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Eikonal Phase for the Symmetrized Woods — Saxon Potential
and Its Use for Heavy lon Scattering

An approximate analytic expression of the etkonal phase for the potential in
the form of the symmetrized Fermi function is derived and compared with the re-
sults of exact calculations. It is shown that this expression can be successfully ap-
plied to the intermediate energy nucleus-nucleus scattering of tens of MeV/nucle-
on in the framework of a Glauber — Sitenko approach at small angles. In practice,
the use of the analytic phase permits one to understand a mechanism of scattering
and calculate differential cross sections about two orders faster than with the
whole numerical integration.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna, 1999




1 Introduction

The high-energy methods, applied to scattering problems at E > U and kR >> 1, have
been improved mainly for studying hadron- and light- ion collisions with nuclei, and
many calculations were fulfilled in the framework of the Glauber-Sitenko approach to
small angles [1], [2] by numerical integrations of the elastic scattering amplitude

flq) = z'k/ db bJo(gb) (1 — ! ®N +i%c), g < V2R, (1.1)
[}]
and the reaction cross section
aR=27r/ dbb(1— e 2Im Oy, (1.2)
0

Here b and ¢ = 2ksin(0/2) are the impact parameter and transfer momentum, the last

being connected with the scattering angle §. The Coulomb and nuclear eikonal phases
®c(b) and ®x(b) (cikonals) are given as

oL [ UV T ) = Ly 1.3

hU - hv b} ( .v,)

-0

where the thickness function (or profile integral)
1(b) = /dz u(Vb? + z?) (1.4}

depends of the distribution function u(r) of a potential U(r) = Upu(r).

As to heavy ion collisions, they are characterized by extended nuclear potentials of
the large radii R = Ry + R, and the strong Coulomb fields having long tails. So, large
distances of integration require much time for numerical calculations. Moreover, when
kR >> 1, the obtained results occur to be very sensitive to precise behaviour of potentials
and eikonal phases ® in the periphery of collisions. Then, to compute the amplitude (1.1)
and cross section (1.2), preliminary integration (1.3) over z should be performed many
times to obtain eikonals for a set of 5. Thus, to make clear the physics of processes and
achieve faster computations, it is desirable to get phases in an analytic form. In {1], they
were obtained explicitly for the point Coulomb, Gaussian and nniform distributions of a

potential. However, when exploring heavy ion collisions, a shape of the realistic nuclear
Woods-Saxon potential and charge and matter density distributions are usually associated

with the Fermi function )
=— 1.5
“ () = T el — 7] ()
or somewhat likethat. Below, we use the symmetrized form of (1.5) [3], [4] (SF-function),
having certain advantages from both physical and mathematical point of view (see, e.g.,
[5], [6]), which can be written as
sinh(R/a)

usr(r) = cosh(R/a) + cosh(r/a) = ur(r) - (), (1.6)

where

exp(—R/a)

= &xp(r/a) + oxp(—FJa)’ (1)

é(r)

It is seen that, in numerical calculations, the additional term 8(r) may be neglected for
R > a when exp(—R/a) < 1, and, therefore, up(r) and usp(r) have almost the same
form for r > 0. However, 8 plays an important role in the case of comparable R and a.
Indeed, in this case the non-physical "cusp” of ur at r = 0 (i.e. u'(0) # 0) becomes very
appreciable, whereas usp assures that its derivative usg(r = 0) is equal to zero at any R
and a. Moreover, when developing analytical methods of estimations of amplitudes, the
use of usp permits one to exclude many mathematical problems arising in the case of the
Fermi function. :
The purpose of this work is to obtain an appropriate analytic expression for the nuclear

profile function in the case of SF-distribution

. 0o

- [ sinh(R/a)
1) = / & )+ e (ST (1.8)

~00

and test its applicability to the intermediate energy nucleus-nucleus scattering.

Unfortunately, this type of integrals is not suitable for analytic estimations. The only
example has been given in [7] where, for the Fermi function, Ir(b) was presented as an
infinite series of residues at poles of its integrand. However, it turned out that too many
terms are required to provide necessary precision at large b, where the profile integral
must fall down as an exponential function.

2 Profile integral for the SF-function

In order to estimate the integral (1.8) we first transform it to that having dependence on
only one parameter C = R/a instead of two, the radius R and diffuseness a. To this end
we introduce variables { = z/a and 8 = b/ R and obtain

1(b) = I(BR) = 2RI(B), | 1)
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where

J cosh C' + cosh 4/(8C)? + (2

For further simplifications, it is desirable to transform the denominator to the form which
contains only linear combinations of cosh(8C) and cosh {. For this purpose, it is helpful
to expand the cosines in series and construct the following compositions of interest::

cosh(v/{BCY2 + (2)—coshﬂC+cosh(-l+{ +5+8,+...}, (2.3)

cosh AC cosh { = cosh BC + cosh{ — 1 + {m + ns 4+ K88' + .. }, (2.4)

6!

where :
ar = 2ABCY¢%,  as=2[(BC)'* +(BC)Y],
as = 3(BC)*C* + 4(BC)'¢* +3(BC)%® , (2.5)

and «; are fixed numbers. Now we suggest that for every certain parameter C one could
introduce such an ”effective” value £(C) that satisfies the relation

{ +f€6 +Ks

6!

Note that we put x independent of { - the statement justified by the further procedure
when the shape of £(C) is established basing on the approximate T(f) obtained after
integration over { (see below). So, combining (2.3), (2.4) and (2.6), we have

cosh C' + cosh/(BC)2 + (2>~ A+ Beosh(, - (2.7

where

A(B) = cosh € + "L fcosh O — 1], - B(f) = leoshfC+r—1].  (28)

Substituting (2.7) into (2.2), one gets (when A? > B?) [g]

7 sthd{ 1 _sinhC | A+B+VA— B "
n . .
cosh( CVA = B2 A+ B - /A2 — B2 (2.9)

105 [ rermiges @

8' }zn(C){4'+6'+§+ } ‘ (2-6).

-

1t is seen that at the impact parameter 6=0 or =0, when A(0) + B(0) = coshC +1 =
2cosh?(C'/2) and A(0) — B(0) = coshC ~1 = 2smh2(C/2) one obtains from (2. 9) that
Z(0) = 1, the exact result following directly from (2.2) [§].

For further applications, the integral of interest Z(5) has numerically been calculated
by (2.2) for the set of C(= R/a) in the region 5 £ C' < 20 which covers the wide range
of changing of physical parameters R and a. Then, the obtained. results for I(B) at every
C were adjusted to those calculated with the help of the approximate formula (2.9) by
using the best fit method to get x(C). It occurs that £(5) = 15.2, £(20)=511.4 and for
intermediate values of C_ the function &(C) can. be represented by the three-parameter
expression . . ;

logfc = 0.47909 + 0.15025 C — 0.001938 C. (2.10)
Also, for simple quantltatxve estimations, one can use the ” a.vera.ge kappa adjusied by
the two-parameter formula i s

log & = 0.6728 + 0.1018 C. (2.11)

The results of fitting x(C) are exhibited in Fig.1(a) where the best fit data are represented
by stars, the solid line is its three-parameter approxxmatxon (2.10) and the dashed one is

the two-parameter (2.11). .
For a further discussion we transform eq. (2 9) into a more expresswe form To this

end, we use the relations

A+B=L, A-B=L-y, (2.12)

where

L =coshC+coshfC, y= %(cosh BC —1)+2. 1{2:13)

Substituting (2.12) and (2.13) into (2.9) and taking L out of the root, one expresses I(3)
in the separable form

. sinhC RN
I(p) = m P(8,C) = usr(B )f’(ﬁ,c), : (214)
where 1 . :
+ \/1 -
P ] 2,15
and
_ Yy _2 coshfC—-1+k 2 1 ' S R—1 .)’
I(,B,C) =7 = & cosh AC + coshC ~ & It cosli C { + cosh ,HC} . (2.16)

cosh gC

Further simplifications can be carried out taking account of coshC' > & > 1 which
follows z <« 1; namely,

. 2 .

cHF>10 22 (2d0)

x| =

H{(f=0,C) ~ z(ﬂ:vl,.C);N_

_2
coshC”’
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Figure 1: (a). The best ﬁtted Ic( ) (stars) and its parametrization by eq. (2 10) (solid
line); the straight dashed line is by'eq.(2.11). (b). The profile integral (2.2) for the SF-
distribution function, computed numerically (stars), and by its approzimation (2.14) with

P(B,C) from (2.15) (solid line) and with P,(1,C) from ((2.19).

So, expanding P in (2.15) as a function of = in small z, one obtains
P(8,C) ~ %[1114 ~lng. (2.18)

Then, suggesting that the main contribution to elastic scattering is caused (at least for the
nucleus-nucleus scattering) by the nuclear surface region b~ R or 8 ~ 1, where z ~ £},
one obtains from (2.18) with the help of (2.10) the approximate expression

P,(1,0) ~ %[lntin] = % [2.489453 + 0.34597 C — 0.0046 C?] . (2.19)

The respective nuclear eikonal phase (1.3)

2RV, sinh(Rfa) | R
kv - cosh(R/a) + cosh(b/a)P“(l’ ) (2.20)

(DN,u(b) = -

depends on the impact pa.ra.meter b only as the symmetrlzed Ferml functlon

Fig.1(b) shows an example of behaviour of Z(8) calculated numerically by (2.2) (sta.rs)
and by the analytic expression (2.14): the solid line is with utilizing P(8,C) (2.15); and
the dashed line, with a simple P;(1,C) by (2.19). Their practical coincidence is seen at
b > R, the region of the main contribution to peripheral collisions.
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Figure 2: (a). The symmetrized Fermi funtv:tion‘- selid I;'ne, the ezact gathering functions
P - circles, approzimate F,- dashed line. (b). Behaviour of P (solid) and P, (dashed
line) as function of C at f = 1.

One should note that the presentation of the phase integral () in the separable form
(2.14) makes clear that its main dependence on the impact parameter b is determined by
the usr(b) distribution function which, in fact, is the integrand usr (V8% + 22) of (1.8)
taken on the profile sheet at z = 0. So, the smooth function P(8,C) corrects this
dependence, and arises because of different effective lengths () of integration over z at
every certain b. Thus, it has the meaning of a gathering function which takes account of
middle deviation of usp(v/6? + 2?) from usr(b) along the path of integration z.

In Fig.2(a), one can see the behaviour of these two terms, namely, usr(b) (solld line)
and the gathering function P given by the circles for exact P(B,C) and by the dashed line
for its approximation P,(1,C). Factors P change less than two times while ugp falls down
in orders of its value. A small difference between exact P and approximate P, functions
at f = 1 is revealed only when C < 7, as it is exhibited in Fig. 2(b) in dependence of
C = R/a. ‘

We conclude that if one wants to estimate the profile mtegra.ls {2.1) for the realistic
Fermi-type distribution functions at given parameters R and a, one should take k(C)
at € = R/a from (2.10) and calculate Z(b) with the help of (2 14) Also, for heavy-
ion collisions one can use the simple approximate analytic expressions for the gathering

function P, and for the nuclear phase &y which are fully determined by (2.19) and
(2.20). : ’ ‘ '
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3 Results for elastic scattering and conclusions

In this section, the obtained eikonal phase is applied to methodical calculations of elastic
scattering of heavy ions. They are realized for two energies and various atomic numbers
of colliding nuclei to cover a wide region of changing of geometrical parameters of nuclear
potentials. -

In the presence of the Coulomb forces, the ®¢ phases contain the diverged term
®,. = 2 1n(kb) — @, where n = UpR. [he, Us = Z1Z3¢*[ R, and &, = 27 In(2kL) with
L, being the screening parameter. Therefore, to calculate the amplitude (1.1), one uses
a tnck by adding and subtracting the scattering amplitude for the point charge potential
Upe = Up upe(r) with up. =7/R., as it is obtained in [1]

foela) = —ik / db bJo(gb) € Pre =
[1]

Here, 0g = arg I‘v(l +ip) = 9(lnnp — 1)+ x/4 if p > 1, and &, = 29In(2kL). Then,
reproducing the amplitude as f(g) = fpec + {f(q) — fp(q)}, one gets

_.2(1_2’1 e—2in1n(q/2k) + 2100 ~ iPa (3.1)

o] . . N
5@) = )k [ db baa(ap) P {1 i 808}, (3.2)
, i 0 ‘- '
where the nuclear phase &y 'gets ‘the addition 60, = . — (I>",,C which ddes not jnclude the
term In(kb) at large b, factor exp(—~i®,) " vanishes in the cross section. In practice,

for scattering of heavy ions the usually utilized Coulomb potentlal is that of the uniformly
charged ball of radius R,, and then the é-term s

(B bz o L T
0, s I » ) - b> R,
‘ (33)
Thus, it is seen that for b > Ru, the expression in braces of (3 2) occurs to be {1 —
exp(:®n)} which goes to zero with increasmg b.

Fig.3 shows the results of calculations of differential cross sections for elastic scattering
of 20+ Mg, 16041%8n, “9Ca+*32U at two energies E = 30°:A; MeV (theleft column)
and E = 60 A, MeV (the right column). The parameters of potentials were taken as
Vo = —50 MeV, Wo=—20MeV, R=R,=11(A4)" + AY®) fm, .a = 0.65 fm. Thus,
one has examples for three C'=8.756, 12.611 and 16.186. Here we have not included effects
of the Coulomb deviation of the straight-ahead trajectory-of motion; since they do not
change further conclusions. By the same reasons we have not compared our calculations
with experimental data.

The high-energy approxxmatlon method developed in 1} and [2] for small angles may
be applied in the limits of 8§ < 8, + 8, where the classical deflection angle 8. ~ Us/E
is added to expand the standard lumtatlon 6 < § = /2/kR for (1.1). Then, for the
considered collisions we find limits theta < 12° for the first example *C +24 Mg at
E = 30MeV /nucleon and § < 9.5° at 60 MeV /nucleon; also, for the second example
with projectiles 80 we have, respectively, 15° and 9.5% and for the third example with
the 19Ca ions, 8§ < 14.5° and 8°. Thus, it is seen from Fig.3 that, for the Glauber-Sitenko
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Figure 3: (a): The heavy ion differential cross scctions. The lefl column is for E =

30A1 MeV, the right - for E = 60A; MeV. Solid lines are cract numerical integralion

with the profile integral (2.2), dashed lines are when its analytic form (2.14) is used with
P(B8,C), and circles - with approzimated P,(1,C).
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approach in the region of its applicability, all differential cross sections calculated with
analytic phases for the SF-type potential are in good agreement with the respective exact
numerical calculations. )

Then, when utilizing the analytic expressions for phases, calculations occur about two
orders faster than with the whole numerical integration.

And the last conclusion is that the analytic eikonal for the symmetrized Fermi dis-
tribution of a potential permits one to understand the mechanism of scattering of heavy
jons at comparably high energy of tens of MeV per nucleon and, especially, an important
role of the peripheral region in forming the structure of diffraction patterns of differential
cross sections. ‘ '
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