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1. Iritroduction 

In the present paper we continue (see [1-4]) to develop approximate methods of description 

of a collective motion in heated finite Fermi - systems in the framework of thermo field 
dynamics. 

A standard technique of treating quantum many-body systems at finite temperatur~ T 
is the temperature-dependent Green function method (see, e.g. [5)). But other approaches 

exist as well. We apply here the so-called thermo field dynamics (TFD) [6). In contrast 
with the temperature-dependent Green function method TFD is a real-time formalism, 
that is temperature T and time t are independent variables within TFD. The TFD 

formalism is quite convenient for our purposes since temperature effects arise explicitly as 
T-dependent vertices, thus providing a good starting poi,nt for various approximations. 

The main idea behind TFD is a construction of ~ field theory in which the grand 
canonical statistical average of a quantity A is given by some sort of expectation value 

rather than the trace operation 

1 
«A»= Tr(exp (-H/T)) Tr [A exp (-H/T)] = (0(T)IAI0(T)) . 

' . 

TFD gives rigorous prescriptions how to construct a representation in which the "vacuum" 
expectation value coincides with the statistical average. This aim is achieved by a formal 

doubling of the Hilbert space of a system. One introduces a fictitious system which 
'is of exactly the same structure as the physical one under consideration. The whole 

Hilbert space of a hot system is spanned by the direct product of the eigenstates of 

the Hamiltonian Hin) = Enln) and those of the "tilde" Hamiltonian having the same 
eigenvalues. Hin) = En In). With the doubling of the Hilbert space one can write the 

expression for a "vacuum" state l'11o(T)) that is called "the thermal vacuum state" 

l'11o(T)) = JTr(exp\-H/T)) ~exp(-:;)ln) ®Iii). (1.1) 

The vectors lh) and In) appear as a pair, and the function of Iii) is merely to pick up the 
diagonal element of A; .A tilde conjugate operator A acting in the tilde space is associated 
with any _operator A acting in the ordinary' space' in accordanteWith special rules [6). 

The time - translation operator iri the hot system appears to·be a thermal Hamiltonian 

1£ defined by if. = H - H. Properties of the system excitations are obtained by the 

diagonalization of 1l. The thermal vacuum is an eigenstate of 1l with a zero eigenvalue. 
Thus, the·dymi.mil::al developm~nt of the system is ·carried by the thermal Hamiltonian 
while the thermal-behaviour is controlled by th~ thermat·vacuum. 

The TFD approach provides transparerit interpretation of a collective motion in a hot 

Fermi - system. The thermal vacuum can be regarded as a temperature - dependent 



wave function of a compound nuclear state. Collective excitation is produced by applying 

the corresponding collective operator (phonon operator) to this thermai' vacuum state. 

Properties of the; collective excitation are dependent on the.vacuum correl,ations. 

There are two well~known approximations to describe excitations in hot finite Fermi 

- systems: the thermal Hartree - Fock approximation (THFA) and the thermal random 

phase approximation (TRPA). The latter was applied to study a giant dipole resonance 

in hot nuclei (see the review paper [7] and references therein). Also some.approximations 

going beyond TRPA were considered but merely a coupling of thermal particle-hole or 

TRPA phonon excitations with more.complex ones was studied [4, 8]. 
At the same time, while studying low-energy nuclear excitations quite elaborate modi­

fications ?f the standard RPA we~e suggested [9-11]. And only a few of these new variants 

of RPA were applied to the T =/= 0 case [1-3). It seems interesting to formulate a general­

ization of the thermal RPA like it.was done for RPA in "cold" many-body systems. Here, 

we present such ~ generalization. In our .studies we follow general schem,es and ideas of 

refs. [2, 10). 

2. Mean field approximation· in• TFD 
j. 

We start a discussion as in [2) describing a thermal mean field approximatio'n. ( or a _thermal 

Hartree - Fock approximation). Let us consider a system of N fermions with a two-body 

interaction. The Hamiltonian is 

'"" + 1'"" ++ H = 6 t12a1 a2 + 4 w ½234a1 a2 a4a3 , 
, 12 1234 

(2.1) 

where a+ and a are fermion creation and annhilation operators. The one-body part of 

the Hamiltonian t12 = T12 - .M12 contains a kinetic energy matrix T12 and a chemical 

potential A. 

To describe properties of the system when, it is heated up to finit~ temperature T 
within the framework of the thermo field dynamics, one should build the thermal Hamil­

tonian of the system 1i = H - fl and then find the corresponding thermal vacuum state 

IIITo(T)). The thermal vacuum state should be an eigenstate of 1i with a zero eigenvalue: 

Obviously, one cannot resolve the problem in general: A series of necessary approxiina~ 

tions begins with a thermal mean field approximation. 

·Usually, under statistical consideration of a highly excited (heated) finite Fermi system 

the· unified statistically averaged single-particle mean field is used for all energy states 

(instead of finding. the best 'single-particle approximation for every state· in 'a partitio~ 

function). The single-particle Hamiltonian Ho corresponding to this mean potential can 

2 

be written as 

Ho= Uo+ LE1ata1, 
I 

(2.2) 

where U0 is a constant, E 1 are single-particle (or single-quasiparticle) energies. According 

to Bogoliubov's variational theorem [12), a model thermodynamic potential defined by 

nmod(H) =no+« H - Ho »o' (2.3) 

is the upper limit of the "true" thermodynamic potential fl(H) for any Hamiltonian (2.1), 

i.e. flmod(H) ;?: fl(H). 0.0 and S0 are the thermodynamic potential and the entropy of 

the system of non-interacting quasi particles described with the Hamiltonian Ho, 

flo =« Ho »o -TSo, 

R. _ Tr[H0 exp(-Ho/T)) 
« 0 »o- Tr [exp ( - Ho/T)) · 

The density matrix of the system with the Hamiltonian Ho (2.2) is 

n1 =« at a1 »o , 

and the following expression for the entropy S0 is valid: 

So = - L [n1 ln(ni) + (1 - ni) ln(l - ni)] . (2:4) 

The model thermodynamic potential flmod can be constructed with any single-particle 

Hamiltonian H0 • But certainly to find a Hamiltonian Ho that makes the difference 

flm
0
d( H) - fl( H) minimal is of special interest. Such a Hamiltonian Ho is called the 

self-consistent Hartree - Fock Hamiltonian. To find a Hartree - Fock basis, one has to 

make a unitary transformation D (DD+ =1) of the Hamiltonian (2.1) from initial "bare" 

fermions at , a1 to new Hartree - Fock (HF) quasiparticles at , a 1 

+ '°" D* + al = £...J 21CX2 , 
2 

a1 = LD21a2. 
2 

(2.5) 

Unitarity of the transformation provides a conservation of the commutation rules. Since 

flmod( H) is an upper limit for fl( H) equations for the coefficients D can be derived from 

the requirement that flmod(H) is minimal under the constraint DD+ = 1. 

/ii. (nmod(H) - E 6 E D;3D23) 
12 2 3 

/ji• (« H »o - L 6 L D;3D23) = 0 
12 2 3 

(2.6) 

lii12 ( flmod(H)- ~6 ~ D;3D23) = 0i12 
( « H »o - ~6 ~ D;3D23) = 0, 

3 



which should be completed by the number conserving condition 

L« ata1 »o=N. 
1 

Moreover,· nmod(H) 'is supposed 'to be stable Jnder variations of 'a quasipartide number'· 
density 'ii1. Frorri the requirement,, •l . , -

· ,mm.;d(H) = 0, 
8n1 

(2.7) 

using the expression for .the entropy (2.4), and under the assumption that the thermal, 

distributiorr of non-interacting HF. quasi particles has t,he Fermi • Qirac. shape 

n1 = [1 + exp ( i) rl , 
the following equation for HF quasiparticle energies E1 can be evaluated 

E _8 « H »o 
1 

- · 8n1 

(2.8) 

(2.9) 

Let us now formulate the thermal HF approximation within TFD. Quantities « 
H »o, « at a1 »o or « at a1 »o are evaluated within TFD as expectation values with 
respect to a thermal vacuum state I0(T)) of th,e thermal Hamiltonian Ho ~ H0 - H0 • The' 

equations for a HF basis can be derived in the following wa~ [2]. Fii:st, one should rewrite 

the Hamiltonian (2.1) in the normal ordered form with respect to a thermal ground state. 

The result'is 

H =·Uo+H1 + H2 

'Uo = · L t12P21 + 1 L Vi234p31,042 ; 
12 1234 ·-

Hi = : L t12at a2 ;t L ½234p42ai a3 : , (2.10) 
12 1234 

,,.1~1/'' ++ ' H2 = : 4 L...., v1234a1 a2 a4a3 : , 
1234 . ' 

where Pii - is. a one-body density matrix 

Pii = (0(T)la}a;j0(T)) . · 

Then one needs t9 perform the unitary transformation (2.5) and to find D from the 

requirem~nt th~t'the item H/(2.l0)has to be diagonal in l~rms of the HF quasip~rticles." 

The equations for D take the form (2.6) and 

' "' + . Uq +Hi= Uo +L....,E1a1 a1 =Ho= HHF. 
l 

4 

Number conserving condition appears to be 

LP11 = N. 

It is quite easy to find the wave function I0{T)) of a tnerinal HF Hamiltonian. For 

example, the expression for I0{T)) can be obtained from {1.1) if one takes as In) and Iii) 

single-quasi particle and tilde singl.e-quasiparticle states with the· energies E1. But more 

fruitful is to use the following fact. In acrntdance with the definition, 

HHFIO(T)) = ( HHF - ii HF) IO{T).) = L E1 (at a1 - ata1)-I0(T)) = 0. 
I 

The solution of the above equation is the vacuum for thermal ·quasiparticle operators /3, fJ 
(6] that are defined by 

/31 = X1O1 - Yiat 

fJ1 = XtOJ + Yiat, (2.11) 

with the coefficients Xt = ~ , Yt = ..jni ( n1 is defined by (2.8). A unitary 

transformation { x, y} is called the thermal Bogoliubov transformation. 

Useful to note that the value nmod(H) (2.3) is minimal for the thermal HF vacuum 

state I0(T)). This is seen from the following co~sideration. Since /3I0(T)) = (JI0(T)) = 0, 

the relations are valid 

(0(T)IHI0(T)) = Uo, nk = (0(T)lat akl0(T)) = y~. 

And the one-body density matrix p12 takes the form 

P12 = (0(T)laf a1 I0(T)) = L D;k D1knk = L D;kDtkY~ • (2.12) 
k k 

The entropy is 
So= - L [y~ 1ny~ + (1 - yZ) ln(l - yD] . 

k 

Then from the condition (2. 7) one can see that 

Y~ = (1 + exp(Ek/T)r
1 

, 

where Ek = 8Uo/ 8yr It means that the values of x and y, satisfying the relation 

f3IO(T)) = J3IO(T)) = 0, also produce the minimum of nmod(H). From a requirement of a 

minimum of a grand thermodynamic potential one can determine coefficients of I.hr usual 

and thermal Bogoliubov transformations for a hot system of N nucleons with the BCS 

pairing [13]. 
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3. A generalization of TRP A 

Within THFA a residual interaction between thermal quasiparticles is omitted. But ev­

idently this interaction exists and provides some types of correlations. As a result, a 

.structure of the thermal HF vacuum state IO(T}). may be quite far from the ,;tr~e" ·o~e. 

Here, we try to take into.account the res:d~al interaction. ,. . • ' · 

. At the first step, we express the initial thermal Ha~ilto~i-~n 11.. ~ H- ii ( H. i~. defined 

in (2.1)), in terms of thermal qu~iparticles. W~ ~nly ~uppose that th~ t~;nsfor~atio~s 

D and {x,y} are unitary. . '" 

The Hamiltonian 11. can be expressed as a sum of items 11.mn. Each of them contains 

m creation operators and n. annihilation operat<>rs of thermal q4asiparticles. 

11. = 11.u + 11.22 + 11.20 + 11.02 + 1/.40 + 1/.04 + 1/.31 + 11.1:i·. 

We define the bifermionic operators as follows 

At2 = Af1 = fJtfft, A12 = A21 = fi2/J1, B12 = /Ji/32, 812 = Nff2 • 

Their exact commutation.relations are 

. · [Ai'{, Af4] ...:. 013024 - 0138,i2 -' 024B31 ·, · · 

[B;2, B34) = . ·023B12 _:. 014°1332; 

[A12, B34) = 013A42, 

[A12, 834] = 023A14, 

[At2, B34] = -014Af2, 

[ Ai2, 834] = -024At3 , 

[,B12,_'834] = . 0. 

In terms of the bifermionic.operators the items 11.mn are 

11.u = L-(P12+LYiU1323)(x1x:.i+Y1Y2)(B12-812) 
12 3 

11.20 = L (P12 + LYiU13~3) (x~y2 - X2Y1) At2 
12 3 . 

11.22 = L U1234 [(x1X4Y2Y3 - x2x3y1y4) At3A42 
1234. . . .. 

+ ¼ (±iX2X3X4 -Y1Y2Y3Y4) (: B13B24 - 813B24 :)] 

1/.40 = L _u1;~_4 .(x1X2Y~Y4 .:_ X3X~Y1Y2) At;At4 
1234 . . · ' · · • ·. 

1/.31 - ~ L U1234 (x1x2x3y4 + Y1Y2Y3X4) (Af4B12 - At2812) 
1234 
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(3.1) 

(3.2) 

(3.3) 

J 

) 

11.20 = 1lii2, .·1/.40,::= 1l"l;4, · 1/.13.,=,Ht1 • 

The coefficients P12 and U1234 in (3.3) are defined by , . . - . ' . 

P12 = L t;4D~3D24 , .. 
34 

·. U123~- = L Vss1sD;1 D~2 D73Ds:•, 
·' 5678 .· . ·' .• · . . . •. 

To find an excitation spectrum of a hot system, one ·should diagonalize the Hamiltonian 

(3.1). We u~e the equati~n of motion inethod (14) and define a ground'•and excited states 
. of the system by the relations: .. 

llll.,(T)) = Qtllllo(T}) , Q.,llllo(T)) = 0. . (3.4) 

A composition of an operator Qt in terms of thermal quasiparticle op_erators is given 

below. The Raleigh-Ritz 
0

variational.principle for 11. h~s 'the form· '· · ' 

(lllo(T)I [oQ.,, [11., Qt]] llllo(T)) = w.,(\llo(T)I [oQ.,, Qt] llllo(T)) , . (3.5) 
~ . . .. · ' -, .. ; 

w., is an energy of an excited state llll.,(T)). 
Eq. (3.5) is exact if the variation oQ.,llllo(T)) exhausts the whole Hilbert space of the 

system. We restrict ourselves to a trial wave function of the TRPA type 

Qt = I: t/Jf 2At2 - 1>r2A12 . (3.6) 
12 

But we don't use other TRPA assumptions. For example, the bifermionic operators A12 
and At4 are npt ~upposed to, _be quasibosons etc. 

' " . ',· ' . ~ . , - . , 

Instead, we assume that the number of thermal quasiparticles in_ a ~hermal vacuum 

state does not vanish and can be approximated by c-number, i.e. 
1 

(lllo(T)IB12illlo(T)) = (lllo(T)l812llllo(T)} = q1012. (3.7) 

Then, for the ~alue M1234 = (lllo(T)I [A12, At4 ] llllo(T)} the following expression is valid: 

. ,M1234 • = . (lllo(T)lo13024 - 813842 - 024B31illlo(T)} 

013024 (1 - q1 - q2) = 013024 (1 - q12). " (3.8) 

If one takes into account (3.7) and (3.8), then from eq. (3.5) a system of equations for 

phonon amplitudes ¢ 12, </>12 and energies w., can be derived 1 

·I:t/Jr4(J [A12,[H,Af4l] I}- L¢;4(j[A12,[1l.,A34)]1)= w., E t/Jr4M1234 
34 · 34 ,34 

(3.9) 

L1P;4(1 [At2, [1l.,Af4])1)- L¢;4(I (At2,[1l.,A34Jll)•= i..:w,;'L¢;4M1234; 
34 34 34 

1 Hereafter, iftheri, are no special comments, th'e expectation values are taken over the thermal vacuum 
state defined in (3.4) 
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The one-phonon states (3.6) have to be orthonormalized · 

(IQvQt,I) = L (1 -·q12) ( 1/Jr21/Jr; - <1>r2<1>r;) = liw' · (3.10) 

12 

In the current approximation only the terms 1£11 , 1£22 , 1£04 and 1£40 contribute to 

expectation values of double commutators in (3.9) because diagonal matrix elements from 

odd numbers of creation and annihilatio_n quasiparticle operators yanish. 

· Evaluating the coefficients of the phonon amplitudes if;.and <f, in eqs. (3.9), one needs 

to know four ty~es of two-body matrix elements: (1At2A;41),· (IA12A34I), (IAt2A!41) and 

(IB12B34 I). Three of them can easily be evaluated using the inverse transformation to 

(3.6) 

At2 =I= t M3412 (1/Jr2Qt + <1>r2Qv) = L (1 - q12) (1/Jr2Qt+ <1>r2Q.,) · (3.11) 

V 34 V 

Taking into account (3.11);-one gets 

(IAt2A341) = . L <1 - q12) <1 - q34) <1>r24';4 
V 

(IAt2At41) = L (1 - q12) (1 - q34) <1>r21/J;~ (3.12) 

V 

(IA12A34I) = L (1 - q12) (1 - q:34) 1P~2<P~4. 
V 

Evaluation of the fourth matrix element is more complicated. To this aim, an expansion 

over the complete phonon basis is used 

(IB12B34I) = (IB121)(1B34 1) + L (IB12Qt, Q";;., l)(IQ.,,Qv, B34I) " 
v

1
"2 (IQ.,,Qv,QtiQ;J;I) + L VJl/2VJV4 

+ ... (3.13) 

Only the lowest two terms of the exp~sion (3.13) are taken (see [101) 

(IB12B341) = D12D34q1~ + 
LL [iJ;;i<t>~ <1 %) + 1/J~<t>~: (1 - q2;)] [1/J~l<l>'.3. (1 - q4k) + 1/J~<I>~~ (1 - q3k)] 

v1vi ik 
(IQ.,,Qv,Qt,Q;J;I) 

An expression for a norm of a two-phonon state seems to be quite complicated and we 

don't show it here. The leading correction to its "quasiboson" value (1 + liv,.,,) is of an 

order of 1/;2¢2. An equation for q1 is derived by applying the "number operator method". 

Denote the operator of a number of HF quasiparticles N = Z:1 at a1 . Then 

qi= (IB111) = (I.BtR.Bd)-(I/JtN.B1I) = L(IAt2A121)-(I: B12B21: I). (3.14) 

2 

8 

'~ 

Actually, .in contrast with the T ;:::: O ·. case we use the difference R -:- N instead otJi. 
This helps us to exclude from the expression for q, the theqnal quasi particle number. 

fluctuations .. 

Eq. (3.14) closes the system of equations for if;, </>,wand q. But it is still unclear how to 

calculate the coefficie11ts.of transformations fl. and { XiY} and single-quasip.irticle energies 

E;. which are. input values for the equations of motion (3.9) .. In-Sect, 2, the equatiims. for ,. 

these values were.obtained in THFA,, i,e. with the. thermal vacuum state IO(T)) which is 

different from llllo(T)). Certainly, thqsevalu~sof D,Ei,x.and y can beused'ineqs. (3.9), 

(3.10), (3.14) as the first iteration altho"4gh this procedure is not fully consistent. This 

variant would correspond to a slightly improved thermal renormalized RPA (TRRPA) 

[1, 3, 15] 2. ,More consistent is the so-called thermal self-consistent R_PA (TSRPA) which, 

has b~en dev~loped i~ [2). TSRPA t·akes int~ ~~~omit an i~timat~ couplin~ of ~ollective 
, , -· . · ir ,, · ' • ,. ' · . -, · 

and HF variables ·which appears due to non-vanishing values of q;. The reason is a new 

expression for the one-body density ~atri~ in TSRPA · . 

P12 = (O(T)latadO(T)) = L n;knlk~k = 'z::D;kDlk [xzqk + yz(l - qk)], (3.15) 
k k 

Since p12 appears in the equations for D (see [21), it becomes necessary. to solve the 

systems (2.6) and (3.9), (3.10), (3.14) together. 

·Now we try to formulate a more'e~act and consistent version of TRPA than TSRPA. 

First, we suggest using more exact equations of motion and equations for q by inclusion 

of the t~rms ·of ,:in order of (IB.12B34 I). The second· impro~ement seems to be more 

principal a;d 'importa~t. Na~ely, ~e suggest using in equatio~s (2.6) and (2. 7) a new 

model thermodynamic potential n:0 d(H) where averaging is performed with respect to 

the phonon thermal vacuum:sfate (3.4), i.e. 

'n:od(H) ±: (\Jlo(T)IHllllo(T.)) - TS. 
't, :• • .•• ' ) <: _• J I; 

New equations are valid for the_,coefficients D 

Iii~· (n:~d:_ L6'z:b;3D23) = 6i. ((IHI)- L6.LD;3D23) =O 
' 12 2 3 12 2 3 

• ·(:U6) 

';·i:2 ( n:od - ~6-~D;~D23) lil~12 .((i1~1) l~ ti~: L 1J;3D23) = O. 
2 3 

In the above equations the value (IHI) has to be calculated with the same <>xaduess as 

the double commutators in the equations of motion (3.~J). Ductd i.li'is 'a ·11<1ii~\•a'nishing 

2 A 1)10dest imwovement is.du~ to, a m!),trix el~mrnt (IB12_B3'\ltwhtchc wa.1cnottakPn jnto acrnunt in 
refs. [l, 3, 15]. 
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contribution to (IHI) will be given not only by the U0 term as in the standard THFA but 

the terms (IHnl) and {IH22I) from (3.3) as well. 
In the particle number conservation condition the one-body density matrix has to be 

as in (3.15). 
T_he coupling of collective and HF variables affects the HF basis and hence affects the 

thermal occupation numbers of HF quasi particles (i.e. x and y ). So to be fully consistent 

we should include determination of x and y in our general scheme. So we require the 

stability of n:
0
i H) with respect to small variations of x and y 

ph 

J{lmod = 0, 
8x1 

ph 

J{lmod = 0. 
8y1 

(3.17) 

The expression for the entropy S also has to be changed. The definition (2.4) for the 

entropy of a system of independent quasiparticles cannot be used any longer. The right 

expression can be obtained from the general formula 

T 

s = J _!__ 8(IHI) dT'. 
T' 8T1 

0 

Using the same expression for (IHI) as in n:0 d(H) we get 

S = - I: (1 -2qi) [xi lnxi + yilnyn = O. 
1 

(3.18) 

Unfortunately, eqs. (3.17) cannot help us find a functional dependence of x and yon T. 
It seems natural to make an assumption that y; as a function of T and E; has the Fermi 

- Dirac form 

Yi= [ 1 + exp ( i) rl Xi= exp ( i) X [1 + exp ( ~l) rl , 
and eqs. (3.17) are additional constraints for a dependence of HF energies £ 1 on 1/;, </>, q. 

So the complete new system of equations includes new equations of THFA (3.16) 

and (3.17) (together with the expressions for (IHI) and S (3.18)), equations of motion 

(3.9) and equations for the thermal quasiparticle occupation numbers (3.14). It is a very 

complicated task to solve this system of nonlinear equations for a realistic case. Our 

preliminary estimations with a solvable two-level Lipkin model [16] demonstrate that the 

equations of the generalized TRPA are compatible and new corrections are important in 

the vicinity of a phase transition point (see also [3, 15]). 

4. Conclusions 

By the use of the TFD formalism and some ideas of ref. [10) we have developed a new, more 

general and consistent version of the thermal random phase approximation. The following 
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effects are taken into account: the non-vanishing number of thermal quasiparticles in a 

thermal vacuum state; the coupling of collective and HF variables and its influence on 

the thermal occupation numbers; some two-particle correlations in equations of motions 

which were omitted in the previous versions of TRPA. The generalized TRPA includes, as 

particular cases, the thermal renormalized RPA (1, 3, 15] and the thermal self-consistent 
RPA (2, 4]. 

The work was partially supported by the Council of President of Russia on Grants 

and Support of Leading Scientific School an~ RFBR (grant of RFBR 9~15;-96729). 
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