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The anomalous diffusion, or Levy diffusion [I] is a stochastic process for which the 

root-mean-square displacement (x2
) of the observable particle during the observation 

time I and the distribution function P(x, I) of the corresponding process are represented 

in the form [1, p.58]: 

(x2 )~Dt0 (1/10 )2H, P(x,t)~(21t(x2 ))112 -exp(-4)- (!) 
. 2(x ) 

Here Dis a diffusion coefficient; t 0 , a characteristic time (<<time scale»); H, the 

Hurst index. The value H = 1/ 2 corresponds to Fickian (<<normal») diffusion. All the 

cases H"' I I 2 refer to the Levy diffusion: H > 1/ 2 - i.e., the <<enhanced>> diffusion; 

H < 1/2- the diffusion with the <<geometric constraints» [2]. 

The Fickian diffusion with a constant D value is usually considered as «smooth 

continuous process», because it is described by the linear differential equation having 

the well-known analytic solution. There is no analogous differential representation to 

describe the anomalous diffusion, that's why the Levy diffusion is considered to be the 

«discontinuous process» connected with the fractal properties of the object under con­

sideration [1, pp.41-76]. In that case either the discrete walks models [I] and their 

continuous integra-differential representation - «continuous-time random walks» 

(CTRW)- are used to describe the discontinuous process or the effective diffusion co­

efficients D = D(r, 1) with model dependence from coordinates or time are introduced. 

Thus, in order to obtained the well-known Richardson dependence- time evolution of 

relative distance r between particles typical for turbulent diffusion (r2
)- t

3 
- it is 

possible to introduce D(r, I)- r 413 or D(r, t)- t 2 as well as to consider CTPW-model 

postulating <<harcb>relation between rand 1 in the expression \jf(r, 1 )for the distribution 

function of the length jump r in the time interval from t till t + dt: 

\jf(r, t)- r-• 8(r-at" ), where a,fl and vare parameters [2].lt should be also indicated 

that the experimental analysis of the well-developed turbulence on different space 

scales testifies [3,4] to its adequate use for modelling the Bachelier--8moluchows­

ki--Chapman-Kohnogorov (BSCK) general kinetic equation [I, pp.45-47], which can 



be reduced to nonlinear diffusion equation (more exactly - to the Fokker-Planck 

equation with the coefficients dependent on the pulsation velocities and scales). 

We will show below that the Hurst index can be received on the basis of BSCK 

equation, which is often called Smoluchowski equation and is used in the analysis of the 

Markov stochastic processes (see, for example, [5]) if we introduce the fractional trans­

formations of the dynamic variables and time which appear in this equation and reflect 

the physical meaning of the space and time fractalness of the natural objects and their 

evolution [6,7]. Let us consider the simplest case of the one-dimensional motion on the 

whole infinite axis ( --oo sx s oo )and following [I] analyse the BSCK equation for char­

acteristic function <j>(k, t) determined as Fourier transform of the probability density 

function P(x, t ~ 
~ I ~ 

<j>(k,t)= J exp(ikx)·P(x,t)dx; P(x,t)=- J exp(-ikx)·<\>(k,t)dk. (2) 
21t 

-oo -oo 

Note that according to normalization of the functionP(x,t)we have: <j>(O,t) =I for 

all values oft. The corresponding BSCK equation for the function <j>( k, t) is represented 

in the form: 

<j>(k, t) = <j>(k, t- < )<j>(k, < ). (3) 

We obtain the so-called <<Levy-approximatiom> [1, p.46] by confining to the analy­

sis of the central symmetrical solution: 

<l>i(k,l)=exp(-Dtx~-2 lkl" ), (4) 

where J.l is a constant; x0 , a characteristic length (the <<length scale»); D, the effective 

diffusion coefficient. The introduced parameters should be changed within the limits 

0 < J.l s 2 and D :2:0, so that the inverse Fourier transform gives the probability density 

function. Then we obtain the following equation for the Levy-approximation of the 

density function: 
I ~ 

P1(x,l)=- J exp(-ikx)·<\>1 (k,l)dk. (5) 
21t~ 

DependenceP1 (x, I )can be represented in the analytical form only when the values 

of the parameter J.l are 212,1 and 2. In particular, when J.l = 2, the case of the Fickian dif­

fusion is: 

P1 (x,t)=(41tDtr' 12 exp(-~) (6) 
4Dt 

(we consider PL (x,O)=O{x)), and whenJ.l =!(the Cauchy case), we have: 

I Dtx 
PL(x,t)=-· 0 (7) 

1t (xi x0 )
2 + (D1)2 

2 

I 
l 
'! 

The important feature of the Levy-distributions: with the exception of the case 

when J.l = 2, all the functions PL (x, t) have no finite moments of n-th power if n :2: J.l. In 

other words for these distributions only the first moment is nonzero if I< J.l < 2 Such 

conclusion can be made from the asymptotic dependence (when x-+ oo) [I, p.46]: 
)l -2 

limPL(-<I -+ J.!Dti"(J.l )sin J.l" · xo . (8) 
•. 2 "I~"+' 

Our aim is to find the asymptotic (when t ---too) dependence for root-mean-square 

displacement <x2 (1)> of the stochastically moving particle during the observation 

time t when realizing the Levy-distribution for the physically defined dynamic vari­

ables determining these motions. As it was mentioned above the latter means that we 

are interested in the diffusional motion connected with the fractal character of the ob­

jects under consideration. Here we measure the displacementsx(l )of the particle in the 

usual configuration space, when the physical environment for this particle is the fractal 

object. It means that the space and time variables describing the evolution of the particle 

in the fractal environment have another meaning in comparison with a coordinate and 

time used by the «observer» to describe the visible displacement of the particle. Let us 

suppose that the above BSCK equation and the expression for the probability density 

function PL (x, 1) characterize the displacement of the particle in the physical (fractal) 

environment being analysed. In connection with the fact that we shall distinguish be­

tween the coordinates (X and x) and time (Tand 1) related to the <<displacement along 

the fractal» and to the «laboratory system». It means that the above expressions for the 

probability density function should be written as PL (x, t ~Then we may write the equa­

tion for the moment of the 2-nd power in the <<laboratory system»: 
00 2:(1 00 

(x2
) = J x 2P(X,T)dx=- J x 2 dx.J dk·exp(-DTx~-2 k" )cos(kX). (9) 

-oo 1t--oQ 0 

We suppose that the physical characteristics X and T of the process are connected 

with the fractional dependences which are measured by valuesx and t, and it reflects the 

internal «fractal geometry>> with its own «fractal time» of the physical system under 

consideration: 

X=x{~~rT=to( ~:T (10) 

where a and bare parameters (a> 0; 3 > b > 2/ (fl +I)). The substitution of(IO) into (9) 

allows one to find the asymptotic dependence: 

x2 (Dt I x' )(3-b)I,W ( t )a(3-b)I,W 
(x')"' o o o . _ 

J.l to 
(II) 

Thus, we receive for the Hurst index: 
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2H = a(3-b) 
f1b 

(12) 

From the expression ( 12), when a= b =I (the coincidence of the «physical>> and the 
<<laboratory» scales), it follows the equation (4.48) of the work [I] with H > 1/ 2when 
J.l < 2. We should also mention that the Fickian case 2H =I isn't always connected with 
the smooth Fickian diffusion corresponding to the parameters: J.l = 2, a= b =I. Proba­
bly the observation of the fractal structure of diffusional fronts in a number of experi­
ments indicates the realization of this particular possibility. 

The obtained expressions (II), (12) actually reveal the <<microscopic» meaning of 
the calculated moments determined by the dynamic parameters: the parameter J.l char­
acterizing the probabilities of the process transition and a and b parameters which re­
flect the fractalness of the trajectory (see below). Thus, we reveal the physical meaning 
of a number of phenomenological parameters of stationary nonlinear dissipational 
processes introduced in [6,7] to describe difference moments (<<structural functions») 
<I> P(~)ofthe p-th power: 

<1> p (~>=<I x(r)-x(r + ~W> 

when the value of the <<lime shifu> < is relatively small. We should note that the postu­
late adopted in [6,7] about the information sigoificance only of the irregularities of the 
analysed evolution characterized by the self-similarity at different space and time scales 
turns out to be equivalent to the notion of evolution as the time fractal. Now we will 
show that the analysis of the scale transformations (10) leads to the same conclusion. 

First of all, the introduction of the two characteristic times- the universal <<labo­
ratory» (external) time t and the specific <<individual» (internal) time T of the sys­
tem- allows one to realize the Prigogine idea [9] going back to Aristoteles about the 
two types of time. According to Prigogine (see also [10]) the time of the first type, or 
<<lime-parametem, has the dimension equal to unity. This is the usual <<geometrized» 
time in the Minkovsky space-time continuum in the interval (-oo, +co). The time of the 
second type, or <<time-age», has the beginning and the end, and in accordance with the 
above statements it may have the dimensions differing from unity. The most important 
thing her~ is that, in principle, each system may have its <<time-age» with different di­
mensions. Thus, the possibility appears to build in the future the universal theory of 
evolution in which the particular classes of the evolutionary systems will differ from 
each other, mainly through the dimensions of their <<lime-age». 

The scale transformation of time is usually connected with <<motion along the frac­
tal» when a number of states in the space in which the fractal object is «inserted>> turns 
out to be excluded. Such an approach is important for the description of the evolution, 
because it allows one to introduce [II] the systems with «partial memory>> and ability to 
forget in addition to the systems with the «full memory» and <<Without memory>> at alL 
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From mathematical point of view the account of the above-mentioned restrictions (with 
the «counting» of the allowed states) in model using the Kantor set results in the 
so-called <<fractional integral» and <<fractional derivation>> [II, 12]. In particular, a part 
of such allowed states CL(O < CL ,;; I) coinciding with fractal dimensions the Kantor set is 
introduced to analyse this problem in the simplest case of one-dimensional diffusion 
motion (-co :::;; x ~ oo). The corresponding equation using the fractional derivatives for 
the probability density function is written in the form: 

aaPa(x,t)=D a
2
Pa(x,t), (13) 

Bta. a 8x2 

where D a is the diffusion effective coefficient on the fractal. The procedure of frac­
tional differentiation is determined by the introduction of the Laplace transform for the 
function Pa (x, t) with generalization of the appropriate equation for the operational 
image F(x, p) of this function when CL * t 

a J ro 

F= p F+-Pa(x,O)=O; F(x,p)=Jexp(-pt)Pa(x,t)dt, (14) 
D t 1-a D 

a 0 a. 0 

(the case CL =I corresponds to the <<ordinary» time differentiation). The solution ofEq. 
(14) with the initial condition Pa (x,O) = 8(x)is of the form: 

t<l-a)/2 [ Pa/2[x[ ] 
F(x, P) 

0 
a 112 exp 112 (1-a)/2 (! 5) 

(4DaP ) Da t0 

and we receive for the moments (x2
): 

(x2) ( 2 ~ (Dato)(..!.._)Za-1 
r CL+CLn/2 to 

(16) 

We find the following by comparing (16) with (II) when b =I (in the absence of 
scale transformation of coordinates) and fl = 2 (when the exponents of a power of the 
products Dt0 and Da t0 are equal): 

CL=CL+2(CL-J)_ (J7) 
n 

The equation (17) shows the interrelation of the index of the time scale transform 
with a part CL(O< CL,;; I) states allowed for the motion (belonging to the fractal) which 
has been introduced into (10). Wben the laboratory time of the system and the individu­
al one (CL =!)coincide, a.= I follows from (17). It means that all the states of the system 
are allowed. 

In this case we should note that unlike the present study, in [ 6, 7] time dynamics of 
the non-linear dissipative system is represented as <<real>> (but not «mathematical») time 
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fractal, when only points of the real «markers-irregularities>>- splashes, jumps, breaks 

of a derivative of a dynamic variable being analysed- are significant (from the point 

of view of the reception of the information about the system) on the time axis. The latter 

condition gives to the real fractals considered in [6,7] a kind of <<polychromism» (ac­

cording to the types of irregularities). Moreover, it is so, because the information of 

<<various colours»- about splashes and jumps- is received from the analyses of dif­

ferent dependences, power spectrum and difference moments accordingly. 

Particular physical meaning can also he given to the index b [see (1 0)] of the scale 

transformation of coordinates. According to (13] such type of fractional transformation 

of coordinates can be achieved in the analysis of «inter -particle» interaction in the evo­

lution of complex nonlinear system. Here we deal with the general enough fundamental 

result going back to A. Einstein. It has been demonstrated in (13] that the idea of 

«canonical transformations» of dynamical variables which further goes to the descrip­

tion of «non-interacting (or weakly interacting) quasi-particles» in the space of frac­

tional coordinates turns out to be effective both in physics and in the theory ofbiologi­

cal evolution. In this case the components of the appropriate metric tensor, which can be 

revealed on the basis of the comparison of the model theoretical expressions with the 

experimental data, should be considered as the phenomenological parameters of the 

process being studied. 

It is this particularmeanit?-g that we put in the introduced parameter b of scale trans­

formation of coordinates. We think that the analysis of experimental dependences of the 

anomaluous diffusion in various complex systems with the determination of both 

root-mean-square displacement of the moving particles and the excess indexes and 

other cumulants allows one to find a and b parameters of the «fractional dynamics» in­

troduced by us in the studied physical systems and thus determine the extent of adequa­

cy of the proposed parametrization of the dynamics being investigated. 
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