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The closure of the set of finite dimensional opera-
tors of £*(f) with respect to different topologies is
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normal, irreducible representations are equivalent to
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In this paper we continue the considerations of /12/ and refer

to this paper for general remarks on the subject. We concentrate our

attention on the closure of the ideal of finite dimensional operators
of £'(¥) with respect to different topologies, The ideals obtained
in this way reflect many properties of the ideal of completely con-

tinuous operators in Hilbert space. For example, the dual space can

-be identified with a certain ideal of trace class operators, irredu-

cible representations are (under some natural restrictions) equiva-
lent to the identical representation and so on.,

1. PRELIMINARIES

To make the paper independent of /12/ we recall sone definitions
(see also /3/,/6/). For a dense linear manifold ¥ in a separable
Hilbert space ® by £'(D) we denote the » -algebra of all operators
A (bounded or not) with AB ¢ 8 |, A" D<= T |, The involution is
given by A — A" = A*5 . A x -subalgebra of £% (D) is called op*-
algebra, X'(D) defines a natural topology t on B given by the di-

rected system of seminorms

D3g —udh, =hagt , Ae (D),

LY (D) is said to be closed if BNLt] is complete or equivalently,

dD=NBJ@
LYT Al -}

It B =

ND ), L'(D) is called selfadjoint.
At 2'iD)



+ . . . Proposition 1
In &' (5) we introduce the uniform topology Ty given by the _ . . . .
system of seminorms Let £'(P) be selfadjoint and Blt1 a metrizadble sPace. I‘kjnen
any normal linear functional « on &£* (B ) is Yy -continuous,i.e.

A AN, =¢*s:1i‘<¢' Ay for any functional w with w(A) = Tr AT , Te £, (I¥) there is a

and the quasiuniform topology t® given by the system of seminorms t-bounded set it such that .
(1 lw (A)V £ W An,, for all A e £(D).
A — IA\\‘:' = ::1& \\BAQ‘\\, B € * (D) arbitrary. Proof:
In both the cases JL runs over all t-bounded subsets of I , i.e. Let Tef,(D), T = UH the polar decomposition, then H = (T’T)‘IIEJ"‘ (3).
@s:xi WAd L <o for all Ae £*(D)., Remark that the seminorms defi- Let Hd, =Ac 4. , A A0, ( i) the orthonormal system of correspon-
ning ¥y can be extended to all operators of B (%) and &£ (8Lt]), ding eigenvectors. The system { W W,, we™N } of seminorms defi-

the continuous linear operators of ¥[(t] into itself, the seminorms

ning the topology t can be given by a family of operators
defining t® can be extended to &£ (J{t1). The following definition

ol ={A e £%(D): NPU =NA QW , T £ A =A% €A A" . < ..,

is for simplicity given for selfadjoint X* (). A linear functio- (2) > n+1 n+l
nal w on &£'(3) is said to be normal if it has the representation 8o that & € Ol implies A = Ay € O }.
s * *
WI(A) = Tr AT =Tr TA for all A€ L o, Take into account that U, U™ are bounded and thus AnH, u AnT

where T belongs to the two-sided ¥ -ideal
F (D) ={Te 2*(B): TA, ™A nuclear for all Ae Y (M} =
={T e £%D): AT, AT* nuclear for all A € £*(D) }

limlcar, one gets the absolute convergence of the following series:

(%a) Z(U'AnT ®, 4> = Z A (U"A U &, 4> < o= for all n

(et./6/,/13/). () 2 CAH ki, %> =2 Adh &, &> < ©°  for all n.
By F (D) we denote the minimal two-sided # ~ideal of all finite *

dimensional operators of &£*(P). “FID) @ (closure in £* (D)) Similarly as in /6/ one shows that there is a sequence (o), a2 1
is a two-sided #-ideal in &£* (¥) (may be no proper one) /12/, (4a) Z A o < o=

We remark that because of /12/ ( F (P )t" = Com({,ﬂt’ = Con(t, n-n)t')
all results concerning ¥ (D f't’ are also valid for the just mentio- _
ned sets. Com(t,t) (Com(t,u W) resp.) denotes the set compact maps (4c)  sup (1/ )<A ki) &¢> < oo for all n,
from BCtl in DLt ( B Cuw) resp.) which belong to L* (D).

(4b)  sup (1/ &) <U"A U &, 9: > <= for all n

Set JL = { (1/«f*)U&, I/« )& , i31,2,... §

2. A RESULT ON DUALITY Remark that T, T* ¢, (D) implies that &; , Uk;eD , i.e. DT .

Let us note that Tef, (U) does not imply Ue &£*(D), where T = UH.

In this section two propositions are given which generalize and JL is a t-bounded set since

systematize some results of /6/ and /11/. For the proof we use the
i i sup WA_(1/a** YW w
same idea as in /6/, Theorem 2. op RALLT *

sup (1/ e )<Ar21U e, Ud > = sup(1/4:)

A

< UM, )Uds &> < ( (2) and (4b) ). In the seme way it is

sup NA_(1/at* ) &:W* < °° ((2) and (4¢) ). Moreover, if A€ £Y(D)
[



arbitrary, the closed graph theorem gives lA$U < Z\\An PN e
finite i '

llence, the t-boundedness of M is established.The %y -continuity of
w 1ls seen fromn the estimation

Vw (A= \Z(AUH 4;:#0\ ﬁZA-LKAUJ;;,cbi >\ =

=Z ey )V (1/de JCAU ¢, $i>1 £ (L Ace ) WA, .

Q.5.D,
The next proposition deals with the question when a Ty -continuous
functional is a normal one.

Proposition 2

Let &' () be selfadjoint and such that any normal functional
is Ty -continuous. Then any %y -continuous linear functional « on

FI(8) °® is normal on T(n) °
H]

i.e.

(5) FIO) Pre) ¥ 8, (D)

Proof;:

( algebraic isomorphism),

The Ty -continuity of the involution A —» oY allows us to restrict
ourselves to real functionals. Joreover since ?(TT"‘“ is an Op*-
algebra, the positive cone is normal with respect to Xy /9/ and
consequently it is enough to regard only positive Xy -continuous
functionals /8/. Thus, let « be such a functional with

1w (4)) £WAn,, for suitable t-bounded JL and all A e T{H TP .,
For <&, .>4 ¢ ¥ (D), 44 €D, as a consequence of
Ve (<d , >%)lE sup 1< g X2 L9510 S KUSN-Np N

SiXxewm

the bilinear fora w ( <%, «>% ) is W -uw-continuous on D and
can be extended to such a one on ® . This implies

WI<d, H>%) =<, Tv> , T eB(R), $.veH.
The linearity of w gives moreover
(6) W (F) =Tr FT for all F ¢ ¥ (D),

T has the following properties: T 2 0 since w is positive,
Let $e¢d, v ® then

lwW (KA S , >N =1CAy, Tad\$ geup \CA& , @ <K WIEL(A, ) W &\
X6 an

for arbitrary A ¢ £*(D) means that Tr € D(A*) for all A€ 2*(D).
By the selfadjointness of £*(D ) this gives T3 < B, hence TA
and AT are bounded for all A. The proof that even Te &,(D) was
given by Uhlmann /16/ (see alao /10/) and uses essentially the po-
sitivity of w . The assumptions of the Proposition say that in (5)
there stand *p -continuous functionsls on both sides, thus (5) can
be extended to (B ) '°® and one gets the desired result.

Q.E.D,
Corolla Theorem 6,

Let &* (D) be selfadjoint and ¥ such that there is an ope-
rator N €2'(5 ) with N* 1{is nuclear. Then the Ty -continuous
(positive) functionals on X* (8 ) coincide with the normal ones.

Remark 4
Proposition 2 reflects the result valid for the ideal K (®¥)
of completely continuous operators on'# which can be expresaed as

C(®)Cv u)' 3 o, (20w 1,3

‘where Il '\ is the operator norm, W\ W,the trace norm, &, (&) the

ideal of trace class operators. Here " ¥ " means algebraic and topo-
logical isomorphism /1/.

3, FURTHER PROPERTIES OF F(J )P

For completenesa let us recall the following definition.

Definition §

A topological algebra ®Ctl is said to be an annihilator algebra
if ®(%3)={Aew: 3Aa=0} #{0)for any closed proper left
ideal 3 and &£ (}) ={Ac@:4A] =0} # {0} for any closed pro-
per right ideal § and R(®R) = &L (W) ={0}.

In what follows we need two lemmata.

Lemma 6

If 3<2(B) is a Ty -closed left ideal so 3" ={a*: a4 €}}
is a ¥y -closed right 1deal.



This is a consequence of the Xy-continuity of the involution.

Lenna 7 (/2/,Theoren 3.5, adapted)

Let A (D) be an Op”-algebra which contains F(¥). Then
®R(3) ={0} if and only if ¥ (B)e'} for any left ideal 3 inA(D).

Since F(8)' = T(J) these two Lemmas give () ={ 0y if and
only if F(Dd)ec '} for any right ideal F in A (D) ( K(D)
as in the Lenua above ). Now it is easy to prove:

Proposition 8
F(D) "CTy1 is an annihilator algebra.
Proof':

Setting B = W*‘, Lemna 7 immediately gives ®R(R) = £ (®) =
=40%. Let '] be a Ty -closed proper left ideal, then ¥ (D)<t }
and consequently the same Lemna shows R (3 ) #{0} . Analogously
for a prover closed right ideal } : &L (3) #{0}.

Q.E.D,

In /15/ Uhlmann among other things proves the following interesting
result: Two maximal Op®-algebras LY D) and 2* (D') are
# —isomorphic if and only if there is a unitary ope-
rator U such that UD =1' ,

Now we give a slight generalization ; simultaneously this result
corresponds to /1/,Theorem 4,1.& for the case K (R ). For simpli-
city let us assume that D and D' are contained in the same Hil-
bert space .

Proposition 9

Let i be a ¥ -isomorohism between F(N) and F (D).
1)  can be extended to an algebraic and topological isomorphism 1,
between L% (B )Cxz1 and £*(d') [, T N
ii) W, is given by a unitary operator U with U® = D' such that

T, (A) = VAU for all 4 € 2¥(D).

ii1) A unitary onerator V gives %, (resp,w ) if and only if
V= 2AU with \x\ =1,
Proof':

The proof of Uhlmann's result does not use the » -isozophisam of

L* (D) and £*( '), rather it is enough that ¥ (D) and ¥ (T')
are * -isomorphic (by the way,this follows from the x -isomorphy of
the maximal Op*-algebras). Therefore a unitary U exists with U D =
=P and W(A) = UAU™* for all A € F (D), Clearly w, (A) = UaU ™"
for all A e* (D) extends this isomorphism in the desired way, hen-
ce ii) holds.,

Now let M' be a t'-bounded subset of D' . Then U™ a'= un is a t-
bounded subset of ¥ since sup TA4W = sup WAUT'$M= sup W UAU ‘&Y=
N s ABTN e

=sup lA'4 W <« =@ . Further

1

WA (AN, = sup 1cg, T, (A)%>l = suplcU”'e , aU 'y >\ =
% e
= sup i<g, Ax>l=UA N, , where JL = U'ul' . Thus i) holds.
PXeu

One direction of iii) is trivial. Let W, (A) = UAU™! = vav™' , con-
sequently V™“UA = AV™'U, i.,e.,#A = A7 for all &4 ¢ £*(J ) and the
unitary operator W. But any operator commuting with &£* (3 ) must bde
a multiple of the identity, thus W = A I and the unitarity implies

Al =1, WeE.De

Remark 10

Of course, in the above Proposition the topology Ty is by no
means distinguished, The same result is valid for the weak topology
Gy » the strong topology o ® , the quasi-uniforn topology ® or
other suitable topologies as defined for example in /4/,/5/.

An important property of the ideal of completely continuous opera-
tors on Hilbert space reads as follows:" any irreducible represen-
tation (distinct from the null-representation) is equivalent to the
identical representation", We prove the corresponding result.

Proposition 11

Let [ be such a domain that any w4 -continuous linear posi-
. . Ty . .
tive functional w on "F(3) = B is normal. Then:
any weaxly continuous irreducible GN3-representation ., of the
ideal FT (DY °® (distinct from the null-representation) is equi-
valent to the identical representation.



Proof:

The GNG-representation ¥,, is characterized by: the state e> , the

% -algebra of operators ., ( ® ) defined on the linear manifold
D, endowed with the scalar product <, » ., and the cyclic vector ¢,
which represents the state w as a vector state by

(1) WA = Ly, T, (A) LD , e N,= 1,
deak continuity of 4, means especially Kh,s T (B)dud, ) £ 04 W,
for a suitable t-bounded set uL < D{tl . This together with (7)

leads to the Yy -continuity of w , By assumption, this implies

the noraality of w ., Further, irreducibility of %, results in that
« is a pure state /7/. This and the normality of w give that w
iy a vector state /11/: w = <&, . &> JA¢W\ =1 ., Hence
W) =<%, A¢> =< &y, T, (A) b 2, « This equation gives us
the desired result that ., and the identical representation are
equivalent because $ and &, are not only cyclic but even generating
vectors, i.e. § =4 Ad : aen) » U= A%, ()90 : AeR) s and

the representation is determined by the functional w up to equiva-
lence /1/.

Q.E.D,
Remarks 12

i} By "irreducible” we mean here that the weak commutant is trivial
(c£./7/,/14/,/17/).

ii) In the bounded case the assumption "weakly continuous GNS-repre-
sentation” is unnecessary because L (3) is a C’-algebra, 80 that
any # -representation is continuous. Moreover any irreducible #-repre-
sentation is a GNS-representation since in the bounded case one has
( irreducible ) «— ( any % ¢Dy, & #0 is cyclic ) —» (% is GNS-
representation).

iii) The assumption that any Tp -continuous state is normal is used
in the proof only to get the implication (2 pure ) —» (W is a
vector state ) , since we know only this result VARV

We conclude the paper with a proposition about centralizers. For ge-

nera (topological) algebras the concept of centralizers was rather
extensively studied by Johnson /2/.

10
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Definition 13

Let R be an algebra., JWe denote by
i) C(R) the set of all left-centralizers T on® ,i,e. T is a 1li-
near map from R in R such that T(x)y = T(xy) for all x,y ¢ R.
i1) C.(R) the set of all right-centralizers T on R ,i.e. T is a 1li-
near map fron R in R such that xT(y) = T(xy) for all x,y € R

The provosition below generalizes a result of Johnson (/2/,Theoren 18,
for & (E), E - SBanach space) to the algebra &£( D Ctl). In /12/,
Lemma 8 we proved that F (J) is t® -dense in ¥ ,the set of all fi-

> _
nite dinensional operators of &£ ( ILtl). Hence A := T (D) =
= 7F ™™ where —=® means the closure in £ ( Bitl). R isa
two-sided ideal in £( DLtl ) (may be no proper one).

Proposition 14
Let DL t] be an (F)-space, then there exists sn algebraic iso-
morphisn ¥ from &£ (DLtd ) onto C (M ) given by

(8) T(B) =T Ta(C) =BC , Bed (BLtl), Deh

B ’
Proof':
It is easy to see that (8) defines an isomorphism "in". To show that
this is also an isoworphism "onto" we use an idea from /2/. lLet T e
€C{(R). We show the existence of an operator Be¢ £ { BLt1) such
that T = Tg. Let $.%,eD , CihCreR , Cib,=Cr%: , then
(9) T(C)) da = T(C,) &2

r .
To see this suppose ¢, # 0, let weBLt]l with o« (&,) = 1. By P,q
resp., we denote the following one dimensional operators (e R ):
PN = w(i)d, ,Qy =w(¥)®2 for allw D, Then P&, = &, ,
Qe =P, , C,P = C,Q and consequently T(C])ﬁu = T(C‘)P b, =
= T(C,P) ¢, = T(C,Q) &, = T(Cy) %, , i.e. (9) holds. Therefore
(10) " B: BaA=T{C)% ,C¢% =% ,Celh , $ed, ¥yeD
is a correctly defined operator which maps ¥ into » . Remark that
(10) means BC & = T(C)® ,i.e. T = Ty (cf.(8)). It remains "co
show that B maps BL t1 into itself continuously. The assunption on
BLt] allows us to write:

a1y d = n DR , A, =Aa e (D), hey <ha gl CUARN i<

11



Let {dn} be an arbitrary infinite orthonormal system (with respect
to the scalar product <,» in& ) in J . From the countability of
the system of norms {\ W, } defining the topology t one easily de-
rives the existence of a sequence ( fa), Bn > O such that the sequen-
ce ( Bnda) is t-convergent to zere, Suppose B¢ &£ (I (tl ), then
there is a sequence (%,)c D such that %, —> 0 (with respect to t),
but (B, ) does not converge to sero, If necessary we choose a sub-
sequence Yo, = X« fulfilling

ha X W< ®nfn for all n , Zd.‘< o , (B X.) is not t-convergent
to zero, Consider the following series:

C=2 (1/Ba)<&n, > %n .

1. For each ¢¢D: Z (1/Pa)<¥n 4 >Xn is t-convergent, so C de~

fines an operator mapping B into B (as DL t) is complete), This
follows from the estimation

o

N
'y Z1 (1/Ba)< 4o, &>R ) & 19N D (1/Ba ) WA Kol £
n=

n=1

¢ : (1/Bad WA Xal 4 2 (1/Bn) A Xol 4K <00,
n= J n>J n

2. The operators Cy = i (1/Ba ) &gy +>Xn €A converge to C
n=s

with respect to the topology t®. To see this, let D GI’(D), N e
< d(t1 bounded, then

he - cou ¢ sup
N7o dewr m

. 4 .
2 /B UA XA £ 10 (/B NA XN 610 %a 5 the

n»*N

(1/8n ) K . & .
5 Bn Pas 2\ -UDB XN :\:&Hﬂ

last term goes to zero as N —» ©o | (for the estimation the closed
graph theorem was used).

3. C is continuous from DLt into D(t] , Let (P, )ec D,
®a —> O with respect to t, then C ¢, —» O since

i Akc 93“ £ Z (I/ﬂn)|<§“' ?3>\ ! ‘kxn“ €M Z‘I/ﬂa) “?‘\\“Anx‘\\\é

chg; U M Z‘*n and this term tends to zero as j —~ o=

12

The properties 1.-3. show that C € A . Jdoreover C{ Pn. %, ) = X, for
all n and from (10) it follows

B Xy = T(C)(Bndn).
But this is a contradiction because (Rn%.) is t-convergent to zero,
T(C)e¢ A hence T(C)(RBn¥bn) is also convergent to zero while (BX, )
does not. So we have proved that Belf ( B €t] ). This and (10) comn-
plete the proof.
QeEeDe

Remark 15
Because many (F)-spaces used in analysis are of the foram indica-
ted in Proposition 14, this result holds for a sufficiently large

~ ¢lass of locally convex spaces. For general (F)-spaces let us remark

the following. Let EL*l be an (F)-space and T given by the system

of seminorms {p ; n=1,2,... }.In & (Et%l) regard the topology v E

of uniform convergence on the * -bounded subsets JL < ECT1] (in

our situation this is exactly *® ). By A denote the tf —closure
(in % (Et%1 )) of the set of finite dimensional operators in
Z(Etx1 ). Then Proposition 14 can be proved under the following

agssumptions: There is an infinite biorthogonal sequence N’“'fn y,

i.e. (f)<E, (£ )cECYI , f ($m) = 0« nfn,

Further, (&,) is T -bounded, (f,) is equicontinuous,
i.e. \fn((>)\ & pj(q;) for all n, & € E, for a suit.
able J.
We do not suppose ( §,.) to be a basis of Ec%d . The only crucial
point may be the equicontinuity of (fn). In the proof one would set

Co 2 (V/E (%) IKn @ £,
where (X,9 fn)( B ) = fn( &4 )Xa .+ (Xa) an appropriste subsequence
of (Nen).
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