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1 Introduction

Nonlocal and momentum-dependent potentials are known in literature as velocity-
dependent potentials and applied for a phenomenological description of the interac-
tion between nucleons [1]. A similar kind of potentials appear in the adiabatic rep-
resentation of a three-body problem [2] as a result of projection onto open channels
[3]. This construction is realized by a canonical transformation which is similar to
the projection of solutions of the Dirac equation on large components with the use of
the well-known Foldy-Wouthuysen transformation [4]. Investigation of convergence
of the proposed method and construction of the effective adiabatic approximation
(EAA) with correct boundary conditions are timely problems [5]. For this kind
of investigations it is convenient to use the three-body problem on a line with the
short-range ^-potentials [6] because this problem has an analytic solution [7]. First
steps on this way have been made in paper [8]. It was shown that the adiabatic
approximation (AA) gave an upper bound for the energy and a lower bound for
the elastic scattering phase. However, increase in the discrepancy between the ex-
act phase and AA phase with increasing relative momentum up to the three-body
threshold was observed. This discrepancy is caused by truncation of a system of
adiabatic equations and should disappear if a complete set of adiabatic functions
was taken into account. Direct investigation of this problem for the infinite system
of closed-coupled equations is rather cumbersome and alternative study with the
help of EAA can be useful here.

In the present paper, EAA with a momentum-dependent potential is constructed
for the problem of three identical particles on a line with attractive 5-function in-
teractions. The true asymptotics of solutions of an infinite system in the adiabatic
representation are built up in the framework of EAA by extracting the asymptotic
energy-dependent centrifugal potential. The latter was done by using the sum rules
over a complete set of the asymptotic adiabatic basis functions. The convergence of
the adiabatic expansion was checked numerically by applying saturation of the cor-
responding sum rules. It was shown that inclusion of the nonadiabatic coupling of
channels restores the true value of the elastic phase shift in the asymptotic solutions.
By direct calculations with the use of EAA, the correct behavior of the phase shift
with increasing relative momentum has been demonstrated and an lower bound for
the energy has been obtained.



2 Hyperspherical Adiabatic Preliminaries

For three identical particles in one dimension, we first introduce the local Jacohi
map in the center-of-mass system [9]

where ( Xi,x2, x3 ) are the Cartesian coordinates of the particles on a line. We use
hyperspherical coordinates p and 6 that in the considered case are usual plane polar
coordinates

r] = pcos6, £ = psin0, —n < B < IT. (2)

The Schrodinger equation for a partial wave function $ in the hyperspherical coor-
dinates now reads

Here E is the relative energy in the center of mass and m = (m1m2 +
in-2mz)I{m\ +?ri2 + ̂ 3) is the effective mass which in our case, m\ = m-i = 771.3 = rn,
coincides with the mass m of each particle; the potential function V (p, 6) is defined
as a sum of the pair potentials

V (p, 0) = V (V2p |cos 6\) + V (V2p |cos (9 - 27r/3)|) +

2TT/3)|) . (4)cos

To be able to compare with the exact solvable case [7], we choose pair poten-
tials V(\/2r]) = fj5(\rj\)/\/2 as delta-functions of a finite strength, g = cK.(h2/iri)
and consider the attractive case c = — 1, K = \Z2n/6 with the reduced two-body
Hamiltonian

Then the Schrodinger equation in a pair channel rj/p << 1 reads as (h = m = 1)

^ ) = O, (6)

where K, — K/%/2 = TT/6 is the effective strength of the pair potential, rj1' — 2mEj/tiz

is the doubled energy of the two-body system. The complete set of the solutions of
the discrete and continuous spectra of eq.(5) is given by [10]

4°' = - « 24° ' = - « 2 , ^0(17) = V^exp ( - « M ) , < 0|0 > = I <f>*0{T))<!>0(ri)d7l = 1, (7)



•r^exp(t |p |M)), tp = - r ^ .
\p\ \p\ ~ lK

•foe +00

Let us extract the factor p~]'2 in the solutions of equation (3). using the substitution
~i. then

where /;.,, is the parametric Hamiltonian defined as

We can now proceed to seek a complete orthogonal set of the adiabatic functions
Bj(p.O), that are solutions of the eigenvalue problem on a circle C: —7r < 0 < IT,
with the1 symmetry under interchange of particles [6]

1

V
hpBj (p. 0) = A, (p) B} {p, 9), Ajip) = fj{p) - T 1 . < Biip^Bjip) >r= 6,,.

(11)
Note, in a vicinity of the triple collision point p = 0 the matrix elements of the
potential energy (4) between solutions B^'(9) of the free rotated Hamiltonian />j,0).
(2m/ti2)VKK'{l>) = i''/p) exp (-iKx/2) exp (iK'ir/2), non-vanishing for A' - A"' =
(){mod6), are negligible in compare with < A'|/i^|A"' >c— p~2K{K + \)?>KK', and
a sot of numbers A' = j(?nod6), i.e. K = 6j,j = 0,1, 2, • • •, classifies the solutions

Aj (p) -> Af (p) = ^ — ^ , Bj{p, 6) -» ^ 0 ) ( ^ ) = - J = exp(jA'fl). (12)

For large p we can reveal local asymptotic solutions corresponding to a pair channel
solutions (j>j(ri) of equation (6). In particular, the cigenfuiictions of Hamiltonian lifl

tend to the. solutions of a pair channel, when j = 0

B0(p,8) -» v^o(»,). (13)

However, if j / 0, we can set. a countable covering Kjp ~ p and use a corres])ondence

4°» V), (14)

which closes a formal classification of the unsymmetrizod sets under consideration.
By using the above correspondence at small and large values of p we can set

the global adiabatic, K-harmonic and local Jacobi representations of a partial wave



function $ in coordinates (p,8) and (p.rj), respectively

+00

P~l/2 E
+ 0

J

(15)

Averaging equation (9) over BK (6) leads to a set of the coupled K-harrnonic equa-
tions {h = m-

0. (16)

Alternatively, averaging (9) over Bi(p,0) = BK (9)Uxi(p), where U(p) is an unitary
operator Ufd(p) —< B^'\Bi(p) >c, leads to a set of the coupled adiabatic equations

(ft
- j 1 + Ai(p)-2E

where

XAP) = o,

(17)

Azl{p) =< BiW-j^Bjip) >c, H^p) =< £-Bi(p)\~B3(p) >c

Note that A — {A}ij is anti-Hermitian and H = {H}tj is Hermitian

MP) = EU-K
l{p)^-UKj{p), H13 = -{A% = - E Ay.Ajl;j.

Then, eq.(17) can be written in the matrix form [2]

-(1 ® — + A{p)f + A(p) -2E®1 = 0.

(18)

(19)

(17a)

The graphs of potentials A;(p), Ay(p) and Hij(p), that were calculated with the help
of relations of Appendix A are plotted in Figs.l, 2,and 3. At large p the asymptotic
form of matrix elements A(p) in the local representation are

= 4V1= 4 V 1 + O(P-3), 40) -40 ) -
+00

(20)
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For matrix elements between discrete and continuous spectra of the pair channel the
standard formula takes place

>j >= -\(ef} - f<
0)) < htffa > • (21)

The corresponding values of matrix elements < 0|?/2|j > equal

Owing to these equations, tlie following sum rule is valid, with integration substi-
tuted for summation,

4<°) J ( ° )
4 E " w ^ k = - < ()l'/2-4<0)l° >=< °tf\o > (23)

By substituting values (20)-(22) into the definition of the diagonal matrix element
Hoo(p) via AQj(p) by eq.(19) atid replacing the sum over j by the integration over
p, the direct calculation leads to the asymptoties Hoa(p) = l/(4p2) -I- O(p~'x). This
provides a true asymptotic behavior of the adiabatic potential Ao(/-;) + H00(p) =
(o + O{P A) a l K ' 8'ives a test for checking of the sum rule (19) with the help of
summation. Using the above asymptoties of matrix elements, we can write the
asymptotic form of equations (17) in the local representation of a pair channel |0 >

where q2 — 2£'—ff, is the relative energy which is counted off from the pair threshold
of the doubled energy FQ = A:2.

3 The effective adiabatic approximation

We can define the effective adiabatic approximation (EAA) as the1 projection of the
system of adiabatic equations (17) onto the two-body channel by using the canonical
transformation [3]

{>rX{"]TP ~ Urff{p) + qi) Xef}{p) = °- (25)

The solution Xr//(f>) = X?"" ' s connected with the solutions \ , (p) of system (17) by
the relation

,V;"- = T,]X] = E < i I '•'•S'(2' I J' >< J' I f'S<" I J > Xj, (26)



(I \ „(*)
where

iS{i) - A 1 (H • - 4' - " M — I v S ^ = - 2 A ~ 2 4 V C>7)

The effective potential Uej/(p) is defined as a sum of the adiabatic potential Ua,i{p)
and effective nonadiabatic correction 5U{p): and /i(p) can be treated as effective
mass that is defined as the inverse sum of unity and the effective mass correction
W{p)

Uefj{p) - Uad(p) + &U(p) Uad{p) = -— + «0(p) •- f,(,0) + H00(p), (28)

fj.~l(p) = 1 + W{p), (29)

W(p) = - 4 53 .40j(p)/tj0(p)A0-! (/?), (30)

d ( - ' l P ) = 2 ^ ( ^ 0 7 V'O7 + - ^ 0 ; V ' 0 j ' + -^07 "Oj )• \61)

Here the following relations are applied:

'0])
2 - 2A0]H0j

VOj - A'0}) +

(A'0])
2 - 2A0]H'0j -

V̂oo = Voo (p) = Ao (p) + Hoo (/j), Vjj = Vjj (p) = A, (p) + H j ; (p),

•i i

AOj(p) = A0j = Voo-Vjj, EOj-(p) = Eoj = Voo + ^ j , (32)

In the above formulae all of the terms except for CQ are p functions and the symbol
"/" denotes a derivative with respect to p. The graphs of the essential part W(p),
of the effective mass (i{p), and the saturation of the corresponding sum defined
with respect to j are presented in Figs.4,and 5. The nonadiabatic correction 5U(p)
is shown in Fig.6 . The adiabatic potential Uati(p) = Uefj(p) — SU(p) and effective
adiabatic potential Ue/f(p) counted off from the pair threshold of the doubled energy
4°^ = 2E0 — -7T2/36 are compared in Fig.7 . Figures 8 and 9 demonstrate the
convergence of sums (19) and (31) versus the number of adiabatic state j to the
true asymptotics of the adiabatic potential which tends to zero like the exponential
[8] Uad(p) = -(7r79)exp{-/97r2/18}{l -p7r7l944 + 7r2/36 + l/2p}, and the effective
adiabatic potential times p4 tends to constant — 18/TT2. Using eqs. (20) - (23) for
the description of the asymptotic behavior A(p), we have the asymptotics of the
effective mass at large p

^ < U _ < 0 | ? ?
2 | 0 > = - ^ . (33)
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Figure -1 shows that the behavior of W(p) determined by eq.(30) as p —> +oc is
/r*\V(pmor) -> — 18/7T2. Note that with increasing p the maximum value of j has
to increase too to reach a given accuracy of the approximation of the sum rule eq.
(23). as one can see from Fig.5 . When the compatibility conditions at large p

(34)

an1 included, ecj. (17) takes a form

T T - ( ° ) \ 1

When q < ()|»/2j() > /(2p) << 1, solutions of the continuous spectrum of eq. (25)
can be given in the form

• \ (, < 0 | ; / 2 | 0 > \ 1 . , , , < 0 | ) / 2 | 0 >
Xrff(P) ~ N»I \<1P 1 ^—, + A ~ siiiq/) + d) - q cos(qp + <)).

[ \ 2P2 } \ 2p
(36)

The solutions \j(p) of system (17) are connected with the solution \c/f(p) of the
effective eq. (25) by the inverse asymptotic transformation (26). which reveals a
weak asymptotic coupling form

\j(/ ') - ijo \o ( P ) ~ ( X P 2 ~d~A ° '

After substitution (36) into this relation we have asymptotic solutions (24)

.Yo(/>) ~ xr'(p)< XJ(P) = T~O
1XT(P) ~ - < j l ? ; 2 | 0

2
>

p
( 1 " ^ g f o s ^ + rf). (38)

The partial wave function ^ in the two-body channel |0 >

*o = p-1'2 E \Bj >< Bj\T-l\BD > X™W(PI (39)
3

under the completeness condition

£|5;></i,| = l, (40)
3

is defined by the relation

r .,.2 ]
* o ~ P " 1 / 2 ^ o Um(qp + 6 ) - q^ ™s{<W + <*) • (41)

When qy2/(2p) << 1, we have with an accuracy of the order O(p~l)

Mf>, 0) ~ P {/2Bo(p, 0) sin L(p - | ^ ) + s\ -» 0O(T/) s i n (^ + <5). (42)

11



It is evident that, with increasing q, the role of the nonadiabatic coupling grows. In
general, the discrepancy between £ ~ p(l — rf jip) and p = \/£2 + f/2, which leads to
weak asymptotic coupling (37), can be neglected only in the adiabatic: limit, q —> 0.
In particular, for bound states with the normalization condition.

+00

< XefjlXefJ >= / X*fj{p)Xeff(p)dp = 1, (43)
0

this coupling can be negligible too. However, to get correct results, one should
be careful in special cases which can have peculiarities near the thresholds similar
to a three-body zero-energy state, etc. Note that the transformation (26) changes
the form of the solution, because the true value of £ is restored only in the total
solution Vt defined by (39)-(42). This circumstance leads to the formal definition
of a mean-position operator p™w in the new representation Xo"" = -̂ X °f t n e pair
channel

/ C =< x n t f T l x r >=< xir-'/Crix >=< xlpm|x >= Pm- (44)
Here the mean-position operator /3J)f" = p corresponds asymptotically to the Jacobi
variable £ in the old representation x, i-e- delocalization of £ is contained in the
new radial function Xoew = Tx • Indeed, in the old adiabatic representation x, t n e

mean-position operator pm is determined by the relation

Pm = T-lp™wT = T-lpT = p + 5p. (45)

Here Sp corresponds to a delocalization of the variable £ that for large p » 1 is of
an order of < 0|r?2|0 > /2p << 1, i.e.

pm = T~1
PT~<Z> . (46)

Such a construction formally determines the required Zitterbewegung of pm around
p with an amplitude of the order of Sp and closes the definition of mean-position
operators similar to [4] . Thus, we have not only the effective approximation (25) -
(32) for the system (17) of adiabatic equations, but also a way to find the asymp-
totics of their solutions. For example, in the case of N-open channels one can use
the projection techniques developed in [13] to build up an appropriate canonical
transformation and find an effective N-channel approximation even if degeneracy of

eigenvalues £;(p), i = 1, ••-, N of a parametric Hamiltonian takes place. Note that
eq. (25) can be derived also by the transformation T$ =< 0| exp(z(S(1) +5 ( 2 ))) | j >
[14]. In this case, the discrepancy is only in the term V^f

f -24g,A|y(E;b. + A'o,). (47)

If we omit the nonadiabatic term in eq. (35) and take the adiabatic behavior

X«d~sin(«W> + Sad), (48)

12



then we can find the obvious difference between the true and adiabatic phase shifts
S and Sad, respectively

6 = ̂  + g
< y > . (49)

As it has been shown, the asymptotic coupling of channels in a scattering problem
is in any case to be taken into account when any adiabatic approach is used. It
happens since a slow variable p is restored completely into the needed Jacobi vector
£ only in the complete adiabatic expansion of a three-body wave function. The
above reduction from the initial eq. (17) to the effective eq. (25) can be compared
with an elegant method of eliminating small components of solutions of the Dirac
equation via Foldy-Wouthuysen transformation [4]. Also, it gives a true probabilistic
interpretation of all observable variables such as coordinate, momentum, and so on.

Note that with the standard substitution Xeff(p) = P1/2(p)Xeff(p), we can also
rewrite the momentum - dependent form of eq. (25) in the energy-dependent form

J^ - Vef/(q\ p) + q2\ Xeff(p) = 0. (50)

Here Veff(q
2,p) reads as

Veff(q2,p) = {Ueif(p) + q2W(p)) fx{p) + AUe/f(p),

= \w"{p)n{p) - i ( W'(p)n(p) )2 , (51)

that is sometimes a more applicable for the analysis of solutions. This representa-
tion can give us an opportunity to compare the effective adiabatic eq. (25) with a
conventional one having the potential quadratically dependent on the momentum [1]

TP{1 + w{p))fP ~ Uad{p) + \j?W{p) + q2) Xe"{p) = °' (52)

where the term —{l/2)d2W(p)/dp2 corresponds to the nonadiabatic effective correc-
tion SUeff(p). It means that we can compare now effective potential (51) with the
standard definition of the energy-dependent potential [1]

where V^J is a part of eq.(50) and the second term corresponds to AUeff(p) from
eq.(51). These types of potentials were also under consideration in paper [11], where
the analytic solutions for a square well with some modifications were found. As it
follows from next sections, this brief review of the methods under consideration
shows the new way to an adequate treatment of the three-body scattering problem.

13
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4 Discrete spectrum of the three-body problem

Let us consider the eigenvalue problem for the one-channel approximation

{1- - U(p) +2E- e<0)) X(P) = 0, (53)

with the following boundary and normalization conditions:

\-(0)=0, *(+oo)=0. (54)

< X'lx >= 1- (55)

For U(p) we can apply either the so-called BomOppenheimer (BO) approximation

U»O{P) = - ^ + * O ( P ) - $ \ (56)

or the standard adiabatic approximation (AA)

U<ul(p) = - ^ 2 + (°(P) ~ ( o ] + tfoo(p). (57)

The ground XHO(P) a i i c ' w(>akly bound xlioip) solutions of the eigenvalue problem
(53) - (55) with the BO potential (56) are represented in Fig.10 . So. the BO ap-
proximation provides lower bound E\'so of the ground state and E^Q of the artificial
weakly bound state. The latter disappears in the standard AA with the potential
(57) that provides also the upper bound E^ of the ground state, as has been shown
in [12] and recalculated hero. To evaluate the energy in EAA, we apply the following
equation:

>[l + w{p))TP "UeSf[p) + 2E~(°]) Xcfjip) = °' (58)

whore the effective potential Uejj{p) and effective mass (t.{p) were determined in the
previous section. Solving of the eigenvalue problem (58). (54), and (43) leads to the
new lower bound E\:n = — 1 .096626(A2/2T?J.) of the exact value Excl = n'2/9(ti2/2m)
with the deviation equal to 2.6 * 10~r>. The above adiabatic \!J,({p) and effective
x',.f/{p) radial wave functions are shown in Fig. 11 . The difference between \,'„;(/')
and xi'/fip) i-s negligible on the scale chosen here. The doubled values of the energies
Etth, Eplh of the three-body and pair thresholds, and the corresponding results of
the numerical calculations of the lower BO bounds E%'!i and E\\n of the weaklv
bound and ground states, together with the upper adiabatic (ad) and lower effective
(off) bounds E''lt and E[:!s of the exact(xct) one ExH are presented in Fig.12. This
figure demonstrates the above-mentioned set of the lower and the upper bounds of
the energy E. To solve the discrete spectrum problem, we reduced it to a finite
interval f € [0,1], approximated latter with the help of the finite-difference scheme
of the -Ith-ordor on an uniform grid and applied the multi-parametric: continuous
analog of Newton's method [15](see Appendix B).
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5 Continuous spectrum of the problem

In the continuous spectrum below the three-body threshold EQ < E < 0 we solve
the equation for the phase function in cases of AA with potential Uad and of EAA
with potentials p(p) and Ue;j(p). The phase shift Sad(q) corresponding to AA (57)
is determined from the equation for the phase function 8ad{q,p) = 5{q,p) [1]

dp q

The phase shift S(q) as a function of the relative momentum q2 = 2(E — EQ),
0 < q2 < (TT/6)2, is denned as

6{q) = lim 5(q,p). (60)
p—>+oo

The phase shift Seff(q) corresponding to EAA is determined from the momentum -
dependent equation for the phase function 5eff(q,p) — 5{q,p) following from (25),
(28), and (31):

d.5{q,p) 1 i
dp 1 + W{p)

1 dW .

6{q,0)=0.
The graphs of 5xct(q),5ad{q) and <5e//(g) are presented in Fig.13 . Note that the
results of the adiabatic phase shift 5ad{q) calculation completely coincide with the
results of the paper [8]. The exact phase shift 6xct is defined in that paper under the
assumption that one can write rigorously the wave function in the form

p, 0)x(p), x{p) ~ sin(<?p + 6xet) (62)

for large p, where
3TT 8\/3<7/7r , .

Sxcl = - - arct9T-WJ-,. (63)

As it follows from the comparison with the exact phase value dxct(q), EAA ensures
a correct behavior of the function Seff(q) with an accuracy of 2 * 10~3 for values
of q2 : 4 * 10~6 < q2 < (T /6 ) 2 . From Fig.13 including tabulated calculated values
one can see that on the above interval of q the adiabatic phase shift 5ad{q) tends to
?r while the effective phase shift 6ejf(q), in accordance with the exact one 5xct{q),
tends to 7T + TT/2. This comparison confirms the convergence of the method under
consideration and consistency with an accuracy of the order 2 * 10~6 of the lower
bound of the energy of EAA. As it follows from eq. (59) and eq. (61) the phase
shifts of A A and EAA are connected really by eq. (49). Note that for the continuous
spectrum the above problems were reduced to the phase-function equations (59) and
(61) solved by the Runge-Kutta method of the 4th-order.
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6 Conclusion
An essential part of the proposed approach is the reduction of the system of adia-
hatie equations to the unique effective adiabatic equation and construction of the
momentum-dependent potential with the help of the operator canonical transforma-
tion. For the problem under consideration this was realized via the analytic repre-
sentation of the solutions of the parametric spectral problem on a circle. As a result,
we investigated the method convergence of the adiabatic expansion and established
that the appropriate sum rules saturate and satisfy the correct asymptotic behavior
of the momentum-dependent potential. It was proved that the asymptotic kinematic
connection of closed channels under the three-body threshold is transformed to the
energy-dependent centrifugal potential proportional to the mean-square size of a
pair subsystem in the ground state. This provides a correct phase shift behavior in
the whole legion of the relative energy below the three-body threshold except the
vicinity of small relative energies of the order 4 * 10~6, which is beyond the method
accuracy.

The investigation shows that in the cases when the threshold peculiarities take
place, nobody can think that, the standard adiabatic approximation can provide
the true threshold behavior. Even if one can apply the proposed EAA, a careful
investigation of the saturation of the indicated sum rules is needed, even if short-
range pair potentials are considered. As it has been mentioned above, the projection
of the initial problem with short-range potentials onto an effective one can be treated
as a nonlocal momentum-dependent potential problem. As a consequence, the long-
range potentials appear and construction of true as3'inptotics is required. It seems
that a relation between EAA and the known approach of construction of an effective
nonadiabatic potential for the exotic Coulomb three-body problems [1G], [17] can
be found too. As a matter of experience, one can see that the expansion for any
truncated set of eigenfunctions of the pure rotation Hamiltonian on a circle, which
is the essential part of K-harmonie expansion, does not provide the true asymptotics
for a three-body problem with pair channels. As it follows from the presented results,
the proposed EAA approach shows the new way to an adequate treatment of the1

three-body rearrangement scattering problem.
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8 Appendix A

To construct Aoj(p) from eq.18. we use the following relations for the attractive case1

c — — 1 with the effective strength K = TT/6 (in the units h = rn = 1) [12]:

l< 0\2V(p)\j>c
A(p) =

where

0\2V(p)\j >c= j B'0(p,0)2V(p,0)Bj(p,6)dO,

8n), On = n?r/3 + TT/6, 71 = 0,1,2.3,4,5.

The eigenvalues £o(p) and e_,(p) are determined via reduced eigenvalues y0 and

The roots j/o and yj are determined from the following transcendental equations:

2/o tanh(7ri/o) = —x,

yj tan(7r%) = x, j - 1/2 < Vj < j , j = 1,2, 3,...,

where
K 7T

The corresponding eigenfunctions have the form

B0(p,e) =
,,2 ,r2

- \x

cosh [6j/o (6 — nn/3)],

cos [6yj (0 - nir/Z)],

for

727T/3 - 7T/6 < 6> < 727T/3 + 7r/6, Tl = 0, 1, 2, 3, 4, 5.

As for cosh(7rj/;) and cos(7rj/j) , respectively, we simplify the form of eigenfunctions
by using the reduced transcendental equations

c o s ( ^ ) =
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Finally, the equations for A,y have the form

C7T

— \x\

9 Appendix B

For numerical solving of the eigenvalue problem (53) - (55), we transform the inde-
pendent variable p to reduce the problem from the infinite interval [0; +00] to the
finite interval [0; 1]

C = TTT> P=T^7> ° ^ C < 1 , (64)

where a is the parameter of the transformation, a > 1. To obtain the Dirichlet
boundary condition, we go over to the function

2/(0 = Cx(O-

For the function ?/(£) we have the equation

*C1) = PiJ/(C) + Ey(0 = 0,

where Pj is the differential operator of the second order

( l - C ) 4 ^ ( i - C ) 3 ^ ( l - Q 3

(65)

^ ( l C ) ^ ( i C
1 a2 dC2 a2C

with the boundary conditions

$<2> = t/(0) = 0,

and the normalization condition

2C2"2C

= Oj (66)

(67)

Due to the Dirichlet boundary conditions we can use the unit normalization condi-
tion

1

: 1. (68)
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Now we rewrite the eigenvalue problem for eq. (58) in the following form:

— (1 + W(p))- Uet;(p) + q'2\ Xejf(p) = 0,
dp dp J

xlf/(p)dp=l, (09)
o

where 1 4- W(p) = fi~i(p), /z(p) is the effective mass and Uejj{p) is the effective
potential. We perform a similar transformation and obtain the following equation:

= P22/(C) + Ey(Q = 0, (70)

where P 2 is the differential operator of the second order

p. = (i + na){±^-^i + (-(i + W K ) ) 2 ^ + Kio'-1^)^*

with the same boundary conditions (66) and normalization (67).
This problem is solved by a continuous analog of the Newton method

V() * ( * ) , 2(0) =Zo,

where

<&'2(z) is the Frechet derivative and t is the continuous parameter. We introduce the
following notations:

dy dE

and make the decomposition
u — u\ + e«2-

For unknown functions u\ and u2 we have the equations

Pu1+Bu1 = -(Py + Ey), u,(0) = -j/(0), w,(l) = -y(l),

Pu2 + Eu2 = -y, u2(0) = 0, M2(1) = 0. (71)

It is obvious that Uj = —y, therefore from an unity boundary condition we obtain

e = -T±—. (72)
/ u2yd(
o
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System (71) is solved on an uniform grid u>:

u = {C = (» - 1)AC. » = I- A ' c K = l/(Nc - 1)},

with the help of the 4th-order approximation by means of finite-difference formulae

ih = j^r2 (10;Vi - 15?/2 - 4y3 + Uy, - &yr> + ye) 4- O(h*),

\h = 7 ^ <—3*/, - 10y.2 + I81/3 - %i + j/3) + « ( / ' ' ) .

/y," = ^ (-?A-2 + 16j/,-_! - 30:v, + 16,)/l+l - 6yi+i) + O(h4),

!)', = j ^ (?A-2 - 8?A-_, + 8?;,-+, - j/,-+2) + O(/!••').

(!/'< -r> ~ G'!>»-1 + 14?A>-3 - 4 /A l -2 - lU(/,i-1 + lOi/n)

( + 6p ^ /„-.! + 6;v,,_, - 18?;,,-2 + 10?/,,-i + 3?yn) + O(/(').

The matrices of linear systems are reduced to a five-diagonal form and we solve the
above algebraic problems with the. help of LU-decomposition for the band matrices.
The integrals in formula (72) are calculated by the Simpson method.

Thus, using i/'*', is'*'' we calculate <4 solving (71). Relation (72) gives us r(A'.
The increment, for the. wave function is

The next approximation is calculated by the formula

where r is the step in jjaramoter t calculated by

S(t) = 6{y{k) + tuw, Eik) + fjk)) = | | $(?/(*» + tu{k\ E<-k) + t.c{k)) | | r , .

The iteration process is completed when S < e, e is a given small number.
The optimal choose of the parameter a in the transformation (G4) allows us

to have a required number of mesh points of the grid to in the region of essential
variation of the wave function [15].
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