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I. INTRODUCTION 

The recent interest in nuclei beyond the proton drip line, prompted the study 

of proton emission phenomenon from the ground state of such nuclei [1). Like in 

the case of a decay, this process consists in the tunneling of the proton across 

a potential barrier. However for this kind of radioactivity it is vital to add the 

centrifugal potential to the Coulomb barrier, since the majority' oJ emitted protons 

are likely to decay from states with e i' 0. 

In last years a series of theoretical investigations, based on the quasi-classical 

approximation have been carried out in this field [2-4]. The proton half-lives of 

observed heavy proton emitters were calculated and compared with the experimental 

ones and in some cases a good agreement was found. 

In the Gamow approach the decay is treated as a stationary process, the 

penetrability being given by the ratio of probabilities of finding the quantum particle 

on each side of the potential barrier .. In this image the dynamical aspects are 

neglected. However quantities like the tunneling time are important in decay 

processes, in fission or in fusion reactions. In order to include the time evolution 

of a wave packet propagating in a classically forbidden region one need to solve the 

time dependent Schrodinger equation (TDSE). There have been some attempts to 

incorporate the time-dependency in the study of the proton decay [5] by expanding 

the wave function into a term describing the bound-state of the prepared nucleus 

.Po( A) and a set of exit channel wave functions X orthogonal to it which decomposed 

into the intrinsic states of the daughter nucleus ,P(A- 1) and of the proton ¢,. 

However, imposing that the decay width is smaller than the resonance (quasi­

stationary) energy (r « Eo) the treatment reduce to the stationary Schrodinger 

equation for .P,(r, t = O) with a complex energy £ 0 - ir /2. Afterwards the usual 
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computational procedure is carried on [6]. 

In this paper, based on a previous application of TDSE to the study of a decay 

[7,8], we address the question of proton-decay from orbitals with C # 0 for the 

spherical nucleus 208Pb. In our time-dependent approach the description of the 

decaying system is fully contained in the state vector. The time evolution of this 

vector enables us to determine the decay probability at any moment t. \Ve arc 

interested to study the influence of the potential on the tunneling quantities and to 

determine to what extent the errors of the \VKB metho_q depends on the energy of 

the quasi-stationary state and on the angular momentum. 

II. DYNAMICAL APPROACH TO QUANTUM TUNNELING 

The interaction betv .. ·een the proton and the daughter nucleus 207Tl is described 

by an average Woods-Saxon (WS) field which accounts for the nuclear potential 

VN(r) = Vo (I) 
I + exp('-;"') 

a Coulomb potential, which is approximated by the interaction between the point 

proton and the uniformly charged spherical core of charge Z - 1 

Vc(r) = (Z- I)e2 

Rg 

(Z- I)e2 

r 

and the centrifugal barrier 

[I+HI-(~)')],rsng 
r 2 ng 

h' 
1/;J(r) = -

2 
,C(C +I). 

p.r 

(2) 

(3) 

The \VS interaction is defined by the nuclear radius RoN= r0 A113 , \'·:ith ro= 1.25 

fm, the diffuseness a=0.7 fm, and the depth of the central potential Vo= 58 MeV [9]. 
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\"ot<' thnt in other pc.pcrs. the depth of the pot(~ntial is not flxc-·L its ·::l: J(' :J('"(·:ng 

adjusted to r<.>produce the experimental energy of the qua;;i-bound stat.::: (3,4]. fhc 

Coulomb radius is given by Rg = r 0 (A -1)113 . 

The initial wave function of the proton was chosen to correspond to a quasi­

sf ationary state of the potential V(1·) = Vv(r) + Vc(r) + \.-~!(r\ v-:ith positiYe energy 

E > 0. The decay width of such a meta.<;table state can be cakulat.<..~d u::;ing an 

analytic method developed by Gurwitz et al. [10J. In this a.ppro~ch it is assumed 

that thC' proton occupies a bound eigenstate in the potential well V(r) + .::(r) which 

represents a slight modification of V(r). Therefore we take 

1/•,(r, t = O) = 0 (V+<I 
"' 

( 4) 

where, ¢~V+t) is an eigenstate of energy E~';+') corresponding to ihe Hamiltonian 

r,' 
Ho =-

2
/'> + V(r) + c(r) (5) 

where 11 is the reduced mass of the daughter-proton system. The modification .::(r) 

reads 

e(r) = V(rmox) + (r- Tmox)tanO- V(r), r ~ Tmax (6) 

=0, r::=;rmax 

where 0 gives the slope of the potential barrier beyond the point rmox at which V(r) 

attain its maximum. 

In what follows we shall consider only the wave functions</>~~+<) with the highest 

eigenvalue E~';'+•l bellow the barrier Vs = V(rmox)· 

In Table I we list the heights of the barriers (Vs), their locations (rmox) and the 

selected eigenvalues (Ent) for a given value of the.angular momentum f.. 

The next step consists in the resolution of the time dependent SchrOdinger 

equation: 

3 

t 
I ,. 
I 
i 
I 

;.-.. 

I 
r 
r 



ili;
1
,Pp(r,t) = H(r).P.(r,t) (7) 

where 

h2 
H(r) =-

2
1' L'l + V(r). (8) 

A numerical procedure based on the iterated leap-frog method, provides the solution 

of this equation (11]. This is the corner stone of the present approach. Once we get 

the wave-function which describes the time evolution of the proton packet through 

the potential barrier we are able to compute relevant quantities of the decay process. 

The tunneling probability can be expressed as the probability of finding the 

proton beyond a certain point TB on the border which separates the zone inside the 

barrier from the external one 

PTD(rs, t) = joo l.P.(r, t)J 2r 2dr: 
cs 

The decay rate is calculated according to the relation 

Frn 
Arv(rs, t) = 1 - Prn 

(9) 

( 10) 

It is also interesting to calculate the average value of the proton wave packet 

position operator, rav, inside the nucleus 

J;s rJ.P.(r, t)J 2r 2dr 
rov(rs,t) = J;s l.P.(r,t)J2r'dr 

III. NUMERICAL RESULTS AND COMPARISON WITH WKB 

(II) 

In Figures 1-3 we present the time evolution of the proton wave function '1/Jp(r, t) 

for three angular momenta l = 0, 2, 5 at four different moments. \Ve see the tendency 

of the wave function to decrease its amplitude in the interior of the barrier when time 
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goes 011. E\'entually we obscr\'(' th<1t the fraction of the wa\'<." function which pasf:cd 

acros~ I h<> harrier hehav<'s likC' a ~pr<'aded waw· packet (at least on the spati<ll in:<·rval 

that we> considered. i.<'. up to GO fm). It is worthwhile to mention that although 

t.lw wav<' function amplitude dC'cr('ases constantly in time its shape dot>s not change 

much inside the harrier. 

In figures 4 and .) the tinw-d(•pcndent decay rat.<' Aro is ploted in all four cases. 

As has ht>t:>Jl pointed in an earli<·r work [7] the decay rat€' und<"rgocs two regimes. 

In the first. one. )q0 oscillates but. incr('as<>s on the average. The fact. that at- small 

ti mcs I h(' dt'cay raLC' is not cons\ aJJI. as rhar<1ct <'rist ic for exponential decay. hut. \'ari<'f: 

with time i~ t.ypic11l for a quantum nwdwnical d<>snipt.ion {1~]. This fact coBfrasts 

to tlw usua.l classind imagC' which portroys the radioactive systc·m as Hll ensamhle 

of nudC'i dC'caying independently on<' of cad1 otlwr with a probability which docs 

not. dC'pcnd on time. In the s<>cond r<'gimC:' ~TD performs small fluctuations around 

a constant. value, that. we call a~ympt.otic valut> >-.To(oo). 

The decay ra.t.es pres~ntcd in figure -1 correspond \.o rB = 11.6 fm. i.e. the 

inf<'rior li~nit of integration is choosen t.o lay between tlw t.wo fuming points as ('an 

be observed from Table 2, If TB is increased, the irregularit-ies occurring in the first-

regime arc smoothed out. This fact is pictured in Figure 5. where rs is chosen lO 

be 25 fm. 

In Figure 6 we represented the behaviour of the \\'aV<' packet's av<>rag<' posit ion 

inside a potential region defined by 1'8 = 25 fm. As in th€' c:a.."c of t.h<' d<>cay r(-1\.(' \\"<' 

deal with two regimes. Wher<'as in the first regime rat• inneasc up t.o a c<'rt.ain limit 

in the second one it performs smaH-ampJitudefiuctuations around this limit-ing Yahw 

as we expected since, according to a previous remark, t.h<> wav<' function do<>s not 

change much its shape. The period of oscillations in this sccoml r<'gimc is cknol.cd 

by 'FnsC' and its value can be dedtK<>d simply by lll<'a.•mring t.hc dist.ann• lwl.\\'<'<'11 two 
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maxima of rav (right column in Fig.6). As has been noted in a previous paper [7), the 

quasi-stationary state tends to penetrate the potential barrier by performing these 

small-amplitude oscillations instead of simply crossing the barrier from one side to 

the other. For this reason it makes sense to associate the frequency of collisions 

in the formula of Gamow with 1/To~c instead of 1/Tcrou 1 which is defined by the 

quasi-classical expression (see eq.(13) bellow). 

In the \VI\B approximation the decay rate Asr is constant, its value resulting 

from the product of the barrier penetrability p and the collision frequency v 

Asr = v · p 

\Vhere v is given by the inverse of the classical period of motion 

2p.1'" dr 
Tcros~ = h rn k(r) 

the wave number k(r) reading 

[2 ]''' k(r) = ,(, (Q- V(r)) 

and the penetrability 

( 1'" p=exp -2 dr ,,, 
2

P. (V(r)- Q)) 
h' . 

( 12) 

(13) 

(14) 

(15) 

The stationary states computed in the modified potential, become quasi­

stationary when we turn on the real potential (without the modification t:(r)) and 

their energy is no longer well defined. Therefore, in all the above formulas the decay 

energy Q was taken to be the energy of the qu~i-stationary state E0., computed ~ 

the average energy of the time-dependent ScrOdinger equation 

Eo= (,P.(r, t)IH(r)ll/>.{r, t)). {16) 

. 'in'· what concerns the decay rate, it can be inferred fronl Table 2 that the 

d~cay rates··~alculated in. the time~dependent approach).~; are in rel~ti~ely.good. 
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agreement with the \Vh:B values Asr( oc) especia!ly when the quasi-st:ationary energy 

decrease with respect to the barrier height. Except. the last case, with the highest 

angular momentum, in all other cases the \~:KB results overestimates the time­

dependent values. 

The comparison between the times To~c and Tcro~s (see Table 2) shO\\'S that they 

have very close values. However they are refering to different types of motion: the 

first describing the small oscillations of the proton wave function bet.\•,een the walls of 

the barrier during tunneling, the second, the classical moYement inside the potential 

well. 

The transient time is defined as the time interval between the moment when 

>.TD starts to increase up to the moment when it reaches the limiting value >.Tv( oo ). 

It depends on the energy of the quasi-stationary state. Its value can be deduced 

by inspecting figures 4 and 5. The tunneling time is related to the shift in time 

of the transition point between the two above mentioned regimes, for the decay 

rate. Therefore the tunneling time i~ associated to the time necessary for the wave 

function to cross the barrier. Computing the decay rate for two different values of 

rB, i.e. the barrier's turning points, and measuring the time delay between the two 

maxima of the two curves one gets the tunneling time (see Fig.7 and Fig.8). Notice 

that for f = 0, 2, 5 the tunneling time decreases with increasing >.rv(,;, ). However 

this does not happens for the state with higher angular momentum f = 8, where, 

although the decay rate is smaller, the tunneling seems to take place faster. In fact 

the tunneling time is correlated with the imaginary time, which is nothing else than 

the time necessary for the proton packet to cross the inverse potential, i.e. 

1'" / p. dr. 
timag = ., y 2(V(r)- Q) 

(17) 
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IV. SUMMARY 

Motivated by recent theoretical and experimental investigations on proton 

radioactivity phenomenon, we studied the time dependent characteristics of the 

proton tunneling in the spherical nucleus 208Pb. Since other theoretical approaches 

are based on the semiclassical approximation we were interested to compare our 

exact results with the WKB ones. We found that the discrepancy between the two 

methods decreases when the difference between the top of the barrier and the energy 

of the quasi-stationary state increases. Our study does not concern a certain angular 

momentum state which could be measured in the decay reaction 208Pb'"-t207Tl +p. 

Rather for a fixed set of Woods-Saxon parameters we investigated the dependence of 

the proton tunneling on time choosing one quasi-stationary state for every angular 

momentum. It seems that the accuracy of the WKB approximation increa.,es with 

l. For a comparison with the experiment one should fit some of theWS parameters, 

e.g. the potential depth, in such a way to reproduce the observed energy. However 

the present comparison between the WKB and the time-dependent approaches gives 

an idea of the error involved in the stationary approach and provides a good starting 

point for future investigations of proton decay using TDSE which could eventually 

answer to some questions related to this phenomenon. 
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TABLES 

TABLE I. The values of th€' barrier heights Fs. their locations f'ma.r· the SC'lerted 

eigenvalues E11 ( and thC' wave functions numb('r of nodes for diffNent angular momenta(. 

Angular Momentum Number of nodes r,... 0 ;r(fm) Ve(MeV) E.i(~JeV) 

c~o 4 10.62 10.2-56 7.78 

( ~ 1 3 10.5-5 10.631 -0.0-! 

1~2 3 10.4.5 11.391 . 7 .2:~ 

r~3 2 10.32 12.560 -2.06 

1~4 2 10.15 1-!.163 5.29 

£~5 2 10.00 16.233 12 .. 53 

e ~ 6 1 9.82 18.800 0.6-! 

c ~ 7 1 9.62 21.916 8..14 '. 

t; e~8 1 9.45 25.607 16.58 

TABLE II. The quasi-stationary energies £ 0 , the turning points of the pot.('ntial 

(rtt, r12, r13), the asymptotic value of the decay rate )qn(oo) and its \\'1\:B correspond<•nt 

>.sr. the oscillation period To.sc and the crossing time To::ro.s.s· 

Eo (MeV) ru (fm) r, (fm) r13 (fm) >.rv(oo) (s- 1) >-sr (s- 1) T,,. (s) 1:-ro.s.s (s) 

7.71 9.24 14.98 !.25x w+'O l.i4x10+20 2.75xlo-n 2.95x10-22 

7.19 1.70 8.90 17.15 !.90x 10+19 2.33x1o+ 19 2.60x1o- 22 2.7-tx1o-22 

12.45 3.56 8.74 13.12 2.23x 10+20 2.59x10+20 2.24x1o-22 2..13x1o- 22 

16.55 5.31 7.89 13.69 2.79x 10+ 19 2.52x 10+19 1.50x 10-22 1.79 x 10-22 
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FIGURES 

l= 0 • ( E =7.78 MeV) 
0.225 0.225 

0.2 1=0 0.2 I= 1.5 X J0'21s 
0.175 0.175 
0.15 0.15 
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0.075 0.075 

"!... 0.05 0.05 
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Fig. 1. Time evolution of the squared wave function l¢p(r, t)l' for angular 

momentum t = 0 at moments t = 0, 1.5·10-21 , 3·10-21 and 4.5·10-21 seconds. 
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l = 2 ( E'=7.23 MeV) 
0.25 0.25 

0.225 "' o.~~ t 0.2 t=O 

~ t = 1.5 x J0'
21

s I 
0.175 o.115 A 
0.15 0.15 

0.125 0.125 
0.1 0.1 

0.075 0,075 
0.05 0.05 

.... 0.025 0.025 ~ H \. -;:;- 0 1\ , I I 0 t I I! 

... - 0 10 20 30 40 0 10 20 30 40 "-" 
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0.25 
0.25 t 0.225 0.225 .u I 0.2 I= 3 X J0'21s 0.2 • t=4Sxl0 s 

0.175 0.175 
0.15 0.15 
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0.05 

o~~ ~:n \.. 0.025 ,\ 
0 I It I I 

0 10 20 30 40 0 10 20 30 40 

r(fm) 

Fig. 2. The same as in Figure 1 but for t = 2. In this case, since the proton faces 

a higher barrier, the tunneling will take place at a slower rate. At the last moment 

of our investigation the fraction of the wave function that tunneled the potential 

barrier has a smaller amplitude than in the previous case. 
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l = 5 ( E'=12.53 MeV) 
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Fig. 3. The same as in Figure I but for C = 5. Now the barrier through which the 

proton undergoes tunneling is smaller and thinner and therefore the probability to 

find it outside the barrier at a later time is larger. The part of the wave function 

which already tunneled manifests itself as a well-spreaded wave packet. 
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~ E' 7.7~-~~-~--------- ' I l=O ' I ~~- ~ ._1_ .... n . 

I 
0.75 
0.5 

0.25 
0 

0 " 4 6 8 10 12 14 

E'=7.23MeV 

~:II rb;=:~.·~~ml., ,'1 .' ;l~~.J 
10 12 14 6 8 4 0 2 

E' =12.53 MeV 
I (10'22 s) 

: E ... I ••• ~ ••• _1_ ••• _1_. ~~r l 
0 . 4 6 8 14 10 12 " 

E'=16.58 MeV 
0.6 -9 
~:~ ~' f " , ; " I , , I ,

1

:-
0 2 4 6 8 10 12 14 

Fig. 4. The time dependent decay rates >.TD for the four s(>'lected quasi-sf at ionary 

states of angular momentum f = 0, 2, 5, 8. In the eq.(lO) we c.hoosed rB = 11.6 fm. 

In all four cases we observe that after a certain time the d('cay rat.c::- will fluct uat.(' 

around an asymptotic value. 
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:1 ('"~:VHmmmm [=(} I 
0 ,I~!!!,,.',,! ... ! .. 

0 " 4 6 8 !0 12 14 16 18 20 

E'=7.23 MeV r =25 fm 

H r--------:::zs=----- [=

2 I 
0 ~"' . . . ! ... 1 ... 1 ... !.,!.' 

0 2 4 6 8 10 12 14 16 18 20 

t (10'22 s) • 

; E2:~.3-~~-~----:---- l=S I 
o ·~I',, I,,· I, '·,,I,,, I,,, 

0 2 4 6 8. 10 12 14 16 18 20 

• E =16.58 MeV 

~i t·:;·z·:~ . I ••• I ••• I ••• I ••• I • !~~ .. I 
0 2 4 6 8 10 12 N N ~ 20 

Fig. 5. The same as in Fig.4 but for riJ = 25.0 fm. In this case the fluctuations are 

smoothed. 
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E'=7.78MeV 
7.S 

7 v 7.204 

7.202 ~ ;v v \1 ~ 6.S 

~ 0 7.2 -

6 ' 7.198 
0 s 10 IS 20 25 10 12.S IS 17.5 20 22.5 

E'=7.23MeV 
~ 7 

~ 6.8 

'--

;:~ fc .. l .... l ... ~ .. ~l 
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7.608 1- ,.... , ' ' 1 f \ I II 
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7.606 
0 s 10 IS 20 25 8 10 12 14 16 18 

Fig. 6. The average value of the wave packet position operator Ta.v for three 

quasi-stationary states (f = 0,2,5). On the left side the asymptotic behaviour of 

r av is observed, whereas __ c;m the right side _we focussed on the small amplitude 

oscillations of the wave packet on its way to tunneling. 
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E'=7.78 MeV 
~ 5 
~ 

1=0 4.5 ·.., 
~ 4 ';' 
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rb2=14.98fm 
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rb2=17.15ftn 

... 
0 0 I 2 3 4 7 8 9 10 

Fig. 7 The decay rates for f. = 0, 2 when ra is choosen to be the internal turning 

point {full line) and the external turning point {dotted line). The difference 

between the maxima of the two curves gives the tunneling time ttun· 
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Fig. 8 The decay rates for f = 5, 8. 
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