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Jl)'KMIHOB B.K. H ,np. E4-99-291 
BbICOK03HepreTHtieCKOe IIpH6JIH)KeHHe .[IJI5I a.npo-a,nepHOIO pacceRmrn 

MeTO,n BhlCOKO3HepreTH'IeCKOfO IIpH6JIH)KeHH5I a.nanTttpyeTC5I K }!JlpO-51.[lep
HhlM CTOJIKHOBeHH5IM npH 3Heprn5IX B ,neC5ITKH M3B Ha HYKJIOH JI Bhlllle. BHHMa
HHe HaIIpaBJieHO Ha IIOJI)"-leHHe 3llKOHaJihHhlX cpa3 B aHaJillTJilieCKOM BH.[le, qT06b1 
c,neJiaTh BO3MO)KHhIM KaqecrneHHhlll aHaJIH3 (pll3HKH npoueccoB, a TaK)Ke .[IJI5I Bhl
IIOJIHeHH5I q11cJieHHblX pacqeTOB. IloKa3aHO, 'ITO 5IBHhIH BH.[l 3HKOHaJihHOH (pa3hl, 
IIpe,nJIO)KeHHOH .[IJI}I peaJIHCTHtJecKott cpopMbI noTeHUHaJia By,nca-CaKcoHa, y.no-
6eH .[IJI5I IIOCJie,nymm11x npHJIO)KeHHH. AHaJIH3HpyeTC5I IIpHMeHHMOCTb no,nxo,na 
fnay6epa-C11TeHKO .[IJI5I MaJJhlX yrnoB pacce5IHH5I, a TaK)Ke HCCJie,nyeTC5I pOJib OT
KJIOHeHH5I TpaeKTOplm .[IBH)KeHH5I OT IIp5IMOH JIHHHH 3a Cl.JeT .nettCTBH5I KYJIOHOB
CKHX CHJI. IlpHBe,neHhl MeTO.[IHl.JeCKHe pactJeTbl H cpaBHeHH5I C 3KCnepnMeHTaJib
Hb!MH .[laHHbIMH. 

Pa6orn BbIIIOJIHeHa B Jla6opaTOpHH TeopeTHtJecKott cpH3HKH HM. H.H.Eoro
mo6oBa Ol15IH. 
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Lukyanov V.K. et al. E4-99-291 
High-Energy Approximation for Nucleus-Nucleus Scattering 

The high-energy method for potential scattering is adapted for the nucle
us-nucleus collisions at energies of several dozen Me V /nucleon and higher. Atten
tion is paid to analytic forms of the eikonal phases to make possible a qualitative 
consideration of physics of processes and perform fast numerical calculations. It is 
shown that the closed form of the eikonal phase suggested for the realistic 
Woods-Saxon type potential is a hopeful one for further applications. Applicabili
ty of the Glauber-Sitenko approach for scattering at small angles is analyzed, and 
a role of the Coulomb deviation of the straight-ahead trajectory of motion is inves
tigated. The methodical calculations and comparison with experimental data are 
made. 

The investigation has been performed at the Bogoliubov Laboratory of Theo
retical Physics, JINR. 
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1 Introduction 

Nuclear collisions at comparatively high energies E -:> -U and small wavelengths kR ~---1 are· 
highly sensitive to parameters of the interaction potential and nuclear structure. In this re- . 
ga.rd, elastic scattering makes the basis for understanding more complicated processes, includ
ing reactions of nucleon transfer. Within the framework of initial conditions, one can construct 
appropriate models by using the so-called eifonal wave functions 

IJ!(~) =:= e~p { ikr_- ;v L: (V(r) =FiW(r)]dA}. (Ll) 

where U(r) = V(r) + iW(r) is the potential; r = ✓b2 + A2 , the distance between centers 
of colliding nuclei; and b, the impact parameter. This expression can be derived (see, for 
instance, [1]) (fin the quasiclas~i.cal function exp(iS(r)/h), one exP,ands the. action S(r) = 
f[E- U(r- kclA)]1~2dA in small parameter U/E ~ 1, leaving _the t,erms,9f zeroth and first 
order.' Function k;,( r) defines the trajectory of motion which in the case under consideration.is 
regarded as a. straight line along momentum k at asymptotics. Minor deviation~ of a genuine 

trajectory can be ta.ken into account if in (1.1),.one replaces the vector k by k = k =i= ifc/2, 
where ifc = 2k sin(Oc/2) and 0c ~ U(R1)/ Eis the classical angle of deviation corresponding to 
the radius of closest approach of nuclei [1]. 

In this pa.per, we study applicability of the high-energy approximation (HEA) developed in 
[2], [3] for small angles of scattering (the Giauber- Sitenko approach) to elastic nucleus-nucleus 
collisions. This approach is applied succesfully in problems of proton-nucleus scattering when, 
as a rule, the nuclear potential in the Gaussian form is used al).d the Coulomb in.teraction is 
of minor importance. However, in the case of nucleus-nucleus ·scattering, the role of Coulomb 
forces is rather sigriificarit, ~nd the small-angle approximation requires a special investigati_on. 
Moreover, in ·scattering ofnuclei, one should deal with extended nuclear potentials,.mainly with 
a typical Woods-Saxon ·potential, but for the latter, one no suitable analyti<; form of the eikonal.. 
phase has been found. Recently,· in [4], ·we have obtaine/a simple approximate expression for. 
the phase but for the symmetrized Wo~ds-Saxo_n ·potential (the form of the. symmetrized _Fermi 
function) written as follows 

U(r) = Uo usF(r), 
sinh(R/a) 

usF(r) = cosh(R/a) + cosh(r/a)' (1.2) 

Below we will use it to study the range of its applicability for heavy-ion scattering as well as a 
possibility to use there the small-angle approximation. Effects of Coulomb distortion of the tra
jectory of motion will be anaiyzed, and the.respective methodical calculations and comparisons 
with experimen_tal data,w\ll be discussed, as well. 



2 Scattering amplitude 

The high-energy approximation for small scattering angles was developed by Glauber and Sitenko 
[2], (3]. The corresponding amplitude can be derived from the standard expression for the 
scattering amplitude if for the exact function of relative motion, one substitutes its eikonal 
ansatz (1.1): 

f(q) = _ _!!:_f dre-ikjru(r)w~+l = 
21rh2 k; 

= -
2
: 2 j dr U(r)exp { iqr- hiv 1-~ U( Jb2 + ,\2)d,\ }, (2.l) 

where mis the reduced mass; if= k~ - kj, the vector of momentum transfer q = 2ksin(0/2);, 
and 0, the scattering angle. This formula can be simplified if one takes the cylindrical system 
of coordinates, where the axis oz II k~, the axi_s ox Jies in the plane of vectors k,, k f, and b l.' k~. 
Now the, volume element is d3r = bdbdipdz, and the scalar product is defined as follows: 

ijr = qibcosip + q2z. (2.2) 

Here qi = q cos( 0 /2) is a transverse component; and q2 = q sin( 0 /2), a longitudinal component 
of the momentum transfer. In the small-angle approximation, the second term q2z in (2.2) is 
neglected, and one can set q1 = q. If we consider that a major contribution to the amplitude 
(2.1) comes from the region r ~ z ~ R, then this approximation holds valid under the condition 

0 < B = J2/kR. (2.3) 

In this case, the integral over t.p is reduced to the Bessel function of zero order, and integration 
over z is made by parts with the use of the equality U(r) = (d/dz) J~= U(r)d,\; in this way, we 
arrive at the known result " 

f(q) = ik 1= db bJ0(qb) ( 1 - i<l>N + i<I>c). 

Here each of the nuclear and Coulomb eikonal phases has the form 

<I>(b) = - hiv 1: U( Jb2 + ,\2)d,\. 

(2.4) 

(2 .. 5) 

In (2] it is shown that at finite scattering angles when q f= 0, the first integral in (2.4) with I 
inside brackets equals zero. Then it is interesting to note that the remaining part of integrand 
diverges at asymptotics as b112

, because at large b, the eikonals <I>(b), generally speaking, tend to 
zero. This problem is related with the small-angle approximation when one puts exp( iq2z) = I 
and thus eliminates the factor of convergence in the integrand. However, in the optical model, 
the convergence is provided by the imaginary part of the potential iW = -ilWI. 

An independent estimate of the range of applicability of this approach can be made proceed
ing from the HEA amplitude for large scattering angles 0 ~ I/kR (see (5]) 

/(0) = _ _!!:_Jd3r q,~-J•U(r)w~+l_ 
21rh2 k1 k; 

(2.6) 

Note that the eikonal functions (1.1) do not contain outgoing (incoming) spherical waves in 
asymptotics. The use, in (2.6), of two rather than one distorted waves like in (2.2) somewhat 
compensates this drawback, which allows one to move into the region of large scattering anglPs. 

As the integration contour, we again take a straight line along k; and the cylinclrirnl system 
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Figure I: Scntif'ring cross sections in the field of nuclrnr potrntinl (I.:!} 11·ith \ 0 = 
-50 Mtl", r0 = 1.0~ fm, n = 0.75 fm at 11'0 = -~2 .Ud" (011 the left) a11d 11"0 = -J:J .l/d" 
(011 the right). Solid lines - with the f{lc/01" of com•c1y1, 11re F'(qi, b) i11 (:!. 7). dottnl li111., 
ll'ithout th{I/ facto,-. 

of coordinates. Then in distorted waves ( 1.1 ), tlw limits ::; and :; 1 coincide with each other. and 
using both terms in (2.2), we obtain 

mU [= · 
f(O) = -

1
/ lo db bJo(q1b) e1<l> F(q2,b), (2.7) 

where 

F(qi,b) = 1: d:: ciq2::u(Jb2 + ::2) (2.8) 

has a meaning of the form factor of the distribution function 11( r) of potential U( r) = l'011(,.) at 
a fixed impact parameter b. It is just the factor F(q2,b) that ensures the conwrgence of (2.7). 
and if it is set to equal 1, we arrive at th(• mentioned intrgral in the Gla.ubl'r-Sitt•11ko approach. 
Figure l shows how this factor influences the angular distribution of scattering in thP field oft he 
Saxon-\Voods potential at different e1wrgies. It can be estahlish1•d that till' difT1•renre hl't \\'l'Pll 
calculations with F(qz, b) (solid lines) and without (dottl'd linPs) ocTurs at angll•s som1•,,·hat 
smaller than the estimate (2.3) for applicability of th<' small-angll' approximation. 0('1 ll f')::: 10° 
and 0(4°Ca) ~ 4.5°. 

3 Eikonal Phases of Coulomb and nuclear potentials 

RepresPnting a potential as U(r) = U0 u(r), where U0 charact(•risPs its valnl': and 11(1") is a 
dimensionless function of its distribution in spa.cl', we can introch1n• t.111• notation 

i<I> = 1 /(b), Uo 
'· = -i,;;,, l(b) = 2 f'"' ii( Jbi + ,\l),/,\. 

lo 

3: 

(:l.l) 



where the phase, or profile, integral I(b) carries information only on geometrical paramPters of 
the potential. . 

At r ~ Re = re( A!13 + A~/3 ) nuclei interact like point charges Z1 e and Z2 c Iii this cas1• 
Uo = U B = Z1Z2e2 / Re and Upc = Rc/r, whereas the profile integral and eikonal phase are e<1ual 
to 

. lpc(b) =·2Rc -=~- _ b ; ; 1
L-oo d>.. 

0 
Jb2+>..2 --2Rcln 2£ =-2Rcln(kb)+2Rc1n(2kL), (3.2) 

b 
<I>pc(b) = 277ln - = 2nln(kb) - <I> 2L '' a, 

<I>a = 277ln(2kL). (3.3) 

Here <I>a appears because of the charge screening at large distances L, and 77 = Z1 Z2e2 /hv is the 
Sommerfeld parameter. The respective amplitude of Coulomb scattering [2] is as follows: 

f c(q) = -~ 100 

db bl+ 2i17Jo(qb) = _ 2k11 e-2i17ln(q/2k) + 2iao - i<I>a_ (3.4) 
p (2£)2177 q2 

0 

where ao = arg f(l + i77) is the Coulomb phase. 
For heavy-ion scattering the usually applied Coulomb potential is that for the field of the 

uniformly charged sphere having radius Ru and density p(r) = po0(Ru - r). It has the form 

Uuc(r) = Ua~(3 - r2 /R~)0(R,, - r) + Ua ~u0(r - R,,), 

where Ua = Z1Z2e2/Ru. The corresponding eikonal phase is equal to 

{ 

211[In(kR. ,,) + ln(l+ Jl - b2/ Rn - ½JI - b2/ R~(4 - b2
/ R~)], 

<I>uc(b) = 
217ln(kb) - <I>a, 

(3.5) 

b $ Ru 

b> Ru. 
(3.6) 

The radius of a sphere Ru can be connected with the root-mean-square radius of the realistic 

charge-density distribution by the relation Ru = jf Rrm•• For instance, for the Fermi-like den

sity distribution (2.6) with radius Re and diffuseness ac we have Ru= RcJl + (7/3)(1r:ac/Rc)2• 

In calculating the amplitudes of nucleus-nucleus collision (2.4), there arise the problem with 
integration owing to divergent terms ln(kb) in the Coulomb eikonal phase. This difficulty can be 
overcome if one adds and subtracts the eikonal function exp(i<I>pc) in brackets in the integrand 
(2.4). Then we obtain, respectively, the sum of the amplitudes of Coulomb scattering on a 
pointlike charge and a corrected nuclear scattering 

f(q) "". fpc(q)+ik 100 

db-bJa(qb) ei<I>pc (1-ei<I>N+ io<I>uc), (3.7) 

where the addition o<I>uc = <I>uc-<I>pc to the nuclear eikonal phase no longer contains the logarith
mic term ln(kb) at large b. Besides, here, the amplitude Jpc(q) gets separated, which is known 
explicitly (3.4). In the integral, the growth of the function exp(i<I>pc) with bis compensated by 
the decrease of the expression in brackets. From (3.7) it also follows that the ratio of differential 
cross section to the Rutherford one da /dan will always be equal to 1 at small scattering angles. 

As for the nuclear eikonal phase <l>N, one should take into consideration that the nucleus
nucleus potentials are characterized by large radii R = R1 + R2. Therefore the typical ex
tended potential used in calculations is a Woods-Saxon potential with the Fermi distribution 
UF(r) = (1 + exp((r- R)/a)J-1. It is, however, known that there is a number of physical and 
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mathematical arguments (see, e.g., [6]) for using, instead of uF(r), its symmetrized form (2.6), 
i.e. usF(r) = sinh(R/a)/[cosh(R/a)+ cosh(r/a)]. Indeed, th·e distribution usF(r) at large R 
actually coincides with uF(r), but unlike the latter, it has no nonphysical "cusp" at r = 0 that 
produces mathematical difficulties in a number of problems. In [7), a single attempt was perhaps 
made to derive an analytic expression for the eikonal phase with UF•distrihution. The result was 
an infinite sum of residues at poles of the Fermi function. However, at'. b::;: 0 it gave lF(0) = 0, 
though it should be lF(b = 0) ~ 2R. The authors ~f [7] added this term to their sum, but the 
obtained ansatz is still not valid. for nucleus-nucleus scattering, where powerful Coulomb tails 
force one to integrate over b up to distances larger than R; here the ansatz does not work, and 
I(b) beconie·s growing rather than decreasing. 

Thus, because there is no an appropriate recipe, many authors fit the Fermi function by a 
st1m of Gaussians [8] with varying coefficients. At large R, this is a difficult problem, hut since 
the main contribution to nucleus-nucleus scattering comes from a small part of the potential at 
its periphery, the 'fit in this region can be made with one-two terms of the seri~s of Gaussians. 
The problem is that one must be sure in selection of the precize distance in a surface region 
where the fit should he made. Besides, analytic properties of the eikonal integrals with the 
Fermi and Gausian functions on a complex plane b drastically differ from each other. 

Our subsequent calculations are based on an approximate formula for I(b) derived in [4] for 
the symmetrized Fermi function with the use of approximate separation of variables b and >.. in 
the integrand usF of the respective eikonal integral (3.8). The obtained result can be written 
in a certain form if one introduce variables (=>./a and /3 = b/R. Then, the integral I(b) is 
expressed in the form 

I(b) = I(/3R) = 2RI(/3), (3.8) 

where I(/3) depends only on the ratio C = R/a of two input parameters, the radius R and 
diffuseness a, as follows: 

00 

=--------;:::::===~-----PC I(/3) 
1 J sinh C d( sinh C 
C cash C + cash J(f3C)2 + (2 - cash C + cash {3C (/3, ), 

0 

P(/ C) = ~-1- ln l + .Jf=x 
CJT=x 1-Jf=x' 

2 1 { K.-1} 
x = ~ coshC 1 + coshf3C · 

1·+--
cosh/3C 

(3.9) 

(3.10) 

Here K. is a parameter determined from the x2-fit of the approximate expression in the r.h.s. of 
(3.9) to the numerically calculated integral I(/3) in the region O < f3 < 2 and 5 < C < 20, which 
gives 

log 1,, = 0.47909 + 0.15025 C - 0.001938 C2• (3.11) 

Since cash C ~ K ~ 1, and thus x ~ I, then expanding Pin x and considering that the main 
contribution to nucleus-nucleus scattering comes from the region b ~ R (or C ~ 1), we obtain 

. 1 . 1 
Pa(I, C) ~ cln 41,, "". C [2.48945 + 0.34597 C - 0.0046 C2] . (3.12) 

From Fig.2 it is seen that in the presence of the Coulomb field, the region of angles () < 0c ~ 
Ua/ E ( 4° for 4 H e and 10° for 4°Ca) is that of the Rutherford scattering. Further, with increasing 
angles up to()< 0c + jj ~ 14° (for 4He) and~ 15° (for 4°Ca) agree_ment of cross sections is 
observed when the nuclear eikonal phase is calculated with the help of numerical integration of 
I(/3) and by the analytic formula (3.9) with different "gathering functions " P(/3, C) (3.10) and 
Pa(l, C) (3.12). Thus, we can conclude that the explicit form of the nuclear profile integral (3.9) 
proves to be valid in pr_oblems of nucleus-nucleus scat.tering. 
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Figure 2: Scattering cross sections in the field of the Coulomb potential (,'J.,5) mulsymmrtri::cd 
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elastic scattering at different energies. Parameters of potentials are the same as in Fig.2; the nu
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4 Results of calculations and conclusions 

When the scattering of heavy ions by nuclei is considered in the framework of BEA, an important 
problem is to take into account ·the deviation of their trajectory from• a straight line owing to 
the long.range Coulomb potential. The point is that the distance from the scattering center to 
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Figure 4: Comparison of the dij]effntia/ cross sections of elastic ,,ra1trri119 calc11/atcd in thr 
framework of JIEA for small angles (solid line., .. at the nuclear eiko11a/ tl'ith I'(!i,C), da.,hnl 
lines- numerical calculatio11 of the nuclear eikonal integral) tl'ith the cross .,ectio11s obtai11ed by 
numerical solution of the wave equation (dolled lines) and erpcrimrnlal data r,,o/id dot.s) takrn 
from {10}. 
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the point of closest approach be of an incident nucleus with a target-nuclc>us differs, generally 
speaking, from the respective impact parameter bat the asymptotics = = -oo. This is manifosted 
in the nuclear eikonal since its profile integral ( SC'!' ( :1.8 ), ( :J.9)) sharply changes in the JH'riphc>r.v 
at b ~ R. This effect can be taken into account (sec>. for instancc>, (9]) by replacing thC' ilppart 
parameter bin the nuclear eikonal by be and the probability flux v h,v (b/be)t•. In th<' ('oulo111h 
field, we have 

b~ .= k~
1 { 17 + J1,2 + (kb)2}. (-1.1) 

The results 'of calculatio'ns are pre~ented for scattering· of 160 and 4°Ca by 208 l'/1 at different 
energies (Fig.:J). it is seen that for E ~ 60 MeV /nucleon ancl at highN ~1wrgies the cffc>rt 
of distortion of the trajectory is weak but gets significant at lower energie~. The shift of tlw 
trajectory increases the a1igle by an order of magnitude Be ~ U B/ E, and thus. the range of 
applicability of small-angf~ approximation is expanded. If one joins the estimate (2.:J) for ii, the 
Rutherford scattering angle Be, and the trajectory deflection angl~ (i'n the case of the Coulomb 
field 0c), it can be defined as follows: 

. - u ' 
0 < 20~,+ B = 2: + J2/kR . (4.2) 

Figure 4 de111~~strates the HEA cross sections of the heavy ions 17 0 scattering as compare,d 
with the numerical solution of the Schroedinger equation ( dotted lines) and experimental data 
(dots). Parameters of; the' potential arid experimental data are taken from (10] .. _It can be 

ascertained that they agree qualitatively, and at small angles, also quantitatively (solid lines for 
the eikonal with P(/3, C), d'ii:shed lines are in the case 

0

0f numerical calculations of the nuclear 
eikonal). Dfscre·pancies appear fo.r 0 > 1/ kR + 0c at large scattering angles, ,where computations 
should be performed on the basis of definition of the amplitude (2.6), by developing appropriate 
methods (see, for instance, (11], (12] and references therein). 
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