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MeTox BBICOKOSHEPreTHYECKOTO NMPHOMHXKEHHS adalTHpYeTca K fapo-amep-
HBIM CTONKHOBCHHAM IIPH 3HEPIUSAX B AecATKH MaB Ha HyKJIOH M Bbiue. BHuma-
HHe HalpaBleHO Ha NoJyYyeHHE 3HKOHAIbHBIX (pa3 B aHATHTHYECKOM BHAE, YTOOH!
CHENaTh BO3MOXHBIM KaYeCTBEHHBIH aHani3 M3HKH NPOLECCOB, a TaKXKe O7id BbI-
IIOJTHEHHS YHCJCHHBIX pacyeToB. [lokasaHo, 4To ABHBIA BHI SHKOHaIbHOH ¢hasbl,
TpeNIoXKeHHol O peanucTHyecKoil popMbl nmoTeHunana Bynca—Caxkcona, ymo-
OeH W1 MOCHeNYOLUMX NPUIOXEHHH. AHAIM3HPYeTCd NMPHMEHHMOCTh [OAXOAA
I'maybepa-Curenko g MaiblX YIIOB pacceAHHs, a TAKXKE HCCRedyeTCa posib OT-
KJIOHEHHS TPAaeKTODHH [BHXEHHS OT NPIMOH JIMHHH 3a cyeT ACHCTBUA KYJIOHOB-
ckux cui. IlpuBedeHbl METOAMYECKHE pacueTsl H CPABHEHHS € 3KCHEPHMEHTaIb-
HBIMH JaHHBIMH.
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High-Energy Approximation for Nucleus Nucleus Scattering

The high-energy method for potential scattering is adapted for the nucle-
us-nucleus collisions at energies of several dozen MeV/nucleon and higher. Atten-

tion is paid to analytic forms of the eikonal phases to make possible a qualitative
consideration of physics of processes and perform fast numerical calculations. It is
shown that the closed form of the eikonal phase suggested for the realistic
Woods—Saxon type potential is a hopeful one for further applications. Applicabili-
ty of the Glauber-Sitenko approach for scattering at small angles is analyzed, and
a role of the Coulomb deviation of the straight-ahead trajectory of motion is inves-
tigated. The methodical calculations and comparison with experimental data are
made.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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1 Introduction - : SRR s

Nuclear collisions at comparatlvely h]gh -energies E > U a.nd small wavelengths kR >-1 are-
highly sensitive to parameters of the interaction potential . and nuclear structure.  In this re-"
gard, elastic scattering makes the basis for understanding more complicated processes, includ-
ing reactions of nucleon transfer. Within the framework of initial conditions, one can construct
approprlate models by using the so- called elkonal wave functions

\Il(i)—-exp{zkr——/ [V(r)q:zW(r)]d;\‘}” - '_,_’(1;1)2‘

where U(r) V(r) + zW(r) is the potentla.l r = b2+ A2, the dlstance between centers
of colliding nuclei; and b, the impact parameter. This expression can be derived (see, for
instance, [1]) if in the quasmla.ssxcal function exp(iS(7)/f), one expands the action §(7) =

[E-U(F- C(/\)ll/zd/\ in’ small parameter U/E < 1, leaving the terms of zeroth and first .
order. Fiinction kd(f-‘) defines the traJectory of motion which in the case under consideration i is
regarded as a straight line along momentum k at asymptotics. Minor deviations of a genuine

trajectory can be taken into account if in (1 1), one replaces the vector E by F=k=z 3c/2,
where ¢, = 2ksin(f./2) and 6, ~ U(R,)/E is the classical a.ngle of deviation correspondlng to
the radius of closest approach of nuclei [1].

In this paper, we study applicability of the h)gh -energy apprommatlon (HEA) developed in
[2], [3] for small angles of scattering (the Glauber- Sitenko approach) to elastic nucleus-nucleus
collisions. This approach is applied succesfully in problems of proton-nucleus scattering when,
as a rule, the nuclear potential in the Gaussian form is used and the Coulomb interaction is .
of minor importance. However, in the case of nuclens nnelens sea.ttermg, the role of Coulomb ..
forces is rather significant, and the sma.ll-angle approximation requires a spec1a.1 investigation.
Moreover, in ‘scattering of nuclei, one should deal with extended nuclear potentials, mainly with
a typical Woods-Saxon potentla.l but for the latter, one no suitable analytic form of the eikonal. .
phase has been found. Recently, in [4], we have obta\ned a simple approximate expression for.
the phase but for the symmetrized Woods Saxon potentlal (the form of the symmetrized Fermi
function) written as follows ,

sinh(R/a)
cosh(R/a) + cosh(r/a)’ (1.2)

U(r)=Uo usr(r),  usr(r) =

Below we will use it to study the range of its applicability for heavy-ion scattering as well as a

possibility to use there the sma.ll angle approximation. Effects of Coulomb distortion of the tra-~ -

jectory of motion will be analyzed and the respective methodical calculations and compa.rxsons
with experlmenta.l data will be: dlscussed as well. . :
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2 Scattering amplitude
The high-energy approximation for small scattering angles was developed by Glauber and Sitenko
[2], [3]. The corresponding amplitude can be derived from the standard expression for the

scattering amplitude if for the exact function of relative motion, one substitutes its eikonal
ansatz (1.1):

__.m - —~ikF ) _
fg) = 2ﬂ_hz/dre U(T)WE.-

= —2—:—;—17/111"U(r)exp{irj‘?— 7:3/_00 U(\/bz+n)fu}, (2.1)

where m is the reduced mass; § = k; — k}, the vector of momentum transfer ¢ = 2ksin(8/2);:

and 6, the scattering angle. This formula can be simplified if one takes the cylindrical system
of coordinates, where the axis oz || k;, the axis oz lies in the plane of vectors &;, kg, and b L k;.
Now the volume element is d* = bdbdpdz, and the scalar product is defined as follows:

GF = qibcos + gy 2. : L (2.2)

Here g1 = gcos(6/2) is a transverse component; and g, = g¢sin(6/2), a longitudinal component
of the momentum transfer. In the small-angle approximation, the second term ¢qz in (2.2) is
neglected, and one can set g1 = ¢. If we consider that a major contribution to the amplitude
(2.1) comes from the region r ~ z =~ R, then this approximation holds valid under the condition

0 <8=+/2/kR. ‘ (2.3)

In this case, the integral over ¢ is reduced to the Bessel function of zero order, and integration
over z is made by parts with the use of the equality U(r) = (d/dz) [ U(r)d; in this way, we
arrive at the known result o

fta) = ik [ " b bao(gh) (1- N +i%0), (2.4)

Here each of the nuclear and Coulomb eikonal phases has the form

o0

B(b) = ”E% /_ U(VE § 30)da. (2.5)

In [2] it is shown that at finite scattering angles when g # 0, the first integral in (2.4) with 1
inside brackets equals zero. Then it is interesting to note that the remaining part of integrand
diverges at asymptotics as §!/2, because at large b, the eikonals ®(b), generally speaking, tend to
zero. This problem is related with the small-angle approximation when one puts exp(igzz) = 1
and thus eliminates the factor of convergence in the integrand. However, in the optical model,
the convergence is provided by the imaginary part of the potential iW = —i|W|.

An independent estimate of the range of applicability of this approach can be made proceed-
ing from the HEA amplitude for large scattering angles 8 > 1/kR (see [5])

m
2rh?

1(0) = — / Er ¥ (), (2.6)
Note that the eikonal functions (1.1) do not contain outgoing (incoming) spherical waves in
asymptotics. The use, in (2.6), of two rather than one distorted waves like jn (2.2) somewhat
compensates this drawback, which allows one to move into the region of large scattering angles.

As the integration contour, we again take a straight line along k; and the cylindrical system
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Figure 1: .S‘CnHm'ing'rmss scctions in the field of nuclear polcntial (1.2) with 1y =
=50 MeV, ro=1.04 fin, a=0.75 fm at Wy = —42 MeV (on the left) and Wy = =13 McV
fon the right). Solid lines - with the factor of convergence F(qy.b) in (2.7). dotled lines
without that factor. . .

of coordinates. Then in distorted waves (1.1), the limits z; and zy coincide with each other. and
using both terms in (2.2), we obtain

o [ .
sy = -2 [ dosataty P b, @
0

h

where . )
Fq,b) :/ dz By /b2 + 22) o (2.8)
N —0
has a meaning of the form factor of the distribution function u(r) of potential U(r) = Ugu(r) at
a fixed impact parameter b. It is just the factor F(q2,0) that ensures the convergence of (2.7).
and if it is set to equal 1, we arrive at the mentioned integral in the Glaubér-Sitenko approach.
Figure I shows how this factor influences the angular distribution of scattering in the field of the
Saxon-Woods potential at different energics. It can be established that the difference botween
calculations with F(gy,b) (solid lines) and without (dotted lines) occurs at angles somewhat
smaller than the estimate (2.3) for applicability of the small-angle approximation, 8(*H ¢) ~ 10°
and §(*°Ca) = 4.5°. » :

3 Eikonal Phases of Coulomb and nuclear potentials

Representing a potential as U(r) = Upu(r), where Uy charactorises its value: and u{r)is a
dimensionless function of its distribution in space, we can introduce the notation '

‘ ; ~ -
i®=yI(b),  y= _if’—l“, I(b) = 2/ (VIR F A2 (3.1)
Y 0 .



where the phase, or profile, integral I(b) carries information only on geometrical parameters of
the potential.

At r > R. = r(A ) nuclei interact like pomt c'ha.rges Zie and Zyc. In this case
Uo=Up = Z1Z,¢*/R. and upc = R./r, whereas the profile integral'and eikonal phase are equal
to : ’ :

1 /3 Al /3

L—x : i ' ) :
Lye(b) =<2RC/O izl —2R.In 2‘5 = ~2RIn(kb) + 2ReIn(2kL),  (32)
®,.(b) = 291n ;Z = 2pn(kb) — &,, &, = 2nin(2kL). 33

Here @, appears because.of the charge séreening at large distances L, and n = Z), Z,€%/hv is the
Sommerfeld parameter. The respective amplitude of Coulomb scattering-[Z] is as follows:

2kn -
fpc(q) - )2"’ /db pl+ 2"’J (¢b) = ~ L/ 217)In(q/2k) + 2i00 — i@, (3.4)

where g = arg [(1 + i) is the Coulomb phase.
For heavy-ion scattering the usually applied Coulomb potential is that for the field of the
uniformly charged sphere having radius R, and density p(r) = po@(R, — r). It has the form
1 R ~
Uuelr) = Up5(3 = */E2)O(Ry = r) + Up—20(r - Ru), (3.5)

where Ug = Z;Z,€¢?/R,,. The corresponding eikonal phase is equal to

o {2n[1n(kRu)+ln(l+ JI=BJRE) - L/ —bﬁ/Rz(4—b2/R?,)], b< Ry

2nln(kb) — ., b> R,.
' (3.6)
The radius of a sphere R, can be connected w1th the root-mean-square radius of the realistic

charge-density distribution by the relation R, = \/;R,m,. For instance, for the Fermi-like den-

sity distribution (2.6) with radius R; and diffuseness a. we have R, = Rc+/1 4 (7/3)(ma./R.)%

In calculating the amplitudes of nucleus-nucleus collision (2.4), there arise the problem with
integration owing to divergent terms In(kb) in the Coulomb eikonal phase. This difficulty can be
overcome if one adds and subtracts the eikonal function exp(i®,.)in brackets in the integrand
(2.4). Then we obtain, respectively, the sum of the amplitudes of Coulomb scattering on a
pointlike cha.rge and a corrected nuclear scattermg

) = frel@) + 3k /O db bJo(gb) ' ®re (1 —lnt i&@.,c) , (3.7)

where the addition §®,. = ®u..~ P, to the nuclear eikoral phase no longer contains the logarith-
mic term In(kb) at large b. Besides, here, the amplitude f,.(¢) gets separated, which is known

explicitly (3.4). In the mtegral the growth of the function exp(i®,.) with & is compensated by

the decrease of the expression in brackets. From (3.7) it also follows that the ratio of differential
cross section to the Rutherford one do/dog will always be equal to 1 at small scattering angles.

As for the nuclear eikonal phase ®x, one should take into consideration that the nucleus-
nucleus potentials are characterized by large radii R = R; + R;. Therefore the typical ex-
tended potential used in calculations is a Woods-Saxon potential with the Fermi distribution
up(r) = [1 + exp ((r — R)/a)]™!. It is, however, known that there is a number of physical and

mathematical arguments (see, e.g., [6]) for using, instead of up(r), its symmetrized form (2.6),
i.e. usp(r) = sinh(R/a)/[cosh(R/a)+ cosh(r/a)]. Indeed, the distribution ugr(r) at large R
actually coincides with up(r), but unlike the latter, it has no nonphysical ”cusp” at r = 0 that
produces mathematical difficulties in a number of problems. In (7], a single attempt was perhaps
made to derive an analytic expression for the eikonal phase with #p-distribution. The result wa.s
an infinite sum of residues at poles of the Fermi functlon However, at' b = 0 it gave Ir(0) =
though it should be Ir(b = 0) = 2R. The authors of {7] added this term to their sum, but the
obtained ansatz is still not valid for nucleus-nucleus scattering, where powerful Coulomb tails
force one to integrate over b up to distances larger than R; here the ansatz does not work, and
I{b) beconies ‘growing rather than decreasing. = *

Thus, because there is no an appropriate recipe, many authors fit the Fermi function by a
swin of Gaussians [8] with varying coefficients. At large R, this is'a difficult problem, but since
the main contribution to nucleus-nucleus scattering comes from.a small part of the potential at
its periphery, the fit in this region can be made with one-two terms of the series of Gaussians.
The problem is that one must be sure in selection of the precize distance in a surface region
where the fit should be made. Besides, analytic properties of the eikonal integrals with the
Fermi and Gausian functions on a complex plane b drastically differ from each other.

Our subsequent calculations are based on an approximate formula for I(b) derived in [4] for
the syminetrized Fermi function with the use of approximate separation of variables § and A in
the integrand usr of the respective eikonal integral (3.8). The obtained result can be written
in a certain form if one introduce variables { = A/a and 8 = b/R. Then, the integral I(b) is
expressed in the form

1(b) = I(BR) = 2RI(), . (38)

where Z(3) depends only on the ratic C = R/a of two mput parameters, the radiis B and
diffuseness a, as follows:

1 sinh C d¢ sinh C
A = o~ P(g3, ) .
# C b/ cosh C + cosh /(BC)? +- (* = cosh C + cosh 3C .C) . (3.9)
1 1+/T=z 2 1 k-1
P('B’C) C\/1 lnl_.\/l_z’ =y 1y coshC coshC {1+coshﬁC}' (3710)
cosh 8C

Here  is a parameter determined from the. x>-fit of the approximate expression in the r.h.s. of
(3.9) to the numerically calculated integral Z(4) in the region 0 < 8 < 2 and 5 < C < 20, which
gives .

log & = 0.47909 + 0.15025 C — 0.001938 C2. (3.11)

Since coshC > & >» 1, and thus z < 1, then expanding P in z and considering that the main
contribution to nucleus-nucleus scattering comes from the region b = R (or C = 1), we obtain

1 1 . ,
P(1,0) = Flids = = 248045+ 0.34597 C - 0.0046 C?]. = (3.12)

From Fig.2 it is seen that in the presence of the Coulomb field, the region of angles § < 8, ~
Us/E (4° for *He and 10° for *°Ca) is that of the Rutherford scattering. Further, with increasing
angles up to 6 < 6, + 0 =~ 14° (for “He) and = 15° (for °Ca) agreement of cross sections is
observed when the nuclear eikonal'phase is calculated with the help of numerical integration of
Z(p) and by the analytic formula (3.9) with different "gathering functions ” P(8,C) (3.10) and
P,(1,C) (3.12). Thus, we can conclude that the explicit form of the nuclear profile integral (3.9)
praves to be valid in problems of nucleus-nucleus scattermg
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Figure 2: Scattering cross sections in the field of the Coulomb potential (3.5) and symmetrized
Woods-Sazon-potential (1.2) at. Vo =:—50-MeV, Wy = -42 MeV, rg=r: =104 fm;, a=
0.75 fm. The eikonal integral in (3.9) I(f) was computed-both numerically (dois) and with the
analytic formula in the r.h.s. of (3.9) with P(B8,C) (3.10) (solid lines) and wzth P,(1;C) (3.12)
(dashed lines).
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Figure 3: The influence of the Coulomb shift of the trajectory on the cross section of nuclear
elastic scattering at different energies. Parameters of potentials are the same as in Fig.2; the nu-
clear eikonal was computed with the help of analytic formula (3.9) with P,(1,C) (3. 1") Dashed
curves - without the tra]ectory shift; solid curves-with that shift.

4 Results of calculations and conclusions

When the scattering of heavy ions by nuclei is considered in the framework of HEA, an important
problem is to take into account the deviation of their trajectory from:a straight line owing to
the long-range Coulomb potential. The point is that the distance from the scattering center to
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Figure 4: Comparison of the differential cross scetions of clastic scatlering calculated in the
framework of HEA for small angles (solid lines- at the nuclear cikonal with P(3,C). dashed
lines- numerical calculation of the nuclear cikonal intcgral) with the cross scefions obtained by
numerical solution of the wave equation (dolted lincs) and czperimental data (solid dots) taken

from [10].



the point of closest approach b. of an incident nucleus with a target-nucleus differs, generally
speaking, from the respective impact parameter b at the asymptotics z = —oc. This is manifested
in the nuclear eikonal since its profile integral (sce (3.8), (3.9)) sharply changes in the periphery
at b ~ R. This effect can be taken into account (see. for instance, [9]) by replacing the impact
parameter b in the nuclear eikonal by b, and the probability flux » by (b/b.)e. Tn the Coulomb

field, we have
be= kT 1{1,+,/7, +(I.b)2} ‘ (1.1)

The results of calculatlons are presented for scattering ol 150 and ¢ a by 8P at different
energies (Fig.3). It is seen that for E' ~ 60 MeV/nucleon and at 111;31101- enmgles the effect
of distortion of the trajectory is weak but gets significant at lower energics. The 3hift of the
trajectory increases the angle by an order of magnitude 6. ~ Ug/E, and thus, the range of
apphcabxhty of small-anglé approximation is expanded. If one joins' the estimate (2. 3) for 6, the
Rutherford scattering angle 6., and the trajectory deflection angle (m the case of the Coulomb
field 6.), it can be defined as follows:
L Ug ) .

6 <20+ 6 =2 + \/2/RE. (42
Figure 4 dembflstrates the HEA cross -sections of the heavy ions 7O scattering as compared
with the numerical solution of the Schroedinger equation (dotted lines) and experimental dafa
(dots). Parameters of: the' potential and experimental data-are taken from [10]. . It can be
ascertained that they agree qualitatively, and at small angles, also’quantitafively (solld lines for
the eikonal with P(j3,C), dished lines are in the case of numerical calculations of the nuclear
eikonal). Discrepancies appear for 6 > l/kR + 0. at large scattering angles, where computations
should be performed on the basis of definition of the amplitude (2.6), by developmg appropriate
methods (see, for mstance, [11], [12] and references therein).
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