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1 Introduction

Confined quantum systems or localized quantum wave packets
are produced in many physical situations in molecular, atomic,
and condensed matter physics. The last twenty years the most
interesting apphcatlons of confined quantum systems are quan-
tum dots, wires, and wells.

The subject of this conS1derat10n 1s the particle in hnear po-
tential, which is bounded by a 1dea11y reflecting parabolic surface.
It is nonlinear quantum system, which is characterized by depen-
dence of the period of motion on the energy. We consider here
the case of the infinitely high potential of the boundary, which
is simplification of the realistic quantum model. The realistic
boundary is the potential of finite height. It may be neutral atom,
bouncing in gravitational field [1]. The boundary in this case is
produced by exponential potential of atom interaction with elec-
tromagnetic (optical) evanescent wave [2].. In [3] the results for
ideal reflecting plane (infinitely high potential wall) and the re-
alistic (exponential) one were considered and compared from the
point of view of quantum dynamlcs and quantum revivals of the
initial state. o

In the case of flat horizontal mirror the particle motion in
gravitational field is infinite in horizontal direction along the
mirror plane. Therefore the parabolic concave reflecting surface,
when the confinement region is restricted in transverse direction,
is practically more interesting. In [4] the classical motion of atom
in cavity consisting of a horizontal concave parabolic mirror in
gravitational field is considered as well as quantum mechanical
problem in paraxial approximation.

Review of confined quantum systems is contained in [6], which
presents also the detailed consideration of parabolically confined
hydrogen atom. ‘

Another possible example of confining surface is potential
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step for very slow neutron, bouncing in gravitational field from
reflecting horizontal mirror, consisting of nuclei with positive co-
herent neutron scattering length.

The examples considered here are typical three-dimensional
Schrédinger problems allowing separation of variables
into three ordinary differential equations. The type of boundary
is simply presented in parabolic coordinates for they are sur-
faces of constant coordinate and are therefore the most natural
boundaries.

The first example is the inclined plane, which is simple gen-
eralization of the case [5] of horizontal plane as a boundary for
linear potential. This example may be interesting in view of
possible experimental demonstration of quantum levels for mas-
sive particle in gravitational field in vicinity of reflecting plane.
The second and the third cases are linear potential bounded by
parabolic cylinder and by paraboloid of revolution. ‘

2 The particle in a linear potential
bounded by the perfectly reﬂect-
ing inclined plane

For the sake of concreteness we assume the uniform field to be
gravitational one along the y’ axis, g being the gravitational ac-
celeration value. The Schréodinger equation is given by:
h2 o
A (Mg B =0. ()
This f)roblem is separable in the turned by the angle a coor-

dinates (x,y), in which the y axis is normal to the inclined plane
surface, ‘

. . ’ .
:B'=:r-cosa—-y-szna, y=:1:-szna+y-cosa:
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', - h—Az/) + [Mg(y cosa +:1: . 'sina) —Elyp =0. (2)

Representing ¥ = X(z)Y(y), dividing by X Y, and separatmg

variables we obtam two equa.tlons
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— Y+ Moy cosa—(B=7¥ =0, (3)
and o 22 | o o |
— WX” + (Mgz - sina+ 7)X~;'0. e (4)

Wlth v as the constant ‘of separatlon Introducmg

2M?*g-cosa/h® =1/P, and  2M(E- 7)/7‘12 = /\/l2 (5)

for the equation (3), and | o f

2M?g - sina/h? - 1/s°, | and M~y /h? = pu/s®  (6)

for the equation (4) we have:
d’Y/de* —¢Y =0, (7)

where £ = y/l — A, with boundary conditions Y(£ = —)) = 0,
Y(é — o) — 0, and

EX/dC?— (X =0, (8)

where ( = z/s + p, and boundary condition X({ — oco) — 0.

The solutions of these equations which are evanescent at the
infinity are Airy functions, and Dirichlet boundary conditions for
(7) give the spectrum of stationary states. The total energy E is
not quantized in this situation, but the part of energy (E — 7),
corresponding to the motion normal to the surface of the inclined
plane is quantized in accordance to (5) and (7). The solution of
the equation (8) describes the wave, moving in the uniform field
with changing energy 7.
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Recently the planned experiment was advertised on the mea-
surement of energy quantization of neutrons in vicinity of pér—
fectly reflecting horizontal plane in the presence of gravitational
field [7]. One of the main experimental problems is very small
energy (and respectively space) separation of energy levels ~ sev-
eral microns. In [8] it was proposed to use the vertical gradient of
the magnetic field to compensate gravitational force and in this
way to increase the separation ‘of levels for one of the neutron
spin components. k ‘

It is seen from (5) that rotation of the plane around the hor-
izontal z-axis changes the energies of the quantum levels for mo-
tion in the direction along the y-axis and respectively the space
separation of the maxima in the neutron wave density profiles in
respect to reflecting surface.

3 The particle 1n a linear potential
bounded by the perfectly reflect-
ing parabolic cylinder

In this case we use the followmg coordinates of parabohc cylinder
(u,v,2):

z=+tuy, y= (v’ - vé)/2,
p=(2+y") u=(p+y)? v=(p-y)? (9)
where 0 < u,v < 0o, —00 < z < 00. Laplacian in these coordi-

nates is:

1 82 82‘ . 82
u? + 2 (8u2 + EWY) )+ 922 (10)
The Schrédinger equation with linear potential V = Mgy gradi-

ent of which is directed normally to horizontal z-axis of parabolic



cylinder has the form:
2 E 9%
Jo+ T+ 55 =0
| (11)
We present ¥ = fi(u)f2(v)f3(2), and after dividing by f, f2fs and
multiplying by u? 4 v? we obtain:

1 (u) f'(v)+fé'(2)_M29
fl(u) fa(v)  fa(2) 7?2

The motion along the z—axis is infinite, correspon’dmg wave func-
tion f3(z) = exp(ikz), therefore we omit it from futher consider-
ation. Separation of coordinates gives two one—dimensiona,l equa-
tions:

1 0%y O*py  2M?g su? —v?
u2+vz(0u2+0v2)— h? ( 2

(u' - 4)+ (u +v?) =0, (12)

M?gu? 2MEu
- (g BBy
and M? >4 2M Ev? |
gu fEv ‘
' él'l' ( 52 + 72 )f2 = —7f2- (14)

Now we introduce:

Mg/ =1/15, 2ME/R* = \/I*,

and have equations in the new variables: £ = u/l, and 7] =v/l:
V(XM A =50 (15)
and

: + (0 + 2" e = = fe (16)

We have two one-dimensional Schrédinger problems: for the
function f,(€) the potential U(¢) = £*— A€?, and for the function
f2(n) the potential is V(1) = —p*—An?, with boundary condition

fa(n =n0) = 0.

¥

If initially the parabolic cylinder in Cartesian coordinates has
the form y = az? + b, after transformation:
4 ' z'? 770
22 27

' =(20) oz, y' =y-— 172—0 ~b wehave 3y =

which corresponds to i = 7 in coordinates of parabolic cylinder.

We did not try to find the eigénvalues for this problem in the
form of roots of some explicit function (it is possible that such
solution exists), but solved Egs. (15-16) together numerically
with boundary conditions:

Al )= 0 fln=m=1)=0,

which corresponds in Cartesian coordinates to confining bound-
ary parabolic cylinder y = (z? — )/2{%.

The graphic method of finding energy eigenvalues A for these
equations is shown in Fig. 1 in which these eigenvalues are lo-
cated at the intersections of curves presenting the common for
these two equations eigenvalues ~ as a function of energy A. The
figures indicate the corresponding quantum number of the energy
state for each equation.

The stationary states exist only in the case of parabolic cylin-
der with its top directed downward (along the direction of ex-
ternal force); equation of this surface is n = ny. There is no
stationary state for the inverted parabolic cylinder £ = & with
its top directed upward. It is interesting to note that classically
the state exists (not stable to perturbations in the classical sense,
however) for a particle bouncing strongly vertically from the top
of the inverted parabolic cylinder.

Fig. 2 shows spatial distribution for some of the station-
ary quantum states for confining parabolic cylinder described by
equation 7 = 7o = 1. The eigenstates are labelled according to
the number of nodes of eigenfunctions for the equations (15) and
(16) respectively.
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Fig. 1 Graphic method of obtaining the eigenvalues A for the
joint solution of eigenvalue problem for the Egs. (15) and (16).

The curves (0-9) show the eigenvalue v as a function of A for the
Eq.(15), and the curves (0-5) show the eigenvalue v as a function
A for the Eq. (16). The intersection points give simultaneous
energy eigenvalues A for the system of equations (15-16).
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Fig.2 Density plots in Cartesian coordinates for some low
energy eigenstates in vicinity of perfectly reflecting cylindrical
paraboloid. a: g, A = 4.08; b: o1, A = 6.71; ¢ P12, A =
11.22; d: 913, A = 14.15; e: g, A =18.28; f: 1)p5, A = 21.25,
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4 The particle in a linear potential
bounded by the perfectly reflect-
ing paraboloid of revolution

In this case we use the coordinates of paraboloid of revolution
¢,n and ¢:

{n-cosp, y= \/5 sing, z=(£—n)/2

E=r+z, n=r—z r=(E+n)/2, =arctan(y/z),(17)

where 0 < £, < 00,0 < < 2m. Laplac1an in these coordinates

has the form:

1 8
&n dp*
The Schrodinger equation with linear potential directed along

the z-axis (which is the axis of paraboloid) in these coordinates
has the form:

A:———[ag 954 6( 5)]+ (18)

a a¢ o, Oy E+nd*y
[56€38) * 3o} + ey o T
M
+(§J2FT?2) B 2g(£—n)+E]¢:0. | (19)

Introducing v = fi(€) - f2(n) - €™, dividing by f1 fa - ezp(imep),

and separating the variables we have two equations:

d {.dfi(§) ME¢ m?  M?*g€?
it () + o

d¢ 2h? 4¢ 4h?
and
d ( dfx(n) MEy m® M?gy
—d—ﬁ(n_d_n—) [—2717*74—“ Y —ﬁ/l]fz() 0 (21)

10

+ B/ (&) =0, (20) -

with B/1 - the separation constant. After substituting:

- M?g MFE
:':;h—2=1/;3; | 77 =M, u=¢/l, v=nqfl
we have two equations:
dfl(u) m?
du ( T du [/\ W +ﬁ]fl (22)

and

dv < dff}iv)) + - ‘Zl— +o! =Bl =0 (29)

Introducing: x1(u) =-f1(u) -ul?  and x2(v) = fa(v) - v'/? we
have two one-dimensional Schrédinger equations:

2

O s FUOEUINCD

and
2

A PROETNINCD

1
)+ (A= 2o

with the potentials respectively:

m? —1
U(u)=——€—+u+ PRCI (26)

" and ﬂ 21
Vw)=~=—-v+ PR (27)

Again as in the case of parabohc cylinder the stationary states
exist only in the case of paraboloid of revolution with its top di-
rected downward (in the direction of external force); the equation
of this paraboloid is v = vo. There is no stationary state for the
inverted paraboloid u = uo with its top directed upward. In this
case the classical state for a massive particle bouncing strongly
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Fig.3 Space distribution probabilities for some low énergy

eigenstates in vicinity of perfectly reflecting paraboloid of rev- -

olution. a: oo, A = 3.05; b: o1, A =3.79; c: 9131, A = 7.80;
d: ’l,b()]z, A= 496, e: ¢132, A= 491, f: ¢252, . A= 12.8.
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vertically from the top of the 1nverted parabolmd has no quantum
mechanical analog.

The eigenvalues and eigenvectors were obtalned w1th the
method similar to the case of cylindrical paraboloid. Fig.3 shows
spatial distribution in Cartesian coordinates of some of the sta-
tionary quantum states for confining paraboloid of revolution de-
scribed by equation v = vg = 1.. The wave functions are labelled
according to the number of nodes in eigenfunctions of equations
(24) and (25) respectively, and rotational quantum number m
(the third quantum number).

Author is grateful to Mrs. G.F.Gareeva for her help in prepa-
ration of Figs. 2 and 3.
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