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IlpeJlJJO)KeH MeTOA yqern B pactJeTax napumUibHblX CKOpocTett 3aXBaTa MIOOHOB 51!lpaMII 
cyruecrnyiomeii 3KCnepIIMeHTaJ!bHOH HHCpopMaUIIII O CIIJIOBblX cpyHKUII51X IT- H II30BeKTOp­
HblX Ml-nepexonoB. Merna cBOAIITC51 K non6opy oprnroHaJJbHoro npeo6pa3oBaHII51, ne»­
crnyiomero B nonnpoCTpaHCTBe BOJIHOBblX !pYHKUIIH B036y)K!leHHblX COCT051HIIH, II He Tpe6y­
eT BBeneHH51 HHKaK11x Mon11cp11Kau11ii oneparnpoB nepexona. MaTpIIua npeo6pa3oBaHH51 
CTpOHTC51 KaK npOH3BeneHIIe MaTpHU 0TpU)KeHII51 B TIJIOCKOCTII. Bee pactJeTbl npOBOMTC51 
Ha OCHOBe MHOfO'!aCTH'IHOH MOAeJIH 060J10'1eK. lfacneHHbie pe3yJlbTaTbl nonyqeHbl Jl]l51 1130-
BeKTOpHbIX COCT051HHH B 51Apax CA= 28. IlpII 3TOM paCCMOTpeHbl CIIJlOBble !pYHKUHII IT­
H II30BeKTOpHblX M 1-nepexonoB B 28 Si' Bbl'llICJieHbl BpeMeHa )Klf3HII H OTHOIIJeHII51 KaHaJJOB 
y -pacnana COCT051HHH 1 + B 28 Al. IlOKa3aHO, '!TO yqeT 3KcnepIIMeHTaJ!bHOH IIH!pOpMaUHII 
0 CBOHCTBax ll30BeKTOpHbIX COCT05111HH BnepBble TI03BOJIHJI npaBIIJlbllO OTIHCaTb OTII01IIe1111e 
KananoB y-pacnana cocT051HH51 I+ c 3Heprneii 2,201 M::iB B 28 Al. IloKa3aHo, '!TO ucnoJ1b30Ba-
1me npeo6pa30BaHHblX BOJlHOBblX cpyHKUIIH CHJlbHO MeH51eT pacnpenene1me napUHaJ!bHblX 
CKOpOCTeii pa1pe1IIeH110ro 3aXBaTa MIOOHOB 51!lp0M 28 Si no KOHe'!HblM 1 + -COCT051HH51M 51Apa 
28 Al no cpaBHeHHIO C pe3yJibTaTaMH pactJeTOB, HCTIOJlb3YIOlllHX co6cTBeHHble cpyHKUHH ra-· 
MHJlbTOHHaHOB MIIOfO'laCTH'IIIOH MonenH 060J10'1eK. 
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Properties of lsovector I' States in A = 28 Nuclei and Nuclear Muon Capture 

The method how one can utilize the existing experimental information concerning GT 
and MI strength functions into the calculations of the rates of nuclear muon capture is pro­
posed. The method is reduced to adjusting of the orthogonal transformation in the subspace 
of wave functions of excited states and does not require any modifications of transition oper­
ators. The transformation matrix is created as a product of matrices of reflection in the plane. 
All calculations are made on the base of many-particle shell model. The numerical calcula­
tions are carried out for isovector transitions in the nuclei with A = 28. The GT and M 1 
strength functions in 28 Si are considered; for 1 • states in 28 Al the life times and y-decay 
branching ratios are calculated. This method allows one to describe correctly the branching 
ratio of 1 • state with energy 2.20 I Me V in 28 Al for the first time. It is shown that introduced 
transformation of wave functions changes considerably the distribution of partial allowed 
muon capture rates in 28 Si over I' stales of product nucleus 28 Al compared to results ob­
tained with eigenfunctions of Hamiltonian of many-particle shell model. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical 
Physics, JINR. 
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1 Introduction 

In recent years, results have been published for two independent measure­
ments of the coefficients of gamma-neutrino correlation between the mo­
mentum of a neutrino produced in the capture of negative polarized muons 
by the nucleus 28 Si and the momentum of a photon emitted in the ')'-decay 
of an excited state of a product nucleus [1, 2]. The authors of both the 
papers considered the same allowed partial transition 

Comparison of the values of correlation coefficients obtained in these works 
with different theoretical calculations [3, 4, 5] led to the conclusion that a in­
duced pseudoscalar weak interaction of a muon with nucleons of the nucleus 
is much suppressed as compared with that estimated from the hypothesis 
of partial conservation of the axial-vector current (PCAC). In Table 1 we 
present the values of gp / 9A obtained from the comparison of the measured 
coefficients of angular correlation [1, 2] with different theoretical values. In 
another experiment the ratio of rates of muon capture from the states of 
hyperfine splitting of the mesoatom 23 Na was measured and comparison 
with calculations gave gp/gA = 7.6 ± 2.1 near to the PCAC estimate [6]. 
Such a large difference in values of gp/gA is quite unexpected since the nu­
clei 28Si and 23 Na are rather close to each other in mass number and thus 
one would expect that the constants of induced pseudoscalar interaction 
would be almost equal in both the cases. We note that in refs. [5] and [6] 
the nuclear matrix elements of the effective Hamiltonian of ordinary muon 
capture were computed within the multiparticle shell model [7] based on the 
full sd shell space and parametrization of the shell model Hamiltonian [10]. 
However, the partial transitions under consideration possess an important 
difference. In experiment [6], the allowed transition 3/2+, 1/2 -+ 1/2+, 3/2 
has been considered. (The states of nuclei are classified by the total spin, 
parity, and the total isospin Pr, T.) According to calculations, this partial 
transition occurs mainly due to the one-body transition d5;2 -+ d5; 2 , As a 
result, the matrix element of the operator jo(vr) a C ([101] matrix element 
in the notation of [8, 9]) turns out to be dominating and it determines the 
partial rates of muon capture by the nucleus, therefore the results of calcu­
lations are quite reliable. For the transition ots. -+ lf, in the µ-capture on 
28 Si there is no such a dominating matrix element since the one-body tran-



sition d5; 2 ➔ d3; 2 having the largest amplitude in the one-body transition 
density is suppressed by the contrary transition d3; 2 ➔ d5; 2 . When the 
leading matrix element is absent, the amplitudes of nuclear muon capture 
are determined by interference of several small matrix elements including 
velocity-dependent ones. Therefore, the reliability of theoretical descrip­
tion decreases, and further studies the excited states of a product nucleus 
become necessarily. 

Isovector states with spin and parity pr = 1 + in nuclei with A = 28 
were theoretically studied in ref. [11] on the basis of the multiparticle shell 
model with the use of the full sd shell space. Energies of single-particle 
states and two-body matrix elements of the interaction between valence 
nucleons were taken from ref. [10]. The results obtained in ref. [11] can be 
summarized as follows. The calculated excitation energies and life times of 
the first 1 + states are in agreement with the experimental data. However, 
the ')'-decay branching ratio for the state 1 + with energy 2.201 Me V in 28 Al 
is described worst. 

Experimental studies of the properties of isovector 1 + states in nuclei 
having A = 28 were made by means reactions (e, e') in [12], (p, n) in [13], 
and (3He, t) in [14]. The authors ofref. [12] compared the obtained experi­
mental distributions of the strength of magnetic dipole transitions over the 
excitation energy (strength function of Ml transitions) with the distribu­
tions calculated within the shell model with the Hamiltonian of Wildenthal 
[10] and showed that the theoretical distribution of B(Ml) does not coincide 
with the experimental distribution. For the majority of states the calcu­
lated B(Ml) exceeds appreciably the experimental value but for the state 
with excitation energy 11.445 MeV, which corresponds to the third eigen­
state of the shell-model Hamiltonian, the theoretical value is smaller than 
the experimental one. The theoretical value of the total strength of transi­
tions is appreciably larger than its experimental value. The experimental 
strength function of Gamow-Teller (GT) at+ transitions was measured in 
ref. [13]. Like for Ml transitions, the theoretical total strength of GT tran­
sitions exceeds the experimental value, but the theoretical strength of the 
strongest transition is smaller than its experimental value. This is transi­
tion onto the state with energy 2.10 MeV in 28P, which is described by the 
third eigenstate of the Hamiltonian. 

The hypothesis of isospin conservation in nuclei allows us to combine 
the isovector 1 + states in 28 Al, 28 Si and 28P into isotopic triplets. The table 
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of correspondence can be found in ref. [11]. From this table it is seen that 
the level 1 + with energy 2.201 MeV in 28 Al populated in the ')'V-correlation 
experiment on 28 Si enters into one triplet with levels 11.445 MeV in 

28
Si 

and 2.10 MeV in 28P for which the theoretical transition strength turns out 
to be smaller than the experimental value. Transitions from the ground 
state of the nucleus 28 Si, whose isospin is zero, onto states of the isotopic 
triplets can be described by isotopic tensor operators of rank 1. Then it 
is possible to single out the dependence on isospin projections from matrix 
elements of these operators and thus to pass to isospin-reduced (triple-bar) 
matrix elements. If the electron scattering, (p, n) reactions and µ-capture 
were described by the same isospin-reduced matrix elements, they could be 
used, being determined from one process, for describing other processes. 
However, these operators differ from each other. In (p, n) reaction the 
square matrix element (1 +, HI at\110+, 0) can be measured; in Ml transi­
tion - the square of (1 +, 1 \\\ (g{V a + gfV l) t\110+, 0); and the amplitude 
of partial µ-capture contains the matrix elements (1 +, 1 \/\ Jo (vr) at 1110+, 0), 

(1 +, 1 \\\ j2 (vr) [Y2a]i t \I\O+, 0), (1 +, 1\\\ J1 (vr) [Y1 v']i t\110+, 0), and 
(1 +, 1\\\ j 1 (vr) Y1 (av') t 1110+, 0). Therefore, the quantities B(Ml) and B(GT) 
can be used for the description of 11-capture indirectly only, as a tool of 
checking the quality of reproduction of characteristics of the given partial 
transitions. As a result, the fact that the calculated strength of Ml and 
GT transitions onto the third eigenstate of the Hamiltonian is considerably 
smaller than the experimental value, though the theoretical total strength 
of transitions significantly exceeds its experimental value is a clear evidence 
for the theoretical model being a failure for the description of that level. 
One should take into account that the wave functions of states were calcu­
lated by diagonalization of the shell-model Hamiltonian in the full sd-shell 
space; and at present it is not clear how this description can be improved 

in the framework of consistent theory. 
In this situation it will be interesting to use the existing experimental 

information concerning GT and Ml strength functions in the calculations of 
muon capture. For that purpose we propose to introduce the phenomeno­
logical corrections into the results of calculations of muon capture by means 
of an orthogonal transformation of the wave functions of excited states with 
pr, T = 1 +, 1. A key point is that the transformation parameters should 
be chosen so that the strength functions of GT and Ml transitions cal­
culated with the transformed wave functions coincide in shape, in other 
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words up to a constant factor, with the experimental GT and Ml strength 
functions. Since the transformation is orthogonal, the transformed wave 
functions will be orthogonal to each other and normalized, like the initial 
functions. The space of excited states will neither narrow nor broaden and 
the total strength of GT and Ml transitions will be conserved. As result of 
transformation of wave functions transition strength will be redistributed 
between excited states only. Therefore the problems concerning theoretical 
values of the total transition strength being higher than the experimental 
ones are out of scope of present paper. Since the new wave functions are 
constructed as linear combinations of the functions with the same values 
of the total moment, parity, and isospin (pr, T = l +, 1), then for them 
pr, T = l +, 1, too. This method allows us to include the bulk of the avail­
able experimental information on the strength functions of GT and Ml 
transitions in the calculations of characteristics of muon capture. 

2 Mathematical details 

The orthogonal transformation of the wave functions of the excited states 
is searched in order to reproduce the shape of the experimental strength 
functions of GT and Ml transitions from the o+ ground state to the 1 + 

' excited states. 

2.1 Transformation of wave functions and transition ampli-
tudes 

Let ¢k (k = 1, ... , N) be the set of the excited state wave functions. They 
are supposed to be normalized and mutually orthogonal as usual. The new 
set of functions is created by a unitary transformation U 

'ipk = Uk,k'<fak 1 (k=l,2, ... ,N). (1) 

Owing to the transformation U being unitary, the functions '!pk are normal­
ized and orthogonal. The matrix element of transition operator O between 
the ground state wave function <I> and the excited state with wave function 
'ipk equals 

('ljJklOl<I>) = u,;,k,(¢k1 IOl<I>) = (¢k1 IOl<I>)u1,,k. (2) 

Thus, the vector of transition amplitudes from the state <I> into transformed 
states '!pk is obtained by the unitary transformation ut from the vector of 
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transition amplitudes into the initial states ¢k; the transformation ut is 
Hermitian conjugate transformation U. Equation (2) simplifies the prob­
lem of finding transformation (1) since it reduces the search of a transfor­
mation of the vector consisting of multiparticle wave functions to the search 
of a transformation of a much simpler vector composed of the transition 
amplitudes, i.e. ordinary numbers. In the majority of cases, the transition 
amplitudes are real numbers, and therefore, the elements of matrix U can 
be demanded to be real numbers where~s the matrix itself will orthogonal. 

2.2 The structure of transformation matrix 

An orthogonal matrix of dimension N could be fixed by N(N - 1)/2 free 
parameters. Therefore, if we consider 9 or 10 excited states, we should fix 
36 or 45 parameters. As a result, there are 9 or 10 linear equations of type 
(2) for determining 36 or 45- unknown variables and the problem becomes 
undetermined. Therefore one would like to use matrices of less general 

structure. 
The simplest orthogonal transformation of a vector is the reflection in 

the plane [15, 16]. Any vector v can be decomposed in a sum of two vectors 
v = u + w, u belonging to a certain plane and w being perpendicular to 
this plane. The reflection in the plane alters the direction of the vector w 
and converts the vector v into the vector v' = u - w. The length of the 
vector V whose square is (lvl2 = lul2 + lwl2 = vr + v~ + ... +vi = VkVk), is 
under this transformation conserved, !vi = lv'I- Therefore, any two given 
vectors u and v of the same length (lul = !vi) can be transformed into each 
other by the reflection in the plane that crosses the origin of coordinates 
perpendicular to the vector u - v. The equation of the plane is 

(ui - Vi)Xi = 0. (3) 

In this case the transformation matrix is 

Ri, . _ O· . _ 2 (ui - Vi)(Uj - Vj) 
,J - i,1 lu - vl2 . (4) 

Matrix R is symmetric, Ri_,j = Rj,i, and orthogonal, RR = RR = I; I 
is the unit matrix. For any pair of equal length vectors u and v the re­
flection transformation is unique because the parameters of transformation 
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are coordinates of vector u - v. The number of parameters equals to the 
dimension of the vector space where the transformation is carried out. 

To construct the matrix of transformation of wave functions of excited 
states, it suffices to know two vectors consisting of transition amplitudes. 
One vector should contain amplitudes calculated within the multiparticle 
shell model; the other should consist of transition amplitudes extracted 
from the experimental data. 

3 Strength functions of GT and Ml transitions 

We compute transformation matrices using two vectors consisting of am­
plitudes of transition onto the chosen excited states. The square of length 
of each vector equals the transition strength ( either experimental or theo­
retical) summed up over all the selected excited states. 

We start with the vector composed of theoretical amplitudes. Since we 
are looking for the transformation that reproduces only the shape of the 
experimental strength function, we may normalize this vector to unity. Let 
(ti, ... , tN) be a vector composed of calculated amplitudes of GT transi­
tions normalized by the condition tktk = l. Relative signs of coordinates of 
the vector t are controlled by relative phases of wave functions of excited 
states. 

3.1 On experimental amplitudes. Selection of best trans-
formation 

The situation with experimental amplitudes is much complicated. Experi­
ment produces only the transition strength, the squared absolute value of a 
transition amplitude. If we denote the strength of the GT transition onto 
a k-th 1 + excited state by ek and compose the vector e = (e1, ... , eN ), of 
them, the total strength of transitions onto chosen states is a sum of coor­
dinates, s2 

( e) = e1 + ... + e N. Knowing the strength of transition ek, we 
compute the absolute value of its amplitude J!kl = .._/ek, the sign of fk being 
indefinite. Therefore we should consider all possible distributions of signs 
of amplitudes inside the vector f. For every distribution of signs in a vec­
tor composed of experimental amplitudes of GT transitions the reflection 
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matrix ( 4) exists 

R(f, t)i,J = bi,J _ 2 Ui - s(e)ti)(f1 - s(e)t1 ) 

If - s(e)tJ2 
(5) 

The vector of theoretical amplitudes transformed by this matrix gives the 
distribution of the strength of GT transitions coincident in shape with the 
experimental GT strength function. Therefore, using only one strength 
function, one cannot choose the optimal transformation. 

The criterion arises naturally ifwe consider the GT strength function to­
gether with the strength function of Ml transitions. The transformation of 
wave functions ( 1) gives rise to the transformation of transition amplitudes 
(2), therefore the amplitudes of Ml transitions must be transformed by the 
matrix R(f, t). Difference in ~he structure of GT and Ml transition opera­
tors results in a linear independence of vectors composed of the amplitudes 
of GT and Ml transitions. This indepedence keeps both for experimental 
and theoretical vectors. A new Ml strength function obtained with R(f, t) 
will not, in general, coincide with the experimental Ml strength function 
because any orthogonal transformation preserves the scalar product of two 
vectors. Since the scalar product of vectors composed of theoretical GT 
and Ml amplitudes is not likely to equal that of experimental GT and Ml 
vectors, at the complete reproduction of the shape of the GT strength func­
tion, the shape of the Ml function will be reproduced with an error. The 
transformation giving the smallest root-mean-square error will be consid­

ered the best one. 
To diminish the difference in shape of the obtained theoretical and ex­

perimental Ml strength functions, a further step is one more transformation 
of type (4) acting in a subspace orthogonal to the plane composed of the 
theoretical and experimental vectors of GT amplitudes. Such transforma­
tion will conserve the obtained distribution of the strength of GT transitions 

over excitation energies. 

3.2 Calculations of strength functions of GT and Ml tran-
sitions 

Theoretical and experimental strength functions of GT and Ml transitions 
to be used in what follows are reported in Table 2. Calculations are based 
on the Hamiltonian of ref. [10]. Multiparticle wave functions, energies of 
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states, and transition amplitudes have been calculated by programs of ref. 
[7). 

In the first part of Table 2, we present the calculated characteristics 
of the first 10 excited states with J7C, T = 1 +, 1: the excitation energies, 
amplitudes and reduced probabilities of GT and Ml transitions from the 
lowest state with J7r, T = o+, 0 ( the ground state of 28 S i nucleus) onto 
them. The excitation energies are reckoned from the 28Si ground state. 

The wave functions with J7r, T = 1 +, 1 and isospin projection 1 de­
scribe 1 + states in the nucleus 28P that are observed as resonances in a 
charge-exchange reaction 28 Si(p, n)28P at intermediate energies [13]. The 
cross section of that reaction is proportional to B(GT). The energies of 
resonance states and probabilities B(GT) obtained from the experimental 
study of reaction 28 Si(p, n) 28 P [13] are listed in the second part of Table 2. 
There are shown all the states with excitation energies lower than 6 MeV 
detected experimentally. The energies are reckoned from the ground state 
of 28P. States with energies higher than 6 MeV take a small part of ob­
served GT transition strength, and besides, their exact values of spins are 
undetermined. The total strength of GT transitions discovered experimen­
tally in the interval of excitation energies up to 12.6 MeV amounts to 2.595, 
whereas that for states listed in Table 2 amounts to 2.301. The calculated 
value of the total strength of GT transitions for the first 10 states equals 
3.492. 

The wave functions with J7r, T = 1 +, 1 and isospin projection 0 de­
scribe isovector 1 + states in 28 Si. These states are excited in electron 
inelastic scattering, from experimental cross sections of which the reduced 
probabilities B(Ml) are extracted. In the last part of Table 2, we report 
experimental data on the strength of isovector Ml transitions measured in 
[12]. We indicate all the isovector states discovered in the interval of exci­
tation energies from 10.5 to 15.5 MeV. Here the following remark is to the 
point concerning the state with energy 10.64 Me V presented in the first col­
umn of Table 2: As a matter of fact, instead of that state, experimentally 
observed are two states with energies 10.597 and 10.725 MeV. They are 
usually considered as superpositions of one isovector and one isoscalar 1 + 
states [17]. It can be shown that the total strength of Ml transitions onto 
these two states is a sum of strengths of Ml transitions onto pure isovec­
tor and isoscalar 1 + states. The calculations within the multiparticle shell 
model with the Hamiltonian [10) show that the strength of the isoscalar 
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Ml transition is few ten times as small as that of the isovector transition. 
As a result, we can neglect the strength of the isoscalar Ml transition and 
determine the energy of the pure isovector state as the weighted average of 
energies of those two states, (E1 ·B1 (Ml)+E2·B2(Ml))/(B1 (Ml)+B2(Ml)). 
The obtained energy of the isovector state and the total strength of tran­
sitions onto it are shown in Table 2. The sum of experimental values of 
B(Ml) listed in Table 2 equals 7.360 nuclear magnetons; whereas the the­
oretical value is 8.623. Calculations w~re carried out with the use of free 
gyromagnetic ratios, without effective magnetic charges. 

The experimentally observed states are described by eigenfunctions of 
the shell-model Hamiltonian. The correspondence is established by the 
comparison the energies of observed states to the eigenvalues of the Hamil­
tonian. The comparison gets simplified if we consider the excitation ener­
gies measured from that of the first excited state. Values Ek - E1 are given 
in Table 2 too. Then, correspondence between the eigenfunctions of the 
multiparticle shell model Hamiltonian and states observed experimentally 
is practically unique, which evidences in favor of a high accuracy of the 
description of energies of excited states within the nuclear model [10]. 

As is seen from Table 2, not all the Hamiltonian eigenfunctions are 
associated with the states observed experimentally. In particular, the 5-th 
function corresponds to neither experimental state. The model explains this 
fact by very small theoretical values of B(GT) and B(Ml). In what follows 
we will not consider this state since it is not observed experimentally at 
all. The state corresponding to the 6-th function was found in the reaction 
(p, n), but its analog with energy 13.31 MeV in 28 Si is not observed in the 
reaction (e, e') though is observed in the reaction (p,p') [18]. This fact is 
explained in [12] as follows: the contributions of spin and orbital magnetic 
currents to the Ml transition amplitudes compensate each other. The shell 
model calculations with Hamiltonian [10] carried out in ref. [12] reproduces 

this fact well. 
Thus, we can conclude that the shell model describes qualitatively the 

main features of the strength distribution of GT and Ml transitions over 
excitation energies in the sense that small theoretical values of B(GT) and 
B(Ml) correspond to small experimental cross sections. However, the the­
oretical distributions of the strength of transitions over the states which 
absorb a considerable part of the total strength of transitions are highly 
different from the experimental distributions. In particular, the calculated 
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B(GT) and B(Ml) for transitions into the third isovector 1+ states are 
noticeably smaller than the experimental values, but the theoretical values 
of the total strength of GT and Ml transitions are much larger than ex­
perimental ones. In refs. [13, 12] figures are presented with the theoretical 
and experimental strength functions where one can see that the theoretical 
strength functions are fragmented to a greater extent than the experimen­
tal ones. It is just a further configuration mixing we have introduced to 
eliminate that discrepancy. 

The obtained matrix of the whole transformation, the product of two 
reflection matrices, is given in Table 3 with the numbers of eigenfunctions of 
the Hamiltonian between which the mixing occurs. The matrix is symmet­
ric, because the reflections are made in two perpendicular planes, and thus 
the corresponding reflection matrices commute with each other. Basically, 
the main diagonal of the matrix contains the numbers near 1.0 in absolute 
value. The states with numbers 6 and 8 whose experimental partners have 
been observed only in (p, n) reactions change places. In other cases the 
principal component is conserved, and other states are admixed to it with 
small amplitudes. 

Once the transformation matrix is known, the amplitudes of GT and 
Ml transitions and then B(GT) and B(Ml) can be calculated by eq. (2) 
(see Table 4). The calculated B(GT) differ from the experimental ones 
given in Table 2 by constant factor 0.66, i.e. the shape of experimental 
strength function of GT transitions is reproduced exactly. The ratios of 
experimental B(Ml) to the ones from Table 4 are in the interval from 0.67 
to 1.5. Consequently, as it was expected, the shape of strength functions 
of Ml transitions is reproduced approximately. 

4 ,-decay of 1 + states in 28 Al 

As additional test of obtained wave functions of excited states we compute 
the life time and branching ratios of electromagnetic decay of 1 + states in 
28 Al. 

The transformation of wave functions (1) changes both the matrix el­
ements of ,-transition between 1 + states and states with other spins and 
parities given by eq. (2) and the matrix elements of ,-transitions between 
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the 1 +, 1 states 

(¢klOl¢1)-+ (1PklOl7jJ1) = U1,11(¢k'IOl¢11)U},,k. (6) 

As a result, all theoretical values of the life time and branching ratios for 
,-decay of isovector 1 + states become altered. 

Table 5 shows the calculated life times of isovector 1 + states together 
with known experimental data [17, 11]. ,The life times are calculated with 
wave functions of Hamiltonian [10] and with wave functions ( or ,-transition 
amplitudes) transformed by matrix from Table 3. The nuclear final states 
with J7r = o+, 1 +, 2+ and 3+ are taken into account. We have used the 
known experimental energies of excited states because the rates of electro­
magnetic transitions depend strongly from the transition energy [19] and 
therefore the nuclear model accuracy equals to 0.1 - 0. 2 Me V is unsuffi­
cient for 1 - 2 Me V transition· energies. The influence of this error decreases 
with increasing of ,-transition energy. Probably, the experimental excita­
tion energies have been used in calculations of ref. [11] too. The life-times 
calculated only with theoretical excitation energies are shown in Table 5 for 
completeness. The comparison of two versions of calculations reveals that 
even small errors in the energies of the excited states lead to considerable 
discrepancies in calculated values of life times. 

The branching ratios for ,-decay of 1 + states in 28 Al are presented in 
Table 6. The comparison the calculation results to experimental data shows 
that additional configuration mixing in wave functions of the 1 + states 
accelerates the transitions onto the 2i state with energy 0.031 MeV from 
the li 3 states and slows down the transition from the li state. As result 
the de~cription of life time of 11,2 levels becomes worse. The life time of lj 
state obtained in the calculation with transformed wave functions equals to 
44· 10-15 s- 1. This value is rather closed to (38.3±2.8)10- 15 s- 1 obtained 
in ref. [1 ]. Simultaneously, the correct relation is reproduced between the 
intensities of transitions from the lj 4 states onto the states 2{ and ot. 

' Calculations by the multiparticle shell model fail to describe this branching 
ratio [11, 20]. 

The study of ,-decay branching ratios of excited 1 + states in 28 Al is 
important for analyzing experiments on the muon partial capture by the 
nucleus 28Si, including correlation experiments [1, 2]. Of much importance 
can be ,-transitions to 2.201 Me V 1 + state from high-lying 1 + states that 
can be populated in the 11-capture. 
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In connection to analysis of life times and branching ratios next com­
ment should be given. The procedure used here to take into account the 
experimental data on strength functions assumes silently that the ground 
states are well described by multiparticle shell model and the differences 
between the theoretical and experimental strength functions originate from 
the wave functions of excited states only. By this assumption the attempt 
to cover the shortcomings in the description of ground states by the trans­
formation of excite state wave functions is made. The total strength of 
GT (Ml) transitions can be calculated by the averaging of certain two­
body operator over the ground state. Therefore the appreciable excess 
of calculated total transition strength over experimental one indicates the 
uncompleteness of the description of ground state. 

5 Rates of the muon capture for partial allowed 
transitions 

The rate of ordinary capture of muons (OMC) accompanied by an partial 
transition Ji -+ Ji is given [8, 9] by 

J1+J; 

A OMC = V L [M;(-J) + M;(J + 1) + M;(-J - 1) + M;(J)]. (7) 
J=IJ1-Jd 

Independent nuclear amplitudes M J (,..) describe the capture of a muon from 
state s1; 2 when a neutrino is created in state, characterized by spherical 
quantum number ,.., and the nucleus acquires the total angular momentum 
J. General formulae for computing these amplitudes are given in [8, 9]. The 
equation for computing factor V is given in [9]. For the allowed transition 
o+ -+ 1 +, nonzero amplitudes are the following: 

M1(-l) fI{ 1 V2 V 3 -(GA - 3Gp) [101] + 3 Gp[l21] 

M1(2) 

9A fI 9V } - M[Ollp] + V 3 M[lllp] ' 

fI{ V2 2 V 3 -3Gp [101] + (GA - 3Gp) [121] 

(8) 

+V2~[01lp] + If 9:t [lllpJ}, 

12 

,j 
l 

.!\ 
I 

which consist of products of effective weak form factors 

GA = 9A(q2
) - [gv(q2

) + 9M(q2
)] ~, 

Gp = [gp(q2
) - 9A(q2) - gv(q2

) - 9M(q2
)] ~ 

with multiparticle nuclear matrix elements 

[101] 

[121] 

[lllp] 

[Ollp] 

3 _A 

4n (2J
1 

+ l) (Jill.?;_ <pµ(rk) io(vrk) ak t-,; IIJi), 

3 

4n (2J1 + 1) 
A 

•(Jill L <pµ(rk) h(vrk) [Y2(fk) ak]i t-,;IIJi), 
k=l-

3 

4n (2J1 + 1) 
A 

·(Jill L <pµ(rk)j1(vrk) [Y1(fk) v'k]i t-,;IIJi), 
k=l 

1 

4n (2J1 + 1) 
A 

·(Ji II L <pµ(rk) i1 (vrk) Y1 (fk) (v' k, ak)t;; IIJi)-
k=l 

(9) 

(10) 

Here cpµ(r) is the wave function of bound muon. The main difficulty in an­
alyzing the partial OMC rates comes from uncertainties in values of these 
nuclear matrix elements. The most important is, as a rule, the matrix ele­
ment [101] that in the limit of vanishing neutrino energy is proportional to 
the GT matrix element (J1IJarllJi) known from the theory of t3+-decay. 
Nuclear matrix elements (10) depend on the neutrino energy and thus de­
pend on the energy of a final state of product nucleus. Therefore, during 
the calculation of the rates we will transform not the nuclear matrix ele­
ments (10) and not the amplitudes (8) but the one-body transition densities 
(OBTD). The latest are the matrix elements of tensor product of creation 
and destruction operators between multiparticle wave functions [7, 21] 

D(!J.J, 6.T, aa', J, i) = (Ji, T1lll[al 0 iia,fll,ti.T)pi, Ti) 
J(26.J + 1)(2.D.T + 1) 
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Matrix elements are reduced with respect to the spin and isospin. According 
to definition (11), the OBTD are transformed by rule (2) under the action 
of transformation (1). The calculations of the OMC rates with initial and 
transformed wave functions of excited states are given in Table 7 together 
with the values of matrix elements (10). Nuclear matrix elements (10) are 
calculated using the constant approximation for cpµ [9]. The amplitudes (8) 
are obtained with 9A = -1.263 and gp / 9A = 7.0. Of the greatest interest 
are the cases of µ-capture when the lj state with energy 2.201 MeV studied 
in experiments [1, 2] is excited. The calculation with transformed functions 
shows that this state is most populated in the µ-capture and the capture 
rate is larger than the total rate of capture on all the other 1 + states. 
The matrix elements [101] and [0llp] are the largest ones; other matrix 
elements are considerably smaller. The matrix element [101] is related 
with the GT matrix element which can be tested in (p, n) reaction. There 
are no methods of direct verification of the matrix element [0llp]. It is 
shown in recent paper [22] that the gp / 9A value extracted from the data 
of correlation experiments [1, 2] is extremely sensitive to theoretical value 

. [0llp] 
of calculated ratio [lOl] . 

The experimental values of B(GT) and B(Ml) have been used as the 
parameters of the orthogonal transformation of kind ( 5). Therefore, we 
should consider a influence of errors in the values of B(GT) and B(Ml) on 
the obtained results. We estimate the root-mean-square deviation in the 
computed rates of µ-capture using Eq. (7). The error in Bk(GT) denoted 
by b"Bk(GT) influences only the quantity S = Mr(-1) + Mr(2); thus for 

every partial transition 

JS~ ~ [ as 2 as 2] t:-i (aBk(GT) b"Bk(GT)) + (aBk(Ml) b"Bk(Ml)) ' 

and the error in the capture rate equals, respectively, 

JA = VJS. 

(12) 

Partial derivatives in (12) can be calculated either analytically or by the 
finite-difference approximation 

df J(x + h) - J(x - h) 
dx ~ 2h 

We have used this method for computing the errors displayed in Table 7. 
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6 Conclusions 

The method how one can utilize existing experimental information con­
cerning GT and Ml strength functions in the calculations of the rates of 
nuclear muon capture is proposed in this paper. The method is reduced 
to the orthogonal transformation in the subspace of wave functions of ex­
cited states. The transformation parameters should be chosen so that the 
strength functions of GT and Ml transitions calculated with transformed 
wave functions coincide in shape with experimental GT and Ml strength 
function. It is important that this method does not require any modifica­
tions of transition operators because GT and Ml transition operators differ 
from the ones of effective Hamiltonian of nuclear muon capture. The trans­
formation is created as a product of the matrices of the reflection in the 
plane. All calculations are n_iade within the many-particle shell model. The 
numerical calculations are carried out for isovector transitions in the nuclei 
with A = 28. The GT and Ml strength functions in 28Si are considered; for 
1 + states in 28 Al the life times and ,-decay branching ratios are calculated. 
It is shown that method proposed in this paper allows to describe correctly 
the branching ratio of 1 + state with energy 2.201 MeV in 28 Al for the first 

time. 
It is shown that used transformation of wave functions changes consid­

erably the distribution of partial allowed muon capture rates in 28 Si over 
1 + states of product nucleus 28 Al compared to results obtained with eigen­
functions of Hamiltonian of many-particle shell model. 

Authors would like to thank T.P. Gorringe, who brings their attention 
to the problem of theoretical investigation of partial allowed muon capture 
rates and to K. Junker and A.A. Ovchinnikova for fruitful discussions. 

Table 1: Values of gp/gA, obtained by comparison the measured angular 
correlation coefficients to the theoretical ones. 

Calculations Experiment 
(References) [1] [2] 

[3] 3.4 ± 1.0 5.3 ± 2.0 

[4] 2.0 ± 1.6 4.2 ± 2.5 

[5] -2.8 ± 1.6 0.0 ± 3.2 
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Table 2: Properties of 1 + isovector states in nuclei with A = 28. GT and Ml strength functions, calculated 
within sd-shell model; the information from the reactions 28 Si(p, n) 28 P and 28 Si(e, e') 28 Si. B(GT) and B(Ml) 
- reduced probabilities of the GT and Ml transitions. b(GT) and b(Ml) - transition amplitudes, normalized 
by conditions B(GT) = b2 (GT) and B(Ml) = b2 (Ml). 

Calculation results 
k (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Ek-El 0.0 0.38 0.71 1.83 2.16 2.56 3.56 3.80 4.21 4.70 

Ek 10.81 11.19 11.52 12.64 12.97 13.37 14.37 14.61 15.02 15.51 
b(GT) 0.822 0.262 0.862 -0.783 0.014 -0.355 0.798 -0.574 -0.426 0.342 
b(Ml) 1.232 0.733 1.750 -1.178 0.162 -0.091 0.957 -0.712 0.629 0.538 

B(GT) 0.676 0.069 0.744 0.613 0.000 0.126 0.637 0.330 0.182 0.117 
B(Ml) 1.518 0.538 3.064 1.387 0.026 0.008 0.917 0.507 0.395 0.290 

The experimental distribution of GT transition strength obtained in 28 Si(p, n) 28 P [13] 

Ek-El 0.0 0.34 0.85 1.69 2.62 3.34 3.77 4.30 4.64 

Ek 1.25 1.59 2.10 2.94 3.87 4.59 5.02 5.55 5.91 
B(GT) 0.198 0.109 0.956 0.146 0.163 0.410 0.137 0.092 0.090 

err. 0.002 0.002 0.005 0.003 0.002 0.004 0.041 0.004 0.003 

The distribution of Ml transition strength obtained in 28 Si(e, e')28 Si [12] 
Ek-E1 0.0 0.26 0.80 1.69 3.39 4.50 4.86 

Ek 10.64 10.90 11.45 12.33 14.03 15.15 15.50 
B(Ml) 0.30 0.90 4.42 0.87 0.37 0.23 0.26 

err. 0.04 0.02 0.20 0.06 0.02 0.02 0.03 

Table 3: Transformation matrix. 

(1) (2) (3) (4) (6) (7) (8) (9) (10) 

(1) 0.952 0.024 -0.293 -0.013 -0.080 -0.032 -0.003 0.006 0.001 

(2) 0.023 0.988 0.146 0.004 0.030 0.014 -0.005 -0.003 -0.001 

(3) -0.293 0.146 -0.885 0.021 -0.153 -0.149 0.248 0.042 0.011 

(4) -0.013 0.004 0.021 0.903 -0.340 -0.050 -0.258 -0.002 -0.005 

(6) -0.080 0.030 -0.153 -0.340 -0.216 -0.194 -0.877 -0.004 -0.018 

(7) -0.032 0.014 -0.150 -0.050 -0.194 0.961 -0.116 0.002 -0.002 

(8) -0.003 -0.005 0.248 -0.258 -0.877 -0.116 0.299 -0.011 -0.015 

(9) 0.006 -0.003 0.043 -0.002 -0.004 0.002 -0.011 0.999 -0.000 

(10) 0.001 -0.001 0.011 -0.005 -0.018 -0.002 -0.015 -0.000 . 1.000 

Table 4: GT and Ml transition strength distributions in 28Si calculated with transformed wave functions of 

excited states. 

k : (1) (2) (3) (4) (6) (7) (8) (9) (10) 

B(GT) 0.300 0.165 1.451 0.222 0.247 0.622 0.208 0.140 0.137 

B(Ml) 0.445 1.044 4.941 0.764 0.258 0.620 0.234 0.286 0.330 



Table 5: Life-times of 1 + ~tates in 28 Al (lo-15 s). 

k Ek (a) (b) E' k (a') (b') (c) expt. 

1 1.373 239 152 10.810 184 117 235 320 ± 50 

2 1.620 465 531 11.192 285 279 590 120 ± 60 

3 2.201 66 44 11.519 70 48 65 65 ± 35 

4 3.105 21 12 12.643 17 10 22 

5 3.542 9.7 9.8 12.970 9.1 9.2 7.9 

6 4.115 0.94 7.0 13.771 1.1 8.6 0.9 

7 4.846 0.69 0.88 14.374 0.64 0.80 0.7 

8 5.017 1.2 0.48 14.605 1.0 0.41 

9 5.435 0.94 0.93 15.024 0.77 0.76 

10 5.919 1.8 1.8 15.507 1.5 1.5 

(a) - Calculated with Wildenthal Hamiltonian [10]; 
(b) - calculated with transformed wave functions of 1 + states; 
(c) - results of calculations of ref. [11], utilizing Hamiltonian of ref. [10]; 
expt. - experimental data. Cited from ref. [11] 
Known experimental values of excitation energy of 1 + states have been 
used in (a,b) calculations. The excitation energies calculated with sd-shell 
model Hamiltonian of ref. [10] have been used in the calculations (a', b'). In 
that case all excitation energies are measured from the 28Si ground state. 
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Table 6: continued 

pr. 
f. 3+ g.s. 2+ 

1 o+ 
1 

3+ 
1 

1+ 
1 

1+ 
2 

2+ 
2 

2+ 
3 

1+ 
3 

2+ 
4 

o+ 
2 

1+ 
4 

Ei \ Er 0.000 0.031 0.972 1.014 1.372 1.620 1.623 2.139 2.201 2.486 3.012 3.105 

4.846 (a) 0.1 77.0 1.2 4.9 4.5 2.1 1.2 5.1 0.2 2.0 1.1 

(b) 0.2 71.8 0.3 4.6 5.3 4.3 0.3 8.2 0.8 3.1 0.4 

5.017 (a) 0.3 36.5 29.0 7.9 0.8 4.9 3.4 0.0 12.1 1.3 0.3 

(b) 0.1 56.4 36.1 0.4 0.9 0.7 0.3 1.4 0.2 0.0 2.3 

5.435 (a) 1.1 1.1 14.0 0.3 11.0 0.0 61.5 0.2 0.3 4.0 0.4 0.6 

(b) 1.1 1.0 12.0 0.3 8.2 0.3 61.7 0.6 4.0 4.0 0.5 0.7 

5.919 (a) 13.2 15.7 34.2 6.8 3.6 10.6 0.2 0.2 3.3 0.4 

(b) 12.0 15.1 36.1 6.3 3.7 10.5 0.5 0.3 3.5 0.2 
I',:) 

o (a) - Calculated with wave functions of Hamiltonian [10]; 

I',:) 
I-' 

(b) - calculated with transformed wave functions; 
(c) - results of calculations of ref. [11], with Hamiltonian [10]; 
expt. - experimental data, cited according to ref. [11]. 
Known experimental values of energy of excited states are used in calculations. 

Table 7: 28 Si. The partial OMC rates (in 103 s-1 ) and nuclear matrix elements, calculated with initial (a) and 
transformed (b) one-body transition densities. 

k - number of excited 1 + state 
(1) (2) (3) (4) (5) (6) . (7) (8) (9) (10) 

AVJYJC 
k (a) 29.87 3.13 34.06 26.09 0.02 3.05 20.59 11.49 8.42 3.54 

(b) 12.81 7.58 63.57 11.17 8.45 18.69 7.27 6.56 4.17 
err. 0.18 0.16 2.36 0.46 0.37 0.23 2.13 0.22 0.14 

[101] (a) 0.039 0.012 0.041 -0.037 0.001 -0.017 0.039 -0.028 ·-0.021 0.017 
(b) 0.027 0.019 -0.057 -0.022 0.024 0.039 0.023 -0.018 0.018 

[121] (a) -0.006 0.000 -0.005 0.006 0.001 -0.002 0.001 0.001 0.006 0.004 
(b) -0.004 -0.001 0.007 0.005 -0.002 0.002 -0.001 0.005 0.004 

[lllp] (a) -0.004 0.011 0.012 0.003 0.005 0.017 -0.012 0.008 0.002 -0.001 
(b) -0.008 0.012 -0.007 -0.004 -0.010 -0.017 -0.009 0.002 0.001 

[011p] (a) -0.016 -0.007 -0.017 0.017 0.001 0.007 -0.019 0.015 0.012 -0.005 
(b) -0.011 -0.010 0.025 0.010 -0.013 -0.020 -0.008 0.011 -0.005 
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