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1 Introduction 

Metal cluster (MC) is a bound system consisting of atoms of 
some metal. The amount of atoms can vary from a few to many 
thousands. Some MC, mainly of alkali (Li, K, Na, ... ) and noble. 
(Ag, Au, ... ) metals, demonstrate a striking similarity to atomic 
nuclei (see reviews [1~5]). In these clusters the valence electrons 
are weakly coupled to the ions and, like nucleons in nuclei, are 
not strongly localized. The mean free path of valence electrons 
is of the same order of magnitude as the size of the cluster. This 
favors the valence _elec:trons to form a mean field of the same 
kind as in nuclei (with the similar shell structure and magic 
numbers). In addition to the mean field, MC demo-nstrate other 
similarities with atomic nuclei: deformation in the case of open 
shells, variety of giant resonances (GR), fission, etc .. As a result, 
many theoretical ideas and methods of nuclear physics can, after 
a certain modification, be applied to MC [1, 3, 5]. 

This review is devoted to collective oscillations of valence 
electrons in MC. Valence electrons can be considered as the 
counterparts of nucleons in nuclei, and their oscillations as the 
counterparts of nuclear GR. Investigation of GR in MC is in­
teresting in two aspects: it allows to understand deeper general 
properties of collective modes in firrite Fermi systems and, simul­
taneously, allows to study peculiarities of MC. GR in clusters 
and atomic nuclei are well overlapped. However, some specific 
properties of MC cause considerable differences in the behavior 
of GR in these two systems. For example: the Coulomb interac­
tion and the "spill-out" effect provide a specific dependence of 
GR prop~rties on the mass number; the negligible character of 
the spin-orbital interaction leads to the decoupling of spin and 
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orbital magnetic modes; clusters can have much more particles 
(atoms) than nuclei, which, favors very strong orbital magnetic 
resonances; for most of the clusters the role of the ionic subsys­
tem is important; at different temperatures MC can be in solid, 
liquid and even "boiling" phases; which greatly influences GR 
properties; characteristics of GR considerably vary whether the 
clusters are charged or neutral, free or embedded to a substrate, 
pure or with impurities atoms, etc .. 

Our consideration will be limited by certain physical condi­
tions. 

- i) The modern techniques allow to fabricate atomic clusters 
from atoms of about any element of the periodic table. However,· 
the conception of the mean field for valence electrons is realized 
only for a minority, - mainly for clusters of alkali and noble 
metals and, in a less extent, for neighboring elements. So, we 
should limit ourselves by this MC region .. 

- ii) In some alkali metals (Na and K) the ionic lattice can, 
to good accuracy, be replaced by a uniform distribution of the 
positive charge over cluster's volume. This is so-called jellium 
approximation which greatly simplifies the analysis and calcula­
tions. This approximation is enough for the description of many 
properties of alkali MC and will widely be used in the review. 
However, it often fails beyond Na and Kand then a more explicit 
treatment of the ionic structure is necessary (3, 4]. 

- iii) The ionic su1?system is supposed to be "frozen", i.e. we 
will not consider any io!}ic phonon excitations. 

- iv) The validity of the jellium approximation is supported 
by temperature fluctuations of ions, which smooth ion positions. 
It fails in the low temperatur~ region (approximately at T < 100 
K) where the explicit treatment of the ionic structure is impor-
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tant. At too high temperatures (T > 1000 K) the quantum 
shells of the mean field are washed out, what establishes an 
upper limit for our cons.iderations. vVe will consider GR in a 
temperature interval between these extreme cases. 

2 Theoretical Grounds 

Due to the similarity between MC and nuclei, many models 
of nuclear theory hav.~ been applied to study MC (1, 3]. In 
due time, some of them have been introduced to nuclear physics 
from solid-body field a~1d then subsequently modified to describe 
finite Fermi systems. Now they turn out to be useful for clus­
ters. In particular, a large variety of the RPA methods have 
been adopted , scaling from simple versions, like the sum rule 
approach [6-9] and the local RPA [10, 11], to sophisticated full 
RPA models, like time-dependent Hartree-Fock [12] and time­
dependent local density approximation (TD-LDA) [13-26] (for 
a more complete list of citation see Refs. [1, 3, 26]). The sim­
ple models can describe the gross structure of GR but not the 
fragmentation of the collective strength. The full RPA models 
can describe the fragmentation but are very time constiming. 
The last shortcoming becomes crucial for deformed and large 
spherical clusters where the number of particles, and thus the 
size of the configuration space, is very large. In this connection, 
the intermediate· class of the models, the RPA with separable 
residual forces (SRPA), seems to be very promising [7,27-35]. 
The separable ansatz allows one to turn the RPA matrix into a 
simple dispersion \elation. This drastically simplifies the eigen­
value problem preserving, at the same time, the main advantage 
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of the full RPA to describe the fragmentation of the collective 
strength. The SRPA version derived in Refs. [27-33] provides 
the accuracy of full RPA calculations [33], can be applied to sys_­
tems of any shape [28, 29, 31, 32], and allows to treat GR in MC 
and atomic nuclei on the same microscopic footing [27, 29, 32]. 
The results obtained within this SRPA version will be widely 

. used in the review-as illustrative examples. 
For the description of collective oscillations, the SRPA and 

most of the other models exploit, as a starting point, the Kohn­
Sham energy functional [36, 37] for a system of Ne valence elec­
trons: 

E{ n(r, t), m(r, t), r(r, t)} = 
-1/2 / r(r, t)dr + f Vxc(n(r, t), m(r, t))dr (1) 

· / Jf (n(r,t) - ni(r))(n(r1,t) - ni(ri))d d 
+l 2 I I r r1, r - r 1 . 

which includes the kinetic energy, the exchange-correlation term . 
in the local density approximation (LDA) [37, 38] and the 
Coulomb interacti~n, respectively. Here, n(r, t) = n(r, t)t + 
n(r, t).i. = LL l¢1(r, t)12, m(r, t) = n(r, t)t - n(r, t)i and r(r, t) = 
DI V ¢1(r, t)l 2 are the density, magnetization density (z­
component) and kinetic energy density of valence electrons, re­
spectively; ni(r) is the ionic density in the jellium approxima­
tion; ¢1(r, t) is a single-particle wave function. The convention 
e = me = n = l is used. The functional (1) can have addi­
tional terms if the ionic structure is treated beyond the jellium 
approximation. 

The time-dependent single-particle Hamiltonian is obtained 
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H(r, t)¢1(r, t) = J¢i.(r, t). (2) 

In the small-amplitude limit of a collective motion, the densi­
ties can be written as n(r, t) = no(r) + Jn(r, t) and m(r, t) = 
m

0
(r) + Jm(r, t) where n0(r) and mo(r) are the static ground 

state densities (in spherical clusters with unpolarized ground 
state m0(r) = 0) and the values Jn(r, t) and Jm(r, t) are small 
time-dependent density variations ( transition densities). T_!ien, 
in the linear approximation to the density variations, the Hamil­
tonian (2) is a sum of the static and dynamical parts. The static 

part 

.. 6. dvxc f no(r1) - ni(r1) 
Ho(r) = T+Vo(r) = --2 +(-d )n=no,m=mo+ I I dr1 n r-r1 

(3) 
constitutes the Kohn-Sham single-particle potential (Eq. 3 is 
written for the case of spin-saturated clusters). It can be ap­
proximated with a good accuracy by phenomenological poten­
tials, such as the harmonic oscillator [7] ( for smaH spherical 
MC), Nillson-Clemenger [39, 40] (for deformed MC) or Woods­
Saxon [30, 41, 42] (for spherical and deformed MC). 

In the electric channel ( spin degrees of fredom are neglected), 
the dynamic part of the Hamiltonian (residual interaction) has 

the form 

( ) (
d2Vxc ( / 8n(r1, t) 

8H r, t = dn2 )n=no,m=mobn r,, t) + Ir_ ril dr1. (4) 

The dominant term here is the Coulomb interaction. The resid­
ual interaction in this channel is always positive (repulsive) and 
shifts the· unperturbed electrical multipole strength from the 
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typical particle-hole (ph) values Wph = 0.9 - 1.5 eV to higher 
energies 2.6-3.2 eV. 

In the spin channel, the dynamical part of the Hamiltonian, 
initiated by the variation c5m(r, t). is expressed only through 
the exchange-correlation term as the single one depending on 
the magnetization density. The residual interaction here is neg­
ative (attractive) and shifts the unperturbed magnetic multipole 
strength from Wph = 0.9 - 1.5 eV to lower energies 0.2-0.8 eV. 

In what follows we will mainly consider clusters constituted 
from monovalent atoms, like alkali metals, for which the num- · 
hers of valence electrons and atoms coincide, Ne = N, 

3 Electric Dipole Giant Resonance (El GR) 

Unlike nuclei, where different kinds of GR are well investigated 
both experimentally and theoretically, our knowledge in clusters 
is mainly limited by the electric dipole resonance ( dipole plas­
mon). Experimentally the El GR has been observed in a variety 
of clusters: small and large, spherical and deformed, neutral and 
charged, hot and cooled (see, for example, Refs. [43-49]). As a 
rule, the photoabsorption cross section was measured by meth­
ods of the depletion .spectroscopy. For other GR (EL(L f=. 1), 
iv! L) there are only theoretical predictions [6-9,28,30,32,50,51 ]. 

Physical interpretations of El GR in clusters and nuclei are 
very similar: while in nuclei it is caused by translations of neu­
trons against and protons, then in clusters it is a result of trans­
lations of the valence electron against ions [16]. In spite of this 
similarity, the dipole resonance in clusters exhibits many inter­
esting peculiarities which will be discussed below. 
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3.1 . Energy of El GR: Step by· Step 

In general, the description of the El energy in clusters is a rather 
complicated task. For example, while in nuclei the El-energy 
depends on the mass number as .4-1/3, in clusters it can both 
decrease (Ag clusters) and increase (alkali MC) with the number 
of atoms. Let us consider this.important characteristic step by 
step. 

Step one: Mie frequency and spill-out ·effect. In the 
simplest approximation, MC can be considered as a classical 
metallic drop. Then, the El-energy is described by Mie expres­
sion [52]: u.JMie = wp/ v'3 where 0.,'p is the plasma frequency. For 
Na clusters WMie = 3Ale1l. This value is much higher than 
the experimental El-energy which is 2.5-2.8 eV for spherical Na 
clusters with N < 100. 

The agreement with the experiment is considerably improved 
if we take into account the quantum spill-out effect. This effect 
means that, since the valence electrons are quantum entities, 
they are not well localized and so, unlike the classical ionic jel­
lium, can be pa1:tly spilled out beyond the jellium boun_dary. In 
principle, the spill-out takes place in any two-component quan­
tum system including atomic nuclei and atoms (a "neutron skin" 
in small nuclei is a relevant example). With the spill-out, the 
El energy in MC is described as [7] 

18Ne) 
.WEl = WMie(l - ?-N 

- e 

(5) 

where 8Ne is the number of spilled out valence electrons. As a 
result, the discrepancy with the experiment reduces to 0.2-0.3 
e V. The spill-out effect allows to explain the increase of the El­
energy with N, observed in alkali MC. The value 8Ne decreases 
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with the size (for example, JNe = 1.5(19%) and 9.5(7%)in N as 
and Na 138 , respectively (53]) leading to the corresponding in­
crease in the El-energy. 

Step two: ionic structure, local and nonlocal effects. 
The remaining discrepancy can be removed in a large extent by 
the explicit treatment of the ionic subsystem. First of all, we 

. should take into account that ions are not the points but have 
a size. Inside this size, ion core electrons (ICE) ( do not confuse 
them with the valence electrons) screen the pure Coulomb inter­
action of ions .and valence electrons. To take into account this 
screening, the atomic pseudopotentials (PP) are used (see, for 
instance, (22, 23, 25, 54]). They allow to describe correctly the 
13pectrum of vaience electrons in isolated atoms without the so­
lution of the complicated many-body atomic task. Being a sum 
of contributions of ICE with different orbital momenta, PP have 
local ( s-electrons) and nonlocal (p and d electrons) parts (54]. To 
avoid dealing with nonlocal functions, the Pseudo-Hamiltonians 
(PH) were introduced as the next simplifying step (55, 56]. The_ 
PH, being derived from PP, lead to less involved (but with the 
same accuracy) calculations since, unlike the PP, they treat the 
nonlocality only through the differential operators. Folding the 
atomic PH with the jellium, one gets the PH for atomic clus­
ters (19-21]. The PH have the additional advantage to be easily 
incorporated to common calculation schemes. 

As compared to the conventional Kohn-Sham Hamiltonian, 
PH include the additional local and non-local (the orbital contri­
bution and the effective mass) terms. As is seen from Figure 1, 
in K clusters (the same for Na) the nonlocal contributions are 
negligible and the local term is enough to get good descrip­
tion of the El.:.energy (33]. This is not the case for Li clusters, 
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Figure 1: El GR (dipole plasmon) in Kii and Lif1 calculated in the frame­
work of the SRPA with (down) and without (up) the nonlocal ICE contribu­
tion (33]. For Lif1 the photoabsorption experimental data (57] (ti.) in A2 /Ne 
are compared. 

where only both, local and nonlocal, contributions provide the 
agreement with the experiment (33]. In some studies (see, e.g., 
Ref. (22]) the ICE effects are taken into account together with 
some averaged treatment of the ionic arrays in a cluster. The 
latter leads to an additional, but rather moderate, redshift of 
the El-energy. 

Step three: direct dynamical ICE contribution. The 
ICE effects discussed above are realized through the change of 
the single-particle characteristics with the subsequent renormal­
ization of the residual interaction. Besides this indirect way, the 
ICE can directly influence the dynamics and thus lead to new 

· peculiarities of the El GR. This can be well demonstrated for Ag 
clusters where, like atomic nuclei and unlike alkali MC, the El­
energy decreases with a size (48]. The physics behind is that in 
these clusters the energy of ICE excitations is comparable to the 
El-energy. The coupling of these two modes additionally screens 
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Figure 2: Top: El GR in spherical Na clusters from different size regions. The 
SRPA results [33] are shown as bars for every RPA stat'e to demonstrate the 
Landau damping and as smoothed by a Lorentz function ( of the width 0.25 
e V) to simulate the typical thermal broadening of the plasmon. The length 
of the bars is rescaled by the factor 1/2.55 to fit the scale of the smoothed 
strength. The photoabsorption experimental data are taken from Ref. [43]. - ' 
Bottom: The number of dipole particle~hole configurations, as a function of 
the energy, corresponding to 6..N=l (dotted bricks), 6..N=3 (dashed bricks) 
and 6..N 2:5 ( unfilled bricks) dipole transitions in Na clusters presented in 
the top of the figure. N is the principal shell quantum number. The arrows 
mark centroid energies of the plasmon. 

the interaction of valence electrons with ions ( direct dynamical 
ICE contribution) and finally causes the redshift (decrease) of 
the El-energy [58]. This effect is mainly of a volume character 
and so intensifies with a cluster size. As a result, the El energy 
in Ag clusters decrease~ with N. This tendency overpowers the 
opposite one caused by the spill..:out effect. 

In alkali MC, where the ICE excitations have much higher 
energies than the El GR, the direct dynamical ICE contribu­
tion is negligible and the evolution of the El-energy with N is 
determined mainly by the spill-out effect. 
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' l 4 Landau Dampin-g and Width of El GR 

The main physical mechanisms forming the plasmon width are 
the thermal fluctuations of a cluster shape and the Landau 
damping (RPA fragmentation of the collective strength) [3, 18, 
33, 34, 35, 61, 60]. The relative.contributions of these two mech­
anisms change with a cluster size. As is seen from Figure 2, in 
small clusters, like N at1, where the Landau damping is we~k, the 
thermal fluctuations determine about all the width. In clusters 
of a moderate size. like 1Vat9, the Landau damping is strongest 
and greatly contributes to the width. This is especially the case 
for deformed clusters. In large clu~ters, like N at41 , the Landau 
damping is weaker though its contribution to the width remains 

to be considerable. 
Figure 2 (bottom) shows that the Landau damping is closely 

related with the shell structure [33]. In N aI1 the dipole plasmon 
lies in the wide gap between the bunches of L::J.N =1 and L::J.N =3 
particle-hole (ph) states and remains almost unperturbed as a 
collective peak. With increasing the cluster size, the resonance 
approaches the bunch L::J./V =3 and, in N a,t9, already interferes 
with ph states of this bunch, which leads to the considerable 
Landau damping. For larger clusters, the plasmon runs to the 
swamp of ph states. This leads to a general trend of increas­
ing the width which is, however, overlaid by sizeable fluctua­
tions [33, 34]. But here a further mechanism comes into play: 
the coupling between the resonance and ph states fades away 
due to increasing mismatch of L::J.N =1 ph configurations (which 
mainly generate the plasmon) and surrounding ph states with 
much larger values of L::J.N. This finally leads to the decrease of 
the plasmon width ex: N;113 estimated analytically in the wall 
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formula [35] and tested in the RPA calculations [34]. 
The Landau damping in MC with N < 40 is rather sensitive 

to cluster charge: being strongest in negatively charged MC {an­
ions), the Landau damping is considerably reduced while passing 
to neutral and then to positively charged clusters (cations) [17]. 
This effect is caused by the strong dependence of the single-

. particle potential depth Vo on the cluster charge. In anions the 
potential is shallow (Vo~ -2 eV), the energy gaps between !J.N 
bunches are very smooth and, so, there are good conditions for 
a sizeable Landau damping {see discussion above). In neutral 
clusters and more in cations, the potential depth is increased to 
about -7 eV, the gaps between 11N bunches in the ph spectrum 
become more distinctive, which weakens the Landau damping. 

5 Temperature Effects 

In most of experiments with GR in MC, the typical cluster tem­
perature is estimated to be in the interval 300-900 K which cor­
responds to the thermal energy kT _:_ 0.03 - 0.09 e V. At these 
temperatures, ions behave as classical particles and quantum 
properties of the cluster are mainly determined by valence elec­
trons. This can be easily proved [59] by using the uncertainty 
relation !J.x!J.p 2: ti. This relation gives lower bounds for the 
momentum and energy of a particle in a system: /J.p = li/ !J.x 
and !J.E = (!J.p) 2/2m, respectively. Taking !J.x 2: 1.5A (the 
diameter of N a20) for both ions and valence electrons, one gets 

!J.Ee ~ 0.l6eV for electrons, 

!J.Ei > 10-4eV for ions. 

12 

The energy of a quantum motion of valence electrons consid­
erably exceeds the thermal energy, which favors their quantum 
behavior. Due to much larger ionic mass, the situation with ions 
is opposite. loris should exhibit the classical behavior. 

The· difference in ionic and electron masses leads to other in­
teresting consequence. Namely, almost all the thermal energy 
is contained in the ionic subsystem. Valence electrons are em­
bedded to the thermal ionic bath. So, unlike atomic 'nuclei, MC 
represent the case of the canonical ensemble. 

The bulk melting points for K, Na and Li are n = 336, 371 
and 452 K, respectively. This means that most of the measure­
ments for GR in MC ·have been done for clusters in a liquid-like 
phase. 

As was mentioned above, in small clusters, thermal shape 
fluctuations provide the dominate contribution to the plas~on 
width. While in nuclei these fluctuations are mainly of a quadru­
pole form, in MC they are mainly octupole [60]. The reason is 
that MC with closed shells and neighboring ones are rather soft 
to the octupole deformation. 

Photoexcitation is a rapid process in the ionic time scale. So, 
every response of a cluster represents its instantaneous shape 
and the experimental cross section gives a properly weighted 
response of all allowed shapes [61 ]. 

The higher the temperature, the larger the plasmon width 
and the smaller the plasmon energy. The temperature shift is 
estimated as about 1 % of the plasmon energy per 100 K [44, 62]. 
It can be explained by the effectively increase of the cluster 
size with a temperature. The larger the size, the bigger the 
static dipole polarizability which is expressed through the cluster 
radius as G'El = R3. The polarizability is connected with the 
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Figure 3: El GR in deformed Na clusters. The SRPA results (31) (curves 
and bars) are given by the same way as in Figure 2. The experimental data 
are taken from Ref. (69). The deformation parameter /32 is extracted from 
the experiment [69] following the prescription[7]. 

plasmon energy through the inverse sum rule, o:E1 = 2m_1 ~ 

B(El)/wEI· So, the higher a temperature, the larger o:Ei and, 
consequently, the smaller w EI. 

Recent experiments show that c:1t sufficiently low tempera­
tures the gross-structure of the El GR drastically changes [47]. 
For example, the axially deformed cluster N af1 at 380 K demon­
strates the typical two-peak spectrum determined by the de­
formation splitting of El GR. At 35 K the same resonance ex­
hibits much more complicated structure including at least 6 well­
distinguished peaks. This structure reflects the ionic arrange­
ment which, at so low temperature, is not washed out by varia­
tions of ions. In this case, the jellium approximation is not valid 
and models based on this approximation cannot be applied. The 
El GR in small clusters at low temperature seems to be best de- · 
scribed by ab initio quantum-chemical calculations [63]. 
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6 El GR in Deformed Clusters 

Like nuclei, MC with open shells have quadrupole deforma­
tion [45-49,64-68]. There are experimental indications of both 
prolate and oblate axial quadrupole shapes, as well as of 1-
deformation [45-49]. In· the· framework of different methods 
(Strutinski's shell correction method, ultimate jellium model, 
etc.) hexadecapole and octupole deformations as well as high 
isomerism have been predicted [6cl-68]. Rather strong quadru­
pole, hexadecapole and octupole deformations should take place 
at least up to MGwith)Y ~ 700 [65]. Like in nuclei, Et GR in 
axially deformed MC exhibits the deformation splitting in tw_o 
peaks (see Figure 3). The right peak is about twice larger than 
the left one in prolate clusters ( see N af1, N a.f5, Na.ti) and, vice 
versa, in oblate clusters ( see N aJ5). 

Most of MC are deformed. But getting an experimental in­
formation on a cluster shape, even in the simplest case of a 
quadrupole deformation, is rather nontrivial problem. In nuclei 
rotational bands serve as a source of such information. In. princi­
ple, deformed clusters can rotate. But, due to a large value of the 
moment of inertia, rotational energies are very small and, being 
of the same order of magnitude as the thermal energy, fail to be 
observed. In this connection, the splitting of El GR in deformed 
clusters is now a single direct manifestation of quadrupole de­
formation and the valuable source of the information about it. 
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Figure 4: E2 and E3 GR in Nat9 calculated within the SRPA. 

7 Multipole GR, Asymptotic Trends, Restor-
ing Forces 

So far, the depletion spectroscopy methods (photoabsorption 
and photofragmentation) were mainly exploited for observation 
of El GR in MC [2]. The other reactions ((e, e'), ('"Y, 1'') and 
etc.) are not yet sufficiently developed, which impedes the ob­
servation of other GR. The similar situation took place i1_1 nu­
clear physics in early seventies. For this reason investigation of 
EL GR. with L -/- l is yet limited to theoretical predictions [6-
9,28,30,32,50,51 ]. In Figure 4, E2 and E3 GR in spherical Nat9, 

calculated within the SRPA, are presented as typical examples. 
It is instructive to consider the main trends of EL GR with 

the size (N) and multi polarity (L), and also the origin of the GR 
restoring forces. Such analysis has been done within the sum 
rule approach (SRA) in Ref. [6]. In the jellium approximation 
for valence electrons, no(r) = ni(r) = n+0(r - R) (the spill-out 
effect is neglected), the energy of EL(L-/- 0) GR can be written 
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as [6] 

WEL= =n -(2L+l)(L-l)-+w2-~ ~

2 . /3} L 
3 R2 P2L + 1 

(6) 

where m 1 = I:i B(EL, gr-+ i)wi and m3 = I:i B(EL, gr-+ i)wr 
are the sum rules, /3F = (3/5) 112(3rr2

)
113n613 /m and R = r0N 113 

is the radius of a cluster. The first and second terms in Eq. 6 
are the contributions of the kinetic energy (the similar expres­
sion h_ave been obtained earlier in Ref. [70]) and the Coulomb 
interaction, respectively. Eq. 6 shows that El GR is determined 
only by the Coulomb interaction. In the limit of large R, one 
has 

WEL --7 /iwp~ 2£ ~ 1" (7) 

The larger L, the higher the excitation energy of the GR. In 
general, due to the first term in Eq. 6, the energy of EL(L -/-
0, 1) GR is decreased with N. For low L in small clusters this 
tendency is changed by the spill-out effect.-

The separate analysis for ED GR predicts the increase of the 
ED energy with N to the limit WEo -+ nwp. 

It is seen from Eq. 6 that the value m3 has the meaning of 
a restoring force [10]. In Table 1 the contributions to m3 from 
different terms of the Kohn.:.Sham functional (1) are presented. 
It is seen that the restoring force for El GR is ~etermined by the 
electron-ion interaction only. With increasing L, the electron- . 
electron contribution ( ee) raises and starts to compensate the 
( ei) Coulomb part. Simultaneously, the kinetic energy term 
grows. For high L, the contribution of the total Coulomb inter­
action goes to zero and all the restoring force is determined by 
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Table 1: Relative contributions to m3 for Na92 : kinetic energy (m3(T)), 
exchange and correlations (mJ(xc)), electron-electron interaction (m3(ee), 
electron-ion interaction ( m3( ei)) and total Coulomb interaction ( m3( C) = 
m3(ee) + m3(ei)) (6]. / 

L m3(T) m3(xc) m3(ee) m3(ei) m3(C) 

1 0 0 0 1 1 
2 0.08 0 -0.77 1.69 0.2~ 
5 0.51 0 -2.29 2.78 0.49 

the kinetic energy. Within the LDA, the exchange-correlation 
term (xc) is of purely volume character (depends only on the 
electron density) and so does not contribute to m3• 

The restoring force should not be confused with the residual 
interaction. As is seen from Eq. 4, the residual interaction, 
unlike the restoring force, has for any L only the ( ee )- and ( xc )­
terms (where the ( ee )-term dominates). 

8 Anharmonicity and Multiphonon GR 

How much harmonic are GR in metal clusters? For one phonon 
GR (phonons here are superpositions of lp-lh electron excita­
tions, do not confuse them with ionic phonons) the theoreti­
~al investigations [71-73] give contradi~tory answers. The shell­
model cal~ulations [71] found for El GR in N a20 some signals 
of anharmonicity. The other studies (72, 73] predict for EL and 
spin-dipole GR the harmonic behavior. It should be noted that 
all these studies have been performed_ for rather small clusters 
with N ~ 20. In this size region the GR energy lies safely below 
the lowest 2p-2h configurations, what does not favor anharmonic 
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effects. This picture can change in larger clusters where GR ap­
proach the region of 2p-2h configurations. 

The calculations [72] predict a noticeable anharmonicity for 
most of double (two-phonon) GR placed at 8-1~ eV. These GR 
exhibit a weak mixing with one-phonon states. At the same 
time, they are well fragmented between two-phonon configura­
tions. Most strong effect is expected for some o+ double GR, 
for example, for (1- @ 1 -)0+ in N at1. These predictions are 
important in connection with the appearance of the new experi­
mental techniques allowing investigation of l!lultiple GR. These 
techniques use non-intense femtosecond lasers [74] or exploit col­
lisions of a cluster with highly charged ions [75]. Quite recently 
the multiple GR constructed from 3-4 dipole plasmons has been 
observed in N at3 [74]. 

9 Magnetic GR 

Like in atoms, the spin-orbital interaction in metal clusters is 
negligible and thus spin and orbital collective magnetic modes 
are well decoupled. The separation of these two modes in MC 
is easier than in nuclei. 

9.1 Spin-Multipole GR 

Magnetic multipole resonances (ML) of spin character caused 
by the external field Q L = z::f=1 rf YLOcrJ were studied within 
the SRA and RPA [8, 9, 50, 51]. For L = l the operator 
Q1 ~ I:f=:1 ZjCTJ provides the opposite shifts of spin-up and spin­
down electrons in z-direction. Unlike EL GR, the residual in­
teraction f9r ML GR is defined only by the exchange and cor-
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relations ((xc)-term) since only the (xc)-term depends on the 
magnetization density. In this connection, the study of ML res­
onances can.provide a valuable information about (xc)-effects in 
clusters. 

Approximating the electron density by the expression n0 = 
n00/(1 + exp((r - R)/a) (the spill-out is effectively taken into 
account), one gets for the energy of the spin ML GR [9] 

~ 
2 /3} e2 no 

WML = = 1i[-(2L + l)(L- l)R2 + -41raL R 2L-I 
5 m 

+ !.L(v1~2\no,mo) - vi~0)(no,mo))
6
:~]112 (8) 

h (pq) ( ) - dP dq (pq) ( . ) I . D th 
W ere VXC no, mo - dnP dmq VXC n, m (n=no,m=mo)· ror O er 
notation see Eq. 6. Due to the presence of the spin in the 
operator QL, the (xc)-term contributes to m3, unlike the case of 
EL GR. However, the exchange contributions (Pauli principle) 
to v;~ and v~~ are the same and then, only correlations enter Eq. 
8. The energies of spin ML resonances decrease with N and run 
to zero for large sizes. The larger L, the higher the GR energy. 
The behavior of spin ML GR much depends on the diffuseness 
parameter a. 

Table 2 demonstrates that the restoring force for spin­
multipole GR differs from the one for EL GR. Namely, the con­
tribution of correlations [38] dominates for L = 1 and 2 and 
remains to be considerable for larger L. The correlation term 
includes long-range RPA correlations [76-78], short-range corre­
lations [79] and others. The correlations greatly influence both 
static and dynamical characteristics of MC [37,38,76-78] and 
their investigation is very important. 
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Table 2: Relative contributions to m3 for N a92 and N a912 : kinetic energy 
(m3(T)), correlation (m3 (c)) and total Coulomb interaction (m3 (C)). The 
data are extracted from the Fig. 1 of Ref. [9]. 

Nag2 Na912 
L m3(T) ni3(c) m3(C) m3(T) m3(c) m3( C) 
1 0 0.77 0.23 0 0.30 0.70 
2 0.50 0.49 0.01 0.31 0.68 0.01 
5 0.76 0.20 0.04 0.59 0.38 0.03 

9.2 Orbital GR 

Since the number of atoms in MC can be much more than the 
number of nucleons in nuclei, much larger values of the single­
particle orbital moment can be achieved .. This can give the 
origin to very strong orbital ML GR. Clusters can exhibit the 
same orbital ML GR as in nuclei ("scissors", twist mode, etc.) 
but these GR can be much stronger [7, 80]. 

Investigations of the specific low-energy orbital Ml GR, 
which can exist only in deformed clusters, have shown that this 
GR can serve as a good indicator of the cluster quadrupole de­
formation [7,81-83]. Indeed, in some cases the deformation split­
ting of El GR is washed out by other effects and is not enough 
distinctive to get a reliable information on cluster deformation. 
Then the orbital Ml GR can be used for this aim. Macroscop­
ically, this resonance is treated as small-angle rigid rotations of 
the ellipsoid of valence electrons against the ionic ellipsoid. Such 
collective mode was shown to be coupled with the quadrupole 
component, v(yz), of the displacement field [7, 81]. The orbital 

21 



Table 3: The excitation energy and strength ( within the interval 0-1 e V) 
of orbital Ml GR, calculated within the SRPA [82, 83]. See the text for 

notation. 

Nats Naf7 Nats Nat19 Nafgs 

/32 0.32 0.23 -0.23 0.25 0.24 

WM1, eV · 0.63 0.29 0.35 0.26 0.21 

B(Ml),µi 27 56 41 229 757 

Ml GR has the counterpart in deformed nuclei, well known as 
the "scissors" mode [84]. The latter describes the rotations of 
the neutron ellipsoid against the proton one. The orbital Ml GR 
is represented by Kn = 1 + states (K is the angular-momentum 
projection) with a low excitation energy and strong Ml transi­
tions to the ground state. For Na clusters these characteristics 
are estimated as [7, 81] WM!= 4.6f32N;113(1 + 5~)-

1
1

2 
eV and Wp 

B(Ml) = 1.If32N;l3µi where /32 is the deformation parameter, 
B(Ml) is the reduced transition probability and wo is the har­
monic oscillator frequency. Both WM! and B(Ml) are propor­
tional to the deformation parameter and so the orbital Ml GR 

survives only in deformed clusters. 
The results of the realistic RPA calculations for orbital Ml 

GR [82, 83] are given in Table 3. It is seen that this resonance 
has low excitation energies. The most remarkable result is that 
already in clusters with about 300 atoms, the orbital Ml GR 
strength reaches very high values, 700-800 µr This GR is de.,. 
scribed in detail in Ref. [83] of the present Proceedings. 
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10 Other GR in Atomic Clusters 

As compared to nuclei, atomic clusters provide many specific 
manifestations of El GR. For example, clusters embedded in 
a dielectric matrix demonstrate a strong screening effect: the 
matrix screens the residual interaction between valence elec­
trons in a cluster, which results in the cdnsiderable decrease 
of El-energy [85]. In mixed and coated clusters the impurity 
( or coated) atoms much influence both the ground state and 
properties of El GR (see, e.g. Refs. [86-88]). In the fullerene 
C50, two El GR are k_nown as determined by weakly bonded 1r 

electrons and strongly bonded a- electrons (see, e.g. Ref. (89]). 
3 He and 4 He clusters representing collections. of fermions 

(3He atoms) and bosons (4He atoms), respectively; should be 
mentioned. In 3 He clusters just 3 He atoms ( not valence elec­
trons) form a mean field with quantum shells [59, 90, 91]. These 
clusters are characterized by strong surface effects. Unlike nu­
clei and MC, 3 He clusters represent the case of one-component 
Fermi-system and, so, have no El GR. At the same time, the 
study of other EL GR reveals new possibilities, for instance, the 
comparison of the GR properties in Fermi (3 He clusters) (92, 93] 
and Bose (4 He clusters) (94] systems. 

Summary 

Giant resonances in atomic clusters have been observed. Be­
ing much similar to their counterparts in atomic nuclei, GR in 
MC demonstrate, at the same time, numerous exciting pecu­
liarities. The unique situation takes place now in many-body 
physics where, in addition to atoms and atomic nuclei, a new 
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family of small Fermi systems (MC, fullerenes, H e3 clusters, 
quantum dots) appears. This greatly enlarges our possibilities 
in many-body studies. All mentioned systems possess, in a dif­
ferent extent, a mean field with quantum shells. 

It should be noted that atomic clusters are attractive both 
for fundamental studies and practical applications [95]. Last 
achievements ( c~eation of new materials, machinning super hard 

· surfaces, creation of extremely large energy densities in a matter, 
catalysis, microelectronics, microcomputering, etc.) show that, 
due to atomic clusters, one may expect in a recent future a 
remarkable progress in many high-tech fields. 

Acknowledgments 

We are gratefu! to M. Schmidt and H. Haberland for commu­
nication the experimental results. The work was also partly 
supported by CAPES (V.O.N.) and FINEP Brasil (V.O.N. and 
F.F.S.C.). 

References 

[1] V.O. Nesterenko, Sov. J. Part. Nucl. 23, 1665 (1992). 

[2] W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993). 

[3] M. Brack, Rev. Mod. Phys. 65, 677 (1993). 

[4] C. Brechignac and J.P. Connerade, J. Phys. B 27, 3795 

(1994). 

24 

i 
l 

[5] V.O. Nesterenko, W. Kleinig and V.V. Gudkov, in Proc. 
Intern. Conf. Nuclear Structure and Related topics, ed. S.N. 
Ershov, R.V. Jolos and V.V. Voronov (JINR, Dubna, 1997) 
p. 322. 

[6] LL Serra et alt Phys. Rev. B 39, 8247 (1989). 

[7] E. Lipparini and S. Stringari, Z. Phys. D 18, 193 (1991). 

[8] E. Lipparini and M. Califano, Z. Phys. D 37, 365 (1996). 

[9] LL Serra and E. Lipparini, Z. Phys. D 42, 227 (1997). 

[10] P.-G. Reinhard and M. Brack, Phys. Rev. A 41, 5568 
(1990). 

;I; 

[11] P.-G: Reinhard, 0. Genzken and M. Brack, Ann. Phys. 
(Leipzig) 5, 576 (1996). 

[12] C. Guet and W.R. Johnson, Phys. Rev. B 45, 11283 (1992). 

[13] W. Ekardt,Phys. Rev. Lett. 52, 1925 (1984). 

[14] D.E. Beck, Phys. Rev. B 30, 6935 (1984). 

[15] J.M. Pacheco and W. Ekardt, Ann. Phys. (Leipzig) 1, 254 
(1992). 

[16] C. Yannouleas and R.A. Broglia, Phys. Rev. A 44, 5793 
(1991). 

[17] C. Yannouleas, Chem. Phys. Lett. 193, 587 (1992). 

[18] C. Yannouleas, E. Vigezzi and R.A. Broglia, Phys. Rev. B 
47, 9849 (1993). 

25 



I 
! 
I 

: 

'/ 
: 

(19] 11. Serra, G.B. Bachelet, N. Van Giai and E. Lipparini, 
Phys. Rev. B 48, 14708 (1993). 

[20] F. Alasia et al, Phys. Rev. B 52, 8488 (1995). 

(21] LL Serra, E. Lipparini and N. Van Giai, Europhys. Lett. 29, 
445 (1995). 

(22] S.A. Blundell and C. Guet,Z. Phys. D 33, 153 (1995 ). 

(23] F. Catara, Ph. Chomaz and N. Van Giai, Z. Phys. D 33, 
219 (1995). 

(24] B. Montag, P.-G. Reinhard and J. Meyer, Z. Phys. D 32, 
125 (1994). 

(25] K. Yabana and G.F. Bertsch, Phys. Rev. B 54, 4484 (1996). 

(26] A. Rubio, J.A. Alonso, X. Blase, S.G. Louie, to appear in 
Int. J. Mod. Phys. B , 1998 (. ) 

(27] V.O. Nesterenko and W. Kleinig, Phys. Ser. T56, 284 
(1995). 

(28] V.O. Nesterenko, W. Kleinig and V.V. Gudkov, Z. Phys. D 
34, 271 (1995). 

[29] V.O. Nesterenko, W. Kleinig, V.V. Gudkov and J. Kvasil,, 
Phys. Rev. C 53, 1632 (1996). 

(30] V.O. Nesterenko, W. Kleinig, V.V. Gudkov, N. Lo Judice 
and J. Kvasil, Phys. Rev. A 56, 607 (1997). 

[31] V.O. Nesterenko and W. Kleinig, in Proc. Intern. Symp. 
Similarities and Differences between Atomic Nuclei and 

26 

I 

I 
I 
I 

/i 

J 
I 

) 
,I 
I 

Clusters (Tsukuba, Japan, 1997), ed. Y. Abe, I. Arai, 
S.M. Lee and K. Yanaba, AIP Conference Proceedings 416, 
(Woodbury, New York, 1998) p.77. 

(32] V.O. Nesterenko, \V. Kleinig and J.Kvasil, in Proc. In­
tern. Conf. Atomic Nuclei· and Metallic Clusters (Prague, 
Czech Republic, 1997), ed. P.Alexa, Czech. J. Phys. 48, 
745 (1998). 

(33] vV. Kleinig, V.O. Nesterenko, P.-G. Reinhard, LL Serra, 
Eur. Phys. JD 4, 343 (1998). 

[34] J. Babst and P.-G. Reinhard, Z. Phys. D 42, 209 (1997). 

(35] C. Yannouleas and R.A. Broglia, Ann. Phys. (N. Y.) 217, 
105 (1991). 

[36] W. Kohn and L. J. Sham, Phys. Rev. 140, Al133 (1965). 

[37] 0. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 
(1976). 

[38) S.H. Vosko, L. Wilk and M. Nusair, Can .. 1. Phys. 58, 1200 
(1980). 

[39) K. Clemenger,Phys. Rev. B 32, 1359 (1985). 

[40) S.M. Reinmann, S. Frauendorf and M. Brack, .Z. Phys. D 
34, 125 (1995). 

[41) H. Nishioka, K.I. Hansen and B.R. Mottclson, Phys. Rev. 
B 42, 9377 (1990). 

[42] S. Frauendorf and V.V. Pashkevich, Ann. Phys. (Leipzig) 
5, 34 (1996). 

27 



,1 
,:,1 

! I 
i'I 
,11 

,. 
I 

l 

. I 

1' 
1,\ 

[43] Th. Reiners et al, Phys. Rev. Lett. 74, 1558 (1995). 

[44] C. Brechignac et al, Z. Phys. D 19, 1 (1991). 

[45] K. Selby et al, Phys. Rev. B 40, 5417 (1989). 

[46] J. Borgreen et al, Phys. Rev. B 48, 17507 (1993). 

[47] Ch. Ellert et al, Phys. Rev. Lett. 75, 1731 (1995). 

[48] J. Tiggesbaumker et al, Chem. Phys. Lett. 190, 42 (1992). 
' ~ 

[49] P. Meibom et al, Z. Phys. D 40, 258 (1997). , .... 

[50] 11. Serra et al, Phys. Rev. A 47, R1601 (1993). 

[51] L. Mornas et al, Z.·Phys. D 38, 73 (1996) .. ., 

[52] G. Mie, Ann. Phys. {N. Y.) 25, 377 (1908). 

[53] S. Arvati et al,Nuovo Cimento D 7, 1063 (1989). 
" 

[54] G.B. Bachelet, D.R. Hamman and M. Schluter, Phys. Rev. 

B 26, 4199 (1982). , 

[55] G.B. Bach~let, D.M. Ceperley and M.G.B. Chiochetti, 
Phys. Rev. Lett. 62, 2088 (1989). 

[56] J. Lerme, Phys. Rev. B 54, 14158 (1996). 

[57] C. Ellert and H. Haberland, private communication. 

[58] 11. Serra and A. Rubio, Phys. Rev. Lett. 78, 1428 (1997). 

[59] S. Bjornholm, Contemp. Phys. 31, 309 (1990). 

[60] B.Montag and P.-G.Reinhard, Phys. Rev. B 51, 14686 
(1995). 

28 

i' 
1

11 

Ii 
} 

;' 

Ji 

I 

i 

[61] A. Bulgac and C. Lewenkopf, Europhys. Lett. 31, 519 
(1995). 

[62] Hand Book of Chemistry and Physics (Chemical Rubber, 
Cleveland,/1967), p. 56. 

[63] V. Bonacic-Koutecky, et al, in Proc. Intern. Conf. Atomic 
Nuclei and Metallic Clusters (Prague, Czech Republic, 
1997), ed. P.Alexa, Czech. J. Phys. 48, 637 (1998). 

[64] M. Koskinen, P.O. Lipas and M. Manninen, Europhys. Lett. 
30, 519 (1995) .. 

[65] S. Frauendorf and ·v.v. Pashkevich, In Proc. Int. School 
"Large Clusters of Atoms and Molecules" (Erice, 1996), ed. 
T.P.Martin, (1996) 201. 

[66] B. Montag, et al, Phys. Rev. B 52, 4775 (1995). 

[67] Th. Hirschmann, B. Montag and J. Mejer, Z. Phys. D 37, 
63 (1996). 

[68] C. Yannouleas and U. Landman, Phys. Rev. B 51; 1902 
(1997). 

[69] M. Schmidt and H. Haberland, private communication. 

[70] J.R. Nix and A.J. Sierk, Phys. Rev. C 21, 396 (1980). 

[71] M. Koskinen, M. Manien and P.O. Lipas, Phys. Rev. B 49, 
8418 (1994). 

[72] F. Catara, Ph. Chomaz and N. Van Giai, Phys. Rev. B 48, 
18207 (1993). 

29 



[73] F. Calvayrac, P.-G. Reinhard and E. Suraud, Ann. Phys. 
(N. Y.) 255, 125 (1997). 

[74] R. Schplipper et al, Phys. Rev. Lett. 80, 1194 (1998). 

[75] C. Guet et al, Z. Phys. D 40, 317 (1997). 

[76] P.-G. Reinhard,. Phys. Lett. A 169, 281 (1992). 

[77] C. Yannouleas, F. Catara and N. Van Giai, Phys. Rev. B 
51, 4569 (1995). 

[78] F. Catara, G. Piccitto, M. Sanbataro and N. Van Giai, 
Phys. Rev. B 54, 17536 (1996). 

[79] E. Lipparini, LL Serra and K. Takayanagi, Phys. Rev. B 49, 
16733 (1994). 

[80] S.I. Bastrukov, J. Moscow Phys. Soc. 4, 57 (1994). 

[81] E. Lipparini and S. Stringari, Phys. Rev. Lett. 63, 570 

(1989). 

[82] V.O. Nesterenko, W. Kleinig and F.F. de Souza Cruz, to be 
published in Proc. XXII Intern. Workshop on Condensed 
Matter Theories (Nashville, US, 1998). 

[83] V.O. Nesterenko, W. Kleinig, F,F. de Souza Cruz and N. Lo 
Iudice, in Proc. of Intern. Workshop Collective excitations 
in Fermi and Bose Systems (Serra Negra, Brazil, 1998). 

[84] N. Lo Iudice and F. Palumbo, Phys. Rev. Lett. 41, 1532 

(1978). 

[85] A. Rubio and LL Serra, Phys. Rev. B 48, 18222 (1993). 

30 

y 

II 

11 

{ 
I 

! 
~' 

[86] C. Yannouleas, P. Jena and S.N. Khanna, Phys. Rev. B 46, 
9751 (1992). 

[87] J.A. Alonso, Phys. Ser. T55, 177 (1994). 

(88] A. Rubio, J.A. Alonso, J.M. Lopez and M.J. Spott, Phys. 
Rev. B 49, 17397 (1994). · 

[89] N. Van Giai and E. Lipparini, Z. Phys. D 27, 193 (1993). 

(90] S. Stringari, Z. Phys. D 20, 219 (1991). 

(91] S. Weisgerber and P.-G. Reinhard, Ann. Phys. (Leipzig) 2, 
666 (1993). 

[92] S. Weisgerber and P.-G. Reinhard, Z. Phys. D 23, 275 
(1992). 

[93) LL Serra et al, Phys. Rev. Lett. 67, 2311 (1991). 

[94) M. Cassas and S. Stringari, J. Low. Temp. Phys. 79, 135 
(1990). 

[95) V.O. Nesterenko, JINR News, 1/1998, ISSN 0134-4811, 
Dubna, p. 6. 

Received by Publishing Department 
on March 2, 1999. 

31 

' 


