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Generalization of Thermal Random Phase Approximation

A general and self-consistent version of a thermal random phase approxima-
tion is developed using the formalism of thermo field dynamics. The following ef-
fects are taken into account as compared with a standard TRPA: the non-vanishing
number of thermal quasiparticles in a thermal vacuum state; the coupling of col-
lective and HF variables and its influence on thermal occupation numbers; some
two-particle correlations in equations of motion omitted in TRPA. The generalized
TRPA includes, as particular cases, the thermal renormalized RPA and the thermal
self-consistent RPA.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.

Dearmrint ~F tha Trairnt Inctititte Far Nitrnrlanr Dacoanerrh Diibkna 1000




1. Introduction

In the present paper we continue (see [1-4]) to develop approxxmate methods of descnptlon
of a collectlve motxon in heated finite Ferrm - systems m the framework of thermo field
dynam1cs ’

A standard feehnique of treating quantum mariy-body systems at finite temperatufe T
is the temperature-dependent Green function method (see, e.g. (5]). But ether approaches
exist as well. We apply here the so-called thermo field dynamics (TFD) [6]. In contrast
with the temperatute-dependent Green function method TFD is a feal-time fo’r_r‘ha.lis‘m,
that is temperature T and time ¢ are independent variables wifhin TFD. The TFD
formialism is quite convenient for our purposes since temperature eﬂ'ects atise expllcxtly as
T-dependent vertices, thus provxdmg a good starting point for various approxxmatlons

. The main idea behind TFD is a construction of a field theory in which the grand
canonical statistical average of a quantlty A is given by some sort of éxpectation value
rather than the trace operation

< A= gy T A e (ST = DAY

TFD gives rigorous prescriptions how to construct a representation in which the » vacuuin’;
ekpectatiOn value coincides with the statistical average. This aim is achieved by a formal
doubling of the Hilbert space of a system. One introduces a fictitious system which
'is of exactly the same structure as the physical one under consideration. The whole
Hilbert space of a hot system is spanned by the direct product of the eigenstates of
the Hamiltonian H|n) = E,|n) and those of the "tilde” Hamiltonian having the same
eigenvalues I? |) = Ea|f). With the doubling of the Hilbert space one can write the
expression for a ”vacuum” state !\IIO(T)) that is called "the thermal vacuum state”

I‘I'o(T))

\/IT?(T/T_ S (g e ). a

The vectors |n) and ]n) ‘appear as a pair, and the function of In) is'merely to pick up the
diagonal element of A A tilde conjugate operator A acting in the tilde space is associated
with any operator A acting in the ordinary space in accordance with special rules [6}.
The time - translation operator ini the hot system appears to'be a thermal Hamiltonian
H defined by H = H - H. Propertles of the system excitations are obtained by the
diagonalization of H. The thermal vacuum is az elgensta.te of H with a zero exgenva.lue
Thus, the dynamical development of the system is carried by ‘the thetrnal Hamiltonian
while the thermal behaviour is controlled by the thermal vacuum.

The TFD approach provides transparent i_nterpfetétidh of a collective motion in‘a hot
Fermi - system. The thermal vacuum can be regarded as a temperature - dependent
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wave function of a compound nuclear state. Collective excitation is produced by applying
the corresponding collective operator (phonon operator) to this thermal vacuum state.
Properties of the collective excitation are dependent on the vacuum correlations.

‘There are two well-known approximations to describe excitations in hot finite Fermi
- systems: the thermal Hartree - Fock approximation (THFA) and the thermal random
phase approximation (TRPA). The latter was applied to study a giant dipole resonance
in hot nuclei (see the review paper [7] and references therein). Also some approximations
going be);ond TRPA were considered but merely a coupling of thermal particle-hole or
TRPA phonon excitations with more complex ones was studied [4, 8].

At the same tlme, while studying low-energy nuclear excitations quite elaborate modi-
fications of the standard RPA were suggested [9-11]. And only a few of these new variants
of RPA were applied to the T # 0 case [1-3]. It seems interesting to formulate a general-
ization of the thermal RPA like it was done for RPA in "cold” many-body systems. Here,
we present such a generalization. In our studies we follow general schemes and ideas of
refs. [2, 10]. ’ l

2. Mean field approximation in- TFD

We start a discussion as in [2] describing a thermal mean field appfoximatieh (or a thermal
Hartree - Fock approximation). Let us consider a system of N fermions w:th a two—body

mtera.ctlon The Ha.rmltoma.n is

H = Ztual a; + - y Z Vizasa at asas, ’ (2.1)
1234 . .

where a* and a are fermion création and annhilation operators. The one-body part of
the Hamiltonian t;; = T3 — Ad;, contains a kinetic energy ‘matrix Tj; and a chemical
potential A.

To describe properties of the system when it is heated up to finite temperature T
within the framework of the thermo field dynamics, one should build the thermal Hamil-
tonian of the system H = H'— H and then find the corresponding thermal vacuum state
|To(T)). The thermal vacuum state should be an-eigenstate of H with a zero elgenvalue
Obviously, one cannot resolve the problem in generail A series of necessa.ry approxxma.—
tions begins with a thermal mean field approximation. e '

“Usually, under statistical consideration of a highly excited (heated) finite Ferfni system
the unified statistically averaged single-particle mean field is used for all energy states
(instead of finding the best single-particle approximation for every state'in ‘a partltlon
function). The single-particle Hamiltonian Hy corresponding to this mean potential can’

be written as
Ho=Uo+ ) Erofau, (2.2)
1
where Us is a constant, E, are single-particle (or single-quasiparticle) energies. According
to Bogoliubov’s variational theorem [12], a model thermodynamic potential defined by
Qmod(H) = Qo+ < H — Ho o, (23)

is the upper limit of the "true” thermodynamic potential Q(H) for any Hamiltonian (2.1),
ie. Qmoa(H) > Q(H). Qo and Sy are the thermodynamic potential and the entropy of
the system of non-interacting quasiparticles described with the Hamiltonian Hp,

Qo =K Ho >>0 —TSO 3
Tr [Ho exp (= Ho/T)]

Tr[exp(—Ho/T)}
The density matrix of the system with the Hamiltonian Ho (2.2) is

< Ho Po=

n =< af o o,
and the following expression for the entropy So is valid:

=Y [ln(m) + (1 = n)In(l — )] . (2:4)

The model thermodynamic potential Qmod can be constructed with any single-particle
Hamiltonian H,. But certainly to find a Hamiltonian Ho that makes the difference
Qmoa( H) — Q(H) minimal is of special interest. Such a Hamiltonian Ho is called the
self-consistent Hartree - Fock Hamiltonian. To find a Hartree - Fock basis, one has to
make a unitary transformation D (DD* =1) of the Hamiltonian (2.1) from initial "bare”

fermions a; ,a; to new Hartree - Fock (HF) quasiparticles of
af = Z Dja7 a = Z Dna; . (2.5)
2

Unitarity of the transformation provides a conservation of the commutation rules. Since
Qumod(H) is an upper limit for Q(H) equations for the coefficients D can be derived from
the requirement that Q,,4(H) is minimal under the constraint DDt =1.

—6—' Qmod(H) - Z & Z D;;;Dza) = 6, (<< H>q— Z & Z Dstzs) =0
sDt, 2 3 éDy,
(2.6)

)
3’3; (Qmod(H) - Zfz Z D;3D23> = JD <<< H >0~ Z & Z D23D23> =0,
2 3



which should be completed by the number conserving condition

Zv<< ata; >o="N.

1

MOfeover, mod(H ) is supposed ‘to be stable under varlatlons ofa qua,s1part1cle number"

density ;. From the requirement e

OmaH) _
Jn] ‘ '_. 0 ’ » (2 7)

using the expression for the entropy (2 4), and under the assumptlon that the thermal;

distribution:of non-interacting HF quasiparticles has the Fermi - Dirac shape .

n = [1 +exp (%)] B ~, (2.8)

the following equation for HF quasxpartxcle energies E, can be evaluated

5<<H>>o
E]—vT._, , h — (29)

Let us now formulate the thermal HF. approximation within TFD. Quantities «
H >4, € ot > or € afaq > are evaluated within TFD as expectatlon values with

respect to a thermal vacuum state [0(T)) of the thermal Hamiltonian Ho = Ho— Hy. The’

equations for a HF basis can be derived in the following way [2]. First, one should rewrite
the Hamiltonian (2.1) in the normal ordered form with respect to a thermal ground state.
The result'is - -+~ - A " : Cae s

e o H =l ‘|"H1 + H,

Up = thPZl + = ZM234P31P42 5
R 1234 ' ‘ g , o
H, = Ztual az+ ZV1234P42‘11 az : - - . (2.10)
1234
H, = ‘322\4254a1+a2 ajaz :",
1234

where p,_, 1s a one-body denslty matrlx N

- pij = (0(T)|af a-IO(T))

Then one needs to perform the umtary transformatlon (2 5). and to find D from the
requxrement that ‘thie item Hl (2 10) has to be diagonal in ‘terms of the HF quas1pa.rt1c1es
The equations for D take the form (2.6) and

: U()"’f‘ Hl ;='Uo +‘Z Ef]Cl-lFCll = Ho = HHP o
[ |

Number conserving condition appears to be
o=

It is quite easy to find the wave function [0(T)) of a thermal HF Hamiltonian For
example, the expression for |0(T')) can be obtained from (1. 1) if one takes as |r) and |#)
single-quasiparticle and tilde s1ngle—qua.s1part1cle states with the energies E1 But more
frultful is to use the fo]lowmg fact. In accordance with the deﬁmtlon, ’

Haelo(D) = (Hyr = L) ocr ZEl alan—a,al)lo

B
A

The solution of the above equation is the vacuum for thermal qua51part1cle operators (3, 8
[6] that are defined by

~4
B = T — o

B = ma +wnaf, . (2.11)

with the coefficients z, = VI —m1 , % = /M1 (ny is defined by (2.8). A unitary
transformation {z,y} is called the thermal Bogoliubov transformation.

Useful to note that the value Qmod(H) (2. 3) is minimal for the thermal HF vacuum
state |0(7)). This is seen from the following consideration. Since 8|0(T)) = B0(T)) = 0,

the relations are valid
O(T)HIOT)) =Uo, = (0(T)lef ol0(T)) = vi-
And the one-body density matrix p;2 takes the form

p1z = (0(T)laF a:|0(T)) = ZDHDM S Dy Dui. (2.12)
k .

The entropy is

== [wingi+ (1 -y)In(1-9d)] .
k

Then from the condition (2.7) one can see that
yi = [1+exp(E/T)]™"

where Ep = 8Uy/6y?. It means that the values of z and y, satisfying the relation
B0(T)) = B|0(T)) = 0, also produce the minimum of Qmea(H). Froni a requirement. of a
minimum of a grand thermodynamic potential one can determine coeflicients of the usual
and thermal Bogoliubov transformations for a hot system of N nucleons with the BCS

pairing {13].



3. A generalization of TRPA

Within THFA a residual interaction between thermal quasiparticles is omitted. But ev-
hxdently this interaction exists and provides some types of correlations. As a result a
structure of the thermal HF vacuum state [0( )) may be qulte far from the ”true one
‘Here, we try to take mto account the residual interaction. ,

At the first step, we express the mxtlal thermal Hamxltonlan ’H H H (H is deﬁned

n (2.1)), in terms of thermal quasxpartlcles We only suppose that the transformations
D and {z,y} are unitary. . S : L

The Hamiltonian H can be expressed as a sum of 1tems ’Hm,, Each of them contains

m creation operators and n annihilation operators of thermal quasiparticles.
H = Hir + Haz + Hao + Hoz + Hao + Hoa + Hay +Hyzw T (31)
We define the bifermionic operators as follows .
Ai"z = f‘{-z"] = fﬁ;, Arz =-Zzl =‘E2ﬂl , Bu= i"ﬂz ’ Elz = Efbh

Their exact commutation relations are

[AisAY] = vvalsau—awgu—augm,

" [Biz,Ba] = 833Byp— 5143327

A Bl = b1sdar, D
[A,2,§34] = bpAu, (3.2)
[Al; Byl = —8udl, o

[A;fz,§34] = —buAh,

[Bn,334] = 0

In terms of the bifermionic operators the 1tems Hpn are

Hu = Z '(P12:+'Z y§U1323>,(z1z§ +y1y2) (B12 _ 512)
12 3 .
7‘[20 = Z (Pl2 + Zy§U13;3) (zly2 ";I2yl) A-li-2
12 .
Hy = Z Urasa [( 11z4y2y3 - $2$3y1y4)A13A42
L1234, - v o
1 .
o (zlzzza‘z(— y1y2y3y4) ( B13B24 _ BlsBu )] _ 3
. "Hm = Z U1234 z1z2y3y4 - I3z4yly2) A13A24 . .
o 1234 :
Ha = 5 Z Urza4 (212273Y4 + Y1y2yaz4) (A;',‘B12 - AL'BF”)
1234

“of the system by the relatlons

—yt. — + _ +
Hao =HEyy Hao=Hiys . Hiz=He .

_The coefficients Py, and U1234 in (3 3) are deﬁned by I

Plz = Z t34D13D24 5 -
AUllé:M = ZVseanDGszDM , T o
sets Y » I LI S

To find an exc1tatlon spectrum ofa hot system, one should dlagonahze the Hamiltonian
(3.1). We use the equatlon of motlon method [14] and deﬁne a ground ‘and exc1ted states

£

Ly

10.(T)) = QF1¥e(TY) , ’Q;i%'('T»?o. o ‘(3.4>

_A composition of an operator @ in terms of thermal qua51part1cle ooperators is given

below. The Ralelgh -Ritz variational pr1nc1ple for H has ‘the form '
(Bo(T)1 [6Qu, [H, Q2] 1Wo(T)) = wi(¥o(T)| [6Qu, Q7] 1¥e(T)), ~ (35)

w, is an energy of an excited state |¥,(T)).
Eq. (3.5) is exact if thé variation §Q,|¥o(T)) exhausts the whole Hilbert space of the
system. We restrict ourselves to a trial wave function of the TRPA type

Z'»/’uATz ¢12Al2 . (3-6)

But we don’t use other TRPA assumptlons For example, the blfernuomc operators Ajq
and A, are not supposed to, be quasibosons etc.
Instead we assume that the number of thermal quaslpartlcles in a thermal vacuum

state does not vanish and can be approx1mated by c-number, i.e.

"(Wo(T |Blz|‘1’0( ) = (%o(T lBlzl‘I’O( )=aqdiz: > . (3T)

Then, for the value M1234 | [An, A;:,] |@o(T the followmg expresswn is valid:
A M1234 = (‘I’o( )|513524—513342 —524331|‘I’0( )) ‘

= 6136241 —q1 — QZ) = 613024 (1 ~ Q12) i . :(3.8)

" If one takes into account (3.7) and (3.8), then from eq. (3.5) a system’ of eguatxons for

phonon amplitudes ¥¥,, ¢%, and energies w, can be derived !
; ¥l [Arzy [H’ A Z ¢34<| [Au, [7{ Azl )= w, Z 33 Mi234
PR . .
‘ : ST (39)
Z Wl [Au, [n Af, Z%, | [An, [H, A34] )= -.w,2¢34M1234

1Hereafter, if theré are no special comments, the expectation values are taken over the thermal vacuum
state defined in (3.4)



The one-phonon states (3.6) have to be orthonormalized -

(1Q.QN = (1~ a2) (%wr; s 'fzdfl"z) = bur - (3.10)
12 .
In the current approximation only the terms Hir, Haz, Hos and Hyo contribute to
expectation values of double commutators in (3.9) because diagonal matrix elements from
odd numbers of creation and annihilation quasrpartlcle operators vanish.

Evaluating the coefﬁc1ents of the phonon amplrtudes P. and ¢ in egs. (3 9), one needs
to know four types of two-body matrix elements: (|Af A34|) (lA12A341), (|ALA%Ll) and

(IBlgB34|). Three of them can easily be evaluated using the 1nverse transformatron to

(3.6)
| IZ—ZZMW (08 +66Q.) = D (1 — ) (WhQL +91,Q0). . (1)

v
v

Taking into account (3.11),"one gets

(AhAsd) = 5 (1—a2) (1 - gsa) Shadhs.
(lAl'zA W) = 2(1—41#)‘(1—‘134)4’721#;; (3.12)
(Andsdl) = 3 (1= aia) (1— @) ot

Evaluation of the fourth matrix element is more compllcated To this aim, an expansion
over the complete phonon basis is used

(1BuQh@L10:0nBal) | S~ o (313
(lezQur er Q;'l-z') " u,;w

(|BizBaal) = (|Buzl){1Basl) + Y
wmny2
Only the lowest two terms of the expansion (3.13) are taken (see [10])

(|B12Baal) = 812034192 +

W8 (1 — ) + ¥ (1 — g [B2162 (1 =
> G QL QAT

vy ik

qar) + Yaidax (1- g3 )

An expression for a norm of a two-phonon state seems to be quite complicated and we
don’t show it here. The leading correction to its "quasiboson” value (1 + 6,,.,) is of an

. order of ¥*¢*. An equation for ¢ is derived by applymg the "number operator method”.
Denote the operator of a number of HF quasiparticles N= > ot oy . Then

@1 = (|Bul) = (lﬁf'ﬁﬁlll — (BN = Y (1ahAL) = (| : BuBu D). (314)

2

Actually,.in contrast with the T: = 0:case we use the difference"ﬁ' ‘N instead of'"f\l
This helps us to exclude from the expression for g-the thermal quasiparticle number
fluctuations. . : A T : i : S

Eq. (3. 14) closes the system of equations for ¥, ¢,w and q. But itis stlll unclear how to
calculate the coefficients.of transfarmations D-and {z;y} and single-quasiparticle.energies

E; .which are input values for the equations of motion (3.9).. In-Sect. 2, the equations, for ¢

these values were,obtained in'THFA, i.e. with the thermal vacuum state [0(T))) whibch is
different from |¥o(T)}. Certainly, those values of D, E, z and y can be used'in egs. (31‘9)
(3.10), (3.14) as the first iteration although this procedure is not fully consistent. This
variant would correspond to a slightly lmproved thermal renormalized RPA (TRRPA)
1,3, 15] 2. More consistent is the so-called thermal self-consistent RPA (TSRPA) which.

has been developed in [2] TSRPA takes lnto account an, mhmate coupllng of collectrve
and HF variables which appears due to non- vamshmg values of gi. The reason is a new ‘
expression for the one-body density matrix in TSRPA A

pr2 = (0(T)|at &, |0(T)) = Z DDy = > D5 Dy [zax +¥2(1 — q)].  (3.15)
k k-

Since p;2 appears in the equations for ‘D (see [2]), it-becomes necessary .to solve the
systems (2.6) and (3 9), (3 10), (3.14) together

'Now we try to formulate a more exact and consistent version of TRPA than TSRPA.
First, we suggest using more exact equatlons of motlon and equa,trons for q by mcluslon )
of the. terms of an order of (lB12B34|) The second 1mprovement seems to be more _
principal and lmportant Namely, we suggest usmg in equations (2.6) and (2 7) a new :
model thermodynamic potential Qmod(H) where averaging is performed with respect to
the phonon thermal vacuum'state (3. 4) :

-n:’:;,dw) (\I'u(T)IHI\I'o(T» -TS.

New equatrons are va.lld for the coefﬁcrents D

” SD' < ZszDzaDza> = 3 l(um)“ ZEZDD)_O

50”( Z&ZD D23> 3D3 (IHD 25221),31)2,) = 0.

In the above equations the value (|H]) has to be calculated with the same exactness as

the double commutators in the equations of motion (3.9). Dueto iis 6 nof- vamshmb

ZA modest improvement is, due to a matnx element (lBJZBMD ;which, .was not, taken into.account.in -~ 7

refs [1,3 15]
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contribution to (|H|) will be given not only by the U term as in the standard THFA but
the terms {|Hy1]) and (JHz,|) from (3.3) as well.

In the particle number conservation condition the one-body density matrix has to be
as in (3.15).

The coupling of collective and HF variables affects the HF basis and hence affects the
thermal occupation numbers of HF quasiparticles (i.e. z and y). So to be fully consistent
we should include determination of z and y in our general scheme. So we require the

stability of Q7 ,(H) with respect to small variations of z and y
Jﬂmod =0 Jﬂmod

5-‘51 - Jyl .
The expression for the entropy S also has to be changed. The definition (2.4) for the

entropy of a systerh of independent quasiparticles cannot be used any longer. The right

(3.17)

expression can be obtained from the general formula
1 O((HI)
——dT".
= _/ T OT'
Using the same expression for {|H|) as in Qb (H) we get
S=—E(l—2q, [zllnzl+y,lny,]—0 (3.18)
l .
Unfortunately, egs. (3.17) cannot help us find a functional depéndenée of z and y on T.

It seems natural to make an assumption that y? as a function of T and E; has the Fermi

- Dirac form

o pren (@) () <o (3]

and eqs. (3.17) are additional constraints for a dependence of HF energies E; on ¥,¢,q.

So the complete new system of equations includes new equations of THFA (3.16)
and (3.17) (together with the expressions for (|H|) and S (3.18)), equations of motion
(3.9) and equations for the thermal quasiparticle occupation numbers (3.14). It is a very
complicated task to solve this system of nonlinear equations for a realistic case. Our
preliminary estimations with a solvable two-level Lipkin model [16] demonstrate that the
equations of the generalized TRPA are compatible and new corrections are important in

the vicinity of a phase transition point (see also [3, 15]).

4. Conclusions

By the use of the TFD formalism and some ideas of ref. [10] we have developed a new, more

general and consistent version of the thermal random phase approximation. The following

10
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effects are taken into account: the non-vanishing number of thermal quasiparticles in a
thermal vacuum state; the coupling of collective and HF variables and its influence on
the thermal occupation numbers; some two-particle correlations in equations of motions
which were omitted in the previous versions of TRPA. The generalized TRPA includes, as
particular cases, the thermal renormalized RPA [1 3, 15] and the thermal self-consistent
RPA [2,4]. ¢ :

The work was partially supported by the Council of President of Russia on Grants
and Support of Leading Scientific School and RFBR (grant of RFBR 96-15-96729).
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