a symmetric norming function, then $\mathcal{F}(\mathbb{D})$ is $\|$ "
\mathcal{F}. Now we prove the equivalent characterization of \boldsymbol{s}_{Φ} (D).

Proposition 12

Let Φ be a symmetric norming function, then
$\mathcal{J}_{\Phi}(D)=\left\{T \in \mathscr{L}^{+}(D): A T, A T * \in \mathcal{S}_{\Phi}(\mathbb{X})\right.$ for all $\left.A \in \mathscr{L}^{+}(D)\right\}$.

Proof:

The case where $\left\|\|_{\Phi}\right.$ is equivalent to the operator norm, i.e. $\mathcal{J}_{\Phi}(\mathcal{H})$ $=\mathcal{f}_{\infty}(\not)$) was regarded in Proposition 10. Thus, let $\left\|\|_{\Phi}\right.$ be nonequivalent to the operator norm. The selfadjointness of $\mathfrak{L}^{+}(\mathbb{D})$ implies again $\left\{T \in \mathcal{L}^{+}(\mathcal{D}): A T^{\prime}, \mathrm{AT}^{*} \in \mathcal{J}_{\Phi}(\mathscr{X})\right.$ for all $\left.A \in \mathscr{L}^{+}(D)\right\}=$ $=\left\{T \in \mathscr{L}^{+}(D): T A, T^{*} A \in \mathscr{S}_{\Phi}\left(\not X^{\prime}\right)\right.$ for all $\left.A \in \mathscr{L}^{+}(D)\right\}$. horeover, as in the proof of Proposition $10, \mathrm{AT}^{\mathrm{A}}, \mathrm{AT}^{*} \in \mathcal{J}_{\Phi}(\mathcal{H})$ implies that the decomposition $\mathrm{T}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)+i\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right), \mathrm{T}_{\mathrm{j}} \equiv 0, j=1,2,3,4$ leads to operators T_{j} with $A T{ }_{j} \in \mathcal{S}_{\Phi}(\mathcal{H})$, too. Consequently, we can restrict ourselves to operators $T=T^{\star} \geq 0$ and must show that $A T \in \mathcal{S}_{\underline{I}}\left({ }^{(H L}\right)$ implies $\mathrm{ATB} \in \mathcal{S}_{\Phi}(\mathfrak{Z})$ for all $A, E \in \mathcal{L}^{+}(D)$. Let $\boldsymbol{D}^{\prime}=R(T) \oplus \mathcal{N}(T)$, $F \in \mathcal{F}\left(\mathcal{S}^{\prime}\right)$ arbitrary, $F=\sum_{k=1}^{n} \mu_{k}\left\langle\rho_{k}, \cdot\right\rangle x_{k},\left(\rho_{k}\right),\left(x_{k}\right)$ orthonorial systems in \boldsymbol{D}^{\prime}. Consider the function $g(z)=\operatorname{Tr} T^{2}{ }_{A T}{ }^{1-2} F$ on the strip $S=\{z=x+i, y: 0 \leq x \leq 1,-\infty<y<\infty\}$. Because $\operatorname{Tr} T^{z_{A T}}{ }^{1-z_{F}}=\sum_{k=1}^{n} \mu_{k}\left\langle\rho_{k}, T^{z} A^{1-z} x_{k}\right\rangle, g(z)$ is the li-
near combination of n functions satisfying on \mathcal{D} the assumptions of Lemma 11 , hence for $g(z)$ the three line theoren is avalable. Using $F=\left(F_{1}-F_{2}\right)+i\left(F_{3}-F_{4}\right)$ on the line $x=0$ we have the estimation
 $=4\|A T\|_{\Phi} \cdot\|F\|_{\Phi}{ }^{*}$ (because $\left.\left\|T^{i y_{\|}}\right\|=\left\|T^{-i y}\right\|=1\right)$. Analogously, on
 the synatric norming function conjugate to Φ and the estinations follow from the corresponding properties of Φ and Φ^{*} (cf./1/). The three line theoren now gives:

$\sup _{\left.\mathcal{F} \in \mathbb{D}^{\prime}\right)} \frac{\| \mathrm{Tr}^{1 / 2} \mathrm{AT}^{1 / 2} \mathrm{~F} \mid}{\|F\|_{\Phi^{*}}} \leq 4\left(\|A T\| \Phi \quad+\|T A\|_{\Phi}\right)<\infty$. Together
with the renark before Proposition 12 and /1/(chap. III, Lemma 12.1) this estimation gives us $T^{1 / 2} \mathrm{AT}^{1 / 2} \in \mathscr{S}_{\Phi}(\mathscr{H})$ for all $\mathrm{A} \in \mathcal{L}^{+}(\mathbb{D})$. Then $\left(T^{1 / 2} B\right)\left(A T^{1 / 2}\right) \in \mathcal{S}_{\Phi}(\mathcal{L})$ and consequently, $A T^{1 / 2}\left(T^{1 / 2} B\right) \in$ $\in \mathcal{S}_{\boldsymbol{I}}(\mathbb{X})$ for all $\dot{A}, B \in \mathscr{L}^{+}(\mathbb{J})$.

Q.E.D.

This characterization of $\boldsymbol{\mathcal { f }}_{\boldsymbol{\Phi}}(\boldsymbol{J})$ will be useful for the investigation of tonologies on wi($\cdot, \cdot)$ and in duality-considerations. ile remark that the above result can be obtained at least for $\mathcal{U}_{\mathcal{A}}(\mathbb{D})$ and $\mathcal{f}_{2}(\mathbb{D})$ by direct computation without using interpolation methods. rurtherinore, the proof of Proposition 1 ? gives us the possibility to derive elenents of a functional calculus for the ideals $\mathcal{f}_{p}(D)$ analogous to the case of $\mathcal{f}_{p}(\not \mathfrak{H})$. We collect some results in the followine Proposition.
Proposition 13
Let $1 \leq \mathrm{p}<\infty$.
i) If $T \in \mathcal{S}_{\rho}(D)$, so $T^{n} \in \mathcal{J}_{P / n}(D)$ for all naturals n.
ii) If $0 \leq T=T^{*} \in \mathcal{S}_{p}(D)$, so $T \alpha \in \mathcal{J}_{\text {Pia }}(D)$ for all $\alpha>0$.

Proof:

i) Let $n \geq 2$, then it is for $A T{ }^{n}=A T T^{n-2} T B ; A T, T B \in \rho_{\rho}$ (H) and $T^{n-2} \in \mathcal{S}_{P / n-2}(\mathscr{H})$ in consequence of the well-known properties of the ieals $\mathcal{O}_{p}(\nVdash)$. Thus $A T B \in \mathcal{P}_{q}(\mathcal{H})$ with $1 / q=(1 / p)+(1 / p)+(n-2 / p)=$ $=n / p$. Thereforo, i) is proved.iii) follows analogously.
i) To orove this, we remark that $c \leqslant r=T * \in \mathcal{S}_{\rho}(D)$ implies $\mathbb{N}^{1 / 2} A^{+} A \Gamma^{1 / 2} \in \mathcal{S}_{p}(\not \mathscr{O})$ for all $A \in \mathcal{L}^{+}(I)$ (see the end of the proof of Proposition 12). Sonsequently, $\mathrm{n}^{1 / 2} A$ and $\mathrm{AT}^{1 / 2} \in \mathcal{P}_{2 p}(\mathbb{P})$, i.e. $T^{1 / 2} \in \mathcal{P}_{2 p}(D)$, and general: $T^{2^{-n}} \in \mathcal{S}_{2^{n} p}(D)$. Hence, let $\alpha>0$ be arbitrary, $\alpha=\left(2 / 2^{n}\right)+\beta$ for some natural n and $\beta>0$. Then
iT $T^{\alpha} B=\left(A T^{2^{-n}}\right) T^{\beta}\left(T^{2^{-n}} 3\right)$ belones to $\mathcal{S} q(\mathcal{A})$ with $1 / q=(\beta / p)$ $+\left(2^{-n} / 0\right)+\left(2^{-n} / p\right)=\alpha / p$, ..e. $T^{\alpha} \in \mathcal{P}_{p \mid \alpha}(D)$.
Q.E.D.

We conclude the investigation of algebraical properties with a result which can be roughly expressed as follows: The orthonormal systen occuring in the representation $T=\sum \lambda_{n}\left\langle\phi_{n}, \cdot\right\rangle \psi_{n}$ of an arbitrary operator $T \in \mathcal{J}(\mathbb{D})$ are the sane for all ideals $\mathcal{S}_{\Phi}(\mathcal{I})$. Or in other words: if $T \in \mathcal{S}_{\infty}(\mathbb{D})$, then only the decrease of the sequence $\left(\lambda_{n}\right)$ decides whether $T \in \mathcal{S}_{\Phi}(\mathbb{D})$ or not. wore precisely:

Lerna 14

Let $T=\sum \lambda_{n}\left\langle\phi_{n},.\right\rangle \phi_{n} \in \mathcal{S}_{\infty}(\boldsymbol{J}), T \geqslant 0$. Then there is a continuous function f with $\mathrm{f}(\mathrm{x})>0$ for $\mathrm{x}>0$ such that

$$
f(T)=\sum f\left(\lambda_{n}\right)\left\langle\phi_{n}, .\right\rangle \phi_{n} \in \mathcal{P}_{1}(D) .
$$

Proof:

It is easy to see that there is a continuous function \mathcal{E} with the properties: $g(x)>0$ for $x>0$ and $\sum g\left(\lambda_{n}\right)<\infty$. Then f with $f(x)=$ $=\mathrm{xg}(\mathrm{x})$ is the desired function. To see this we show Af(T) nuclear for all $A \in \mathscr{L}^{+}(D)$. It is $\sum\left\|A f(T) \phi_{n}\right\| \leq \sum g\left(\lambda_{n}\right)\left\|A T \phi_{n}\right\| \leq$ $\leq C \sum g\left(\lambda_{n}\right)<\infty$ since $A T \in \mathcal{L}_{\infty}(D)$, i.e. AT bounded. Therefore, the bounded operator $A f(T)$ is nuclear.
Q.D.D.

3. TOPOLOGIEL ON $\mathcal{S}_{\Phi}(I)$

In this section we introduce some topologies on $\rho_{\Phi}(D)$. They are nore or less suggested already by the ideal structure. Let us remark that there are many possibilities for defining a topology on these ideals and the choice of the topology depends on the problem we are dealing with. In a forthcoming paper where we will consider the ideals i(,) and questions concerning duality soine other topologies will be useful.

Definition 15

On $B(D), \mathcal{U}_{\Phi}(D)$ the following topologies (given by generating systens of seminoms) are introduced:

$\tau_{\Phi}^{r}: \mathscr{L}_{\Phi}(D) \geqslant T \rightarrow\|T\|_{A, \Phi}^{r}=\|T A\|_{\Phi}$ for all $A \in \mathcal{L}^{+}(\mathbb{D})$
$\tau_{\underline{\Phi}}^{2}: \quad \mathscr{f}_{\Phi}(D) \rightarrow T \longrightarrow\|T\|_{A, \Phi}^{L}=\|A T\| \Phi$ for all $A \in \mathcal{L}^{+}(D)$
$\tau_{\Phi}: \quad \mathcal{S}_{\Phi}(\mathbb{D}) \ni T \quad \longrightarrow \quad \max \left(\|A T\|_{\Phi},\|T A\|_{\Phi}\right)$ for allá $\mathcal{\mathcal { L } ^ { + }}(\mathbb{D})$
$\tau^{\Phi}: \quad \mathscr{o}^{\boldsymbol{f}}(\boldsymbol{D}) \ni T \longrightarrow\|T\|_{A, B, \Phi}=\|A T B\|_{\Phi}$ for all $A, B \in \mathcal{L}^{+}(\mathbb{J})$.

On $8(\mathbb{D})$ the same seainoras as on $\mathcal{S}_{\infty}(D)$ are used． The following Lema sumarizes some simple properties．

Lemma 16

i）All systens of sesinorin are directed；$\tau_{\Phi}^{r}<\tau_{\Phi}<\tau \boldsymbol{\Psi}^{\boldsymbol{I}}, \tau_{\Phi}^{\mathrm{L}}<\tau_{\Phi}<\tau \boldsymbol{\Phi}$ ．
ii）The icieals equippec with these topolozies become locally convex algebras with separately continuous zultiplication．The involu－ tion is continuous with resbect to τ_{Φ} and $\tau^{\mathbf{\Phi}}$ ．
iii）If the tonology t is given by the systea of norss $\left\{11 \|_{\alpha}=\right.$ $\left.=\| \|_{A_{\alpha}}, \alpha \in \mathbb{Q}\right\}$ ，then any of the topologies defined above can be given in which there occur only onerators $A, \alpha \in \pi$ ．Especial－ ly，if t is metrizable，so also any of these topologies．
Proof：
rirst of all let us remark the following fact：If $R, S \in \mathcal{B}(\mathcal{H})$ ， $\mathcal{J} \in \mathcal{J}_{\Phi}(\mathcal{H})$ and $\|\hat{R} \phi\| \leq\|J \phi\|$ for all $\phi \in \mathcal{H}$ ，then $\mathcal{Z} \in \mathscr{Q} \Phi(\mathcal{H})$ and AR $_{\Phi} \leq\|\leq\| \Phi$
i）Given $A, D \in \mathscr{L}^{+}(D)$ ．As the system definin t is directed，there is a $こ \epsilon \mathcal{L}^{+}(\mathbb{D})$ with $\|A \phi\| \leq\|己 \phi\|,\|B \phi\| \leq\|己 \phi\|$ for all $\phi \in D$ ， hence for $T \in \mathscr{S}_{\Phi}(\bar{D}):\|A T \phi\| \leq\|O T \phi\|$ ，$\|B T \phi\| \leq\|O T \phi\|$ ．By the renark above：$\|\dot{A} \Gamma\|_{\Phi} \leq\|こ T\| \Phi,\|B T\| \Phi \leq\|J T\|_{\Phi}$ ．Using the fact that $\|R\| \Phi=\left\|R^{*}\right\| \Phi$ it is easy to derive that the systems of seainorms defining the other topologies are also directed． $\tau_{\Phi}^{r}<\tau_{\Phi}, \tau_{\Phi}^{2}<\tau_{\Phi}$ is trivial．Let $A \in \mathcal{L}^{+}(D)$ ，then $\max \left(\|A T\|_{\Phi}\right.$, $\left.\|T A\|_{\Phi}\right) \leq\|A T\|_{\Phi}+\|T A\|_{\Phi}=\|T\|_{A, I, \Phi}+\|T\|_{I, \dot{A}, \Phi}$ ．Hence $\tau_{\Phi}<\tau^{\text {雨。 }}$
iii）follows fro：i）．
ii）Only the assertions about inultiplacation and the involution nust be varified．Let $\tilde{J}, T \in \mathcal{S}_{\mathbf{I}}(\boldsymbol{D}), A \in \mathcal{L}^{+}(D)$ ，then
 the essertions for the other topologies follow．For the involution it is $\left.\max ,\left\|\dot{A} T^{+}\right\|_{\Phi},\left\|T^{+} A\right\|_{\Phi}\right)=\max \left(\left\|\mathrm{TA}^{+}\right\|_{\Phi},\left\|\dot{A}^{+} T\right\|_{\Phi}\right)$ anc analogously for $\tau \Phi$ ．

Lemina 17

$\mathcal{U}_{\Phi}(\mathbb{D})\left[\tau^{\Phi}\right]$ and $\mathcal{f}_{\Phi}(D)\left[\tau_{\Phi}\right]$ are complete locally convex
spaces．

Proof：
Let（ T_{α} ）be a generalized sequence in $\mathscr{J}_{\Phi}(\mathbb{D})$ which is a $\tau^{\bar{\Phi}}$－ Cauchy sequence（ in the case of the topology τ_{Φ} all considera－ tions are sinilar）．Because $T \longrightarrow T^{+}$is τ^{Φ}－continuous，$T=T^{+}$ nay be assuned．Thus，for $A, J \in \mathcal{L}^{+}(D),\left(A T_{\alpha} B\right)$ and（ T_{α} ）are $\|_{I}$－ Cauchy sequences and since $\mathscr{S}_{\Phi}(\not \mathscr{P})$ is $\left\|\|_{\Phi}\right.$－complete：$A T_{\alpha} B \longrightarrow S$ ， $T_{\alpha} \longrightarrow T ; S, T \in \mathcal{f}_{\boldsymbol{\Phi}}(\not \mathfrak{X})$ ．It must be shown that $A T C=S$ ．For this it is sufficient to see that $A T_{\alpha} B$ converges on J weakly to $A^{\prime} T$ （since then $A T_{\alpha} P$ converges on \mathfrak{H} weakly to ATB and we can apply $/ 1 /$ ，chap．itc，Theoren 5．1）．But the weak convergence follows frou $1\left\langle\left(\mathrm{AT}_{\alpha} \mathrm{B}-\mathrm{ATB}\right) \phi, \psi\right\rangle\left|=\left|\left\langle\left(T_{\alpha}-T\right) 3 \phi, \hat{A}^{+} \psi\right\rangle\right|\right.$ ．Hence $\mathrm{ATD}=\mathrm{J}$ and consequently $T \in \mathcal{f}_{\Phi}(\mathbb{D})$ ．The only gap in the proof is to show that ATD makes sense on D ．Hor this we show $T \mathcal{H} \subset \mathbb{D}$ ．Let $\downarrow \in \mathcal{H}$ be arbitrary，then $T_{\alpha} \phi=\psi_{\alpha}$ converges to $T \phi$ ．doreover，for any $A \in \mathcal{X}^{+}(\mathbb{D}),{A T_{\alpha} \phi}_{\phi}$ is a Cauchy sequence in \mathcal{H}（because $A T_{\alpha}$ is a Cauchy sequence with respect to $\| n^{\prime}$ ）．\dot{A} clasable and $T_{\alpha} \phi=$ $=\psi_{\alpha} \in \mathbb{D}(\bar{A})$ imply $A T_{\alpha} \phi \longrightarrow \bar{A} T \phi$ and $T \phi \in D(\bar{A})$ ．Hence， $T \notin \subset \mathbb{D}(\bar{A})$ for all $A \in \mathscr{L}^{+}(\boldsymbol{D})$ ．Since $\mathscr{L}^{+}(\mathbb{D})$ was assuned to be selfadjoint the assertion follows．

The lennas below give sone examples how these topologies can be applied to get results analogous to the case $\mathcal{f}_{\text {重 }}(\mathfrak{H})$（cf．$/ 1 /$ ， chap．IIT）．

Lemona 18

i）For each $T \in \mathcal{S}_{\Phi}(D), A, D \in \mathcal{L}^{+}(\mathbb{D})$
（4） $\min \left\{\|T-F\|_{A, \Phi}^{r}\right\}=\Phi\left(s_{n+1}(T A), s_{n+2}(T A), \ldots\right)$
（5） $\min \left\|\|T-F\|_{A, \Phi}^{\prime}\right\}=\bar{\Phi}\left(s_{n+1}(A T), s_{n+2}(A T), \ldots\right)$

The minimun in（4）－（6）is taken over all $F \in \mathcal{F}_{n}(D)=\{G \in \mathcal{F}(\mathbb{J})$ ： dim $\{\leq n\}$
ii）If Φ is nono－norning，then \mathcal{F}（D）is dense in $\mathcal{J}_{\Phi}(\mathcal{D})$ with respect to $\tau_{\Phi}^{r}, \tau_{\Phi}^{L}, \tau_{\Phi}$ ，and τ^{Φ} ．
Proof：
The properties of $\overline{\mathbf{\Phi}}$ and $\boldsymbol{\tau}_{\boldsymbol{\xi}}<\tau^{\boldsymbol{\Phi}}$ give the implication i）\longrightarrow ii）． To prove i）we restrict ourselves to（4）since the other state－ ments are established in the sane way．Renark that $T A$ is completely
continuous on \mathcal{H} ，so TA $=\sum \lambda_{j}\left\langle\phi_{j}, .>\Psi_{j}\right.$ with orthonormal sy－ stems $\left(\phi_{j}\right),\left(\psi_{j}\right)$ in \mathcal{H} ．（4）follows from the analogous result for $\boldsymbol{S}_{\Phi}(\mathbb{X})$ used for TA．The only point where we nust be careful is the restriction $F \in \mathcal{F}_{n}(\mathbb{J})$ ．Thus，we will show that there is an $F \in \mathcal{F}_{n}(D)$ such that $F A=\sum_{j=1}^{n} \lambda_{j}\left\langle\phi_{j},.\right\rangle \psi_{j}$ ，then all is clear． Set $F=\sum_{j=1}^{n} \lambda_{j}\left\langle\rho_{j},.\right\rangle \psi_{j}$ and determine ρ_{j} in the necessary way． The desired operator F is obtained for $\rho_{j}=\lambda_{j}^{-4} \quad T^{+} \psi_{j}$ which is
easy to verify using the equation

$$
F A=\sum_{j=1}^{n} \lambda_{j}\left\langle A^{+} \rho_{j}, .\right\rangle \psi_{j} \text {. Q.E.D. }
$$

As in case $\mathcal{J}_{\Phi}(\mathcal{H})$ one could introduce the $\tau_{\Phi}^{r}-, \ldots, \tau^{\Phi}$－closu－ res of $\mathcal{F}(J)$ in $\mathscr{f}_{\Phi}(D)$ and would get corresponding one－or two－sided ideals in $\mathscr{L}^{+}(\boldsymbol{D})$ ．woreover one could prove some results about separability of the so obtained ideals．For brevity we indi－ cate such a result for mono－noraing

Lema 19

Let Φ be nono－norning．If $\mathscr{F}[t]$ is separable，then $\mathcal{U}_{\Phi}(\mathbb{J})$ is separable when equipped with any of the topologies $\tau_{\mathbf{\Phi}}, \tau_{\Phi}{ }_{\Phi}^{\text {，}}$ $\tau_{\boldsymbol{\Phi}}, \tau_{\text {玉 }}$ 。

Proof：

Jecause of Lenna 15 i）it is sufficient to consider the topology $\tau^{\text {朿．}}$ Let \mathcal{N} be an arbitrary countable t－dense subset of \mathcal{J} and put

$$
\mu=\left\{F=\sum_{\text {finite }}\left\langle\phi_{j}, .\right\rangle \psi_{j} ; \phi_{j}, \psi_{j} \in \mathcal{N}\right\} \subset \mathcal{F}(D) .
$$

We show that μ is τ－dense in $\mathcal{F}(\mathbb{D})$ and so as a consequence of Lema 18 ii ）the Le ana is proved．
Let $\left.G=\sum_{j=1}^{n}\left\langle\rho_{j},.\right\rangle x_{j} \in \mathcal{F}(D), A, B \in \mathcal{L}^{+}(D), \varepsilon\right\rangle C$ be arbi－ trarily given．If there is an $F \in \mu:\|G-F\|_{A, D, \Phi}<\varepsilon$ then we arrive at the desired result because the system of seainoras for τ is directed．
ror $F=\sum_{j=1}^{n}\left\langle\phi_{j},.\right\rangle \psi_{j}$ the estiation $\| G-\mathcal{H}_{A, B, \Phi}=$
$=\left\|\sum_{j=1}^{n}\left(\left\langle E^{+} \rho_{j}, .\right\rangle A x_{j}-\left\langle B^{+} \phi_{j}, .\right\rangle A \psi_{j}\right)\right\|_{\Phi} \leqslant \sum \|\left\langle\Gamma^{+}\left(\rho_{j}-\phi_{j}\right),.\right\rangle A x_{j}$
$+\left\langle D^{+} \phi_{j},.\right\rangle\left(A x_{j}-A \psi_{j}\right) \|_{\Phi} \leq \sum\left\{\left\|B^{+}\left(\rho_{j}-\phi_{j}\right)\right\| \cdot\left\|a x_{j}\right\|+\right.$
$\left.+\left\|D^{+} \phi_{j}\right\|\left\|A\left(x_{j}-\psi_{j}\right)\right\|\right\}$ shows that the ϕ_{j}, ψ_{j} can be chosen so that $\|G-F\|_{A, \sqcap, \Phi}<\varepsilon$－
«.E.D.

We conclucie with sone criteria（corresponding to those for $\mathbb{A}_{\Phi}(\nVdash)$ ） for $T \in \mathcal{O}_{\Phi}(D)$ ．

Leman 20

Let Φ be such that $\left.\mathscr{L}^{\Phi}(\not)\right) \neq \mathscr{d}(\not)$ ）．
i）If $\left(T_{T R}\right) \subset \mathcal{J}_{\Phi}(\mathcal{D})$ converges on \mathcal{D} weakly to $T \in \mathcal{L}^{+}(\mathcal{D})$ and $\sup _{\mathrm{m}}\left\|T_{\mathrm{m}}\right\|_{A, D, \Phi}=\sup \| A T_{\mathbb{B}} B^{n} \Phi<\infty$ for all $A, B \in \mathcal{L}^{+}(D)$ ，then $T \in \mathcal{J}_{\Phi}(D)$ ．
ii）If $\mathcal{L}^{+}(\mathbb{D})$ contains a nonotonically increasint sequence（ F_{n} ） of finite dinensional orthoprojections converefine t－stronsly to I ，i．e．$\left\|A\left(P_{n}-T\right) \phi\right\| \longrightarrow 0$ for all $\phi \in D, A \in \mathcal{L}^{+}(D)$ and $\left(P_{n} T P_{n}\right)$ is τ^{T}－bounded for some $T \in \mathcal{L}^{+}(D)$ ，then $T \in \mathcal{S}_{\Phi}(D)$
iii）Let $\left(P_{n}\right)$ be as in ii），$S, T \in \mathcal{L}^{+}(D)$ ．If（ $\left(S P_{n}{ }^{T P}{ }_{n}\right.$ ）is τ^{Φ}－boun－ ded，then $\Sigma T \in \mathcal{J ̛ 口 ~}_{\Phi}(J)$ ．

Proof：

We will only prove i）since the other asjertions follow by siailar considerations．In $/ 1 /$（Theoren 5.1 ，chap．III）it is shown that
 $S \in \mathcal{J}_{\Phi}(\not)$ ）．Applying this result to the sequence $A^{T} \mathbb{m}^{B}$ it remains to show that $A T_{i n} B^{B}$ converges on \mathcal{H} weakly to ATD．It is $\lim \left\langle\mathrm{AT}_{\mathrm{a}} \mathrm{B} \phi, \psi\right\rangle=\lim \left\langle\mathrm{T}_{\mathrm{m}} \mathrm{E} \phi, \mathrm{A}^{+} \psi\right\rangle=\langle\mathrm{ATB} \phi, \psi\rangle$ for all $\phi, \psi \in \mathbb{I}$ ．Hence $A T_{\mathbb{Z}}{ }^{B} \longrightarrow A T B$ weakly on \mathbb{D} ．Secause $\left(A T_{m}{ }^{B}\right.$ ）is boun－ ded with respect to the operator norm this sequence is also weakly convergent on to the bounded operator ATL．
a．E．D．

Remark that the existence of a sequence (P_{n}) such as mentioned in ii) and iii) of the above Lema is guaranteed for example in the important case where $D=\bigcap_{n} J\left(R^{n}\right), R=R^{*}$.

Acknowledgement

The author is Erateful to Prof.G.Lassner for stimulating discussions and Prof.A.Uhlmann for his interest in this work.

References

 рпженннх операторов в гильбертовом пространстве, Москва, 1965.
2. G. Lassṇer. Topological algebras of operators, JINR Preprint E5-4606, Dubna 1969. Rep. viath. Phys. 3 (1972), 279-293.
3. - , hathematische Beschreibung von Observablen-Zustands-Systemen, ilissenschaftliche Zeitschrift, K.UU, Leipzig, 22 (1973), 103-138.
4. - , i. Timnernann. Normal states on algebras of unbounded operators. Preprint, Kiew 1971. Rep. Wath. Phys. 3/4 (1972), 295-305.
5. B.Tinmernann, W.Timmermann. On ultrastrong and ultraweak topologies on algebras of unbounded operators, JINR Commun. E2-10242, Dubna 1976.
6. W. Timmernann. Simple properties of some ideals of compact operators in algebras of unbounded operators, JINR Preprint E5-10756 Dubna 1977, Math. Nachrichten (to appear).
7. - . On an ideal in algebras of unbounded operators, JINR Preprint E5-10757, Dubna 1977. Math. Nachrichten (to appear).
8. Г.Kato. Notes on some inequalities for linear operators, Wath. Annalen 125 (1952), 208-212.
9. ih. Reed, B.Sinon. Vethods of modern mathematical physics, Vol.II, New York 1975.

> Received by Publishing Department on June $15,1977$.

