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The Faddeev equationsll/ describing a system of
three spinless particles are reduced to a one-dimensional
integral equation if the angular variables are separated
and the two-particle interaction is taken in separable
form. This equation can be written as follows

Fi{x) = Fo(x) + [ dx"Kix, %] E?).F(x'), (1)
V] )
(E 3 - total energy in ¢ms).

The difficulty in solving this integral equation nume-
rically at positive energies Ej3 consists in the fact that
the kernel of the equation contains a pole (if the inter-
action is strong enough) and two logarithmic singularities
on the path of integration. Mainly two methods are in use
to solve the singular integral equation numerically.The
first one due to Hetherington and Schick/?/ is based on
the deformation of the contour of integration. Although
this method has been used successfully in a number of
calculations (e.g., /3/), it has the disadvantage that it
requires the kernel K(x,x’,EH) and the function Fix ")
to be extended to complex values of x’.

Sohre and Ziegelmann /4/ proposed another method
which avoids the contour deformation. This is achieved
by factoring out the singularities of the kernel in the
form (with the Ea-dependence omitted in the notations)

j’dx"K(x,x’)F(x’) = 2 fdx” S, (x"— q.l(x))fi(x,x’), (2)
0 Lo

where the functions Si(x"qi(")) describe the singulari-
ties and the functions fi(x,x’), the smooth part of the
kernel. Now an arbitrary set of mesh points is choosen.

3



Between the mesh points the functions f(x.x") are
represented by interpolation polynomials. Then the remai-
ning integrals over the singularities can be taken analyti-
cally. The method/%/ has been applied, for example, in
paper /57,

The pole singularities are handled usually by the so-
called subtraction method in the form

Rp(x)F(x )
[dx 7K (x, xVE(x) = [dx (K (x,xIF &) - — A

(x —z )
X T (3)

dx’

s RGOF)—22—— 0 2 =x +i0,
P (x'—zp) P

Here Rp(x) is the residue of the kernel at x’=x,. The
integrand in square brackets is now a smooth function of
x’ in the region of the pole. The integral can be simply
calculated by numerical integration. The second integral
on the right-hand side can be taken analytically. The
quantity x, is chosen to be among the mesh points.

As an alternative to the methods mentioned we pro-
pose to subtract the logarithmic singularities of the
kernel in the same way as the pole singularity is subtrac-
ted. Then we have the following splitting of the kernel

: R (x)F{x )
[dxK (x, xVF(x7) = [Ax 1K (x, x)F (x) = — 3
(x’—zp)

(4)
_Ifi(x),l'f(xl)ln]x’—xﬂ -2 +

+R (F(x ) -
P P (x'—zp)

Here the abbreviation (2) stands for the second logarith-
mic singularity. The position of the first logarithmic
singularity is denoted by x|(x}. The quantity R, is

dx” a
4 R (F(x,fdxIn] x%x J+2)

the logarithmic residue at this point. As is known, the
decisive difference between the pole and the logarithmic
singularities in the considered integral equation is the
fact that the positions of the logarithmic singularities

depend on x (moving singularities) whereas the pole
is independent of this variable. Therefore, as is men-
tioned in/4/, it would be very difficult to construct an
integration mesh with x (x.) and Xy{x,) among the mesh
points for any arbitrary mesh point x; . In practice,
however, there is no necessity for x,, x, to belong to
the mesh point set since the quantities F(x |} and
F (x,) in eq. (4) can be easily calculated from the values
of F in the neighbouring mesh points by simple inter-
polation. If the function F  to be calculated has a suffi-
ciently smooth behaviour (and only in this case the nume-
rical solution of eq. (1) is meaningful), the interpolation
can be done with sufficient accuracy. Thus, In practice
there is no essential difference in handling moving and
not moving singularities in numerical calculations. But
we have to mention another point. After subtraction of
the pole term for x’=x_ the kernel behaves like K..x"F
ca,+a,(x=x)+.... For the logarithmic singularities
we get K. x) = bylx"=x ) In|x = x| +hy(x = x)2 In|x=x() b

This means that after subtraction the pole singularity is
completely extracted, whereas for the logarithmic singu-
larities there remains an irregular behaviour of the dif-
ference kernel at x'=x; (the derivatives turn to infinity
at this point). This irregularity leads to increased error
of the numerical integration in the region of the logarith-
mic singularities. However, numerical tests have shown
that in most practical applications the accuracy would be
within acceptable limits even if Gaussian integration is
used (which is not very suited in this case). Of course
one can obtain any reguired accuracy if a suitable integ-
ration method is chosen with the step in the numerical
integration taken small enough. Here again the values of
F between the mesh points are calculated by interpola-
tion from the mesh point values. Moreover the behaviour
of the difference kernel at x’-x;  can be improved by



additionally subtracting in eq. (4) for each logarithmic
singularity a term of the form -

(R WF(x) 4 Rl.{X)F’(xI).» X" = x dinix" - x|

with L, = "1,2 Here K[ (x} can easily be calculated if the
explicit form of the kernel is known. The function F* (%)

is the first derivative of F at x’=x .The derivative can be
calculated without difficulty from the interpolation poly-
nomial for Fix ).

The proposed method has been applied to calculate the
eigenvalues of the Faddeev-kernel for separable inter-
action /6/, The results coincide with those obtained using
the described method of Sohre and Ziegelmann. Although
it is difficult to define a unique criterion for comparison
of the different methods mentioned it seems to us that
the proposed method can be used effectively for three-
body calculations. Especially if the required accuracy
is not very high, the method works very fast.
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