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1 Introduction 

Since the discovery of muon in 1936 its relation to electron is a puzzle. Really, 
the only difference between these two elementary particles is in their masses. The 
lepton number conservation law has no deep sources in space-time properties or 
gauge theories. Moreover many extensions of the Standard Model predict processes 
with violation of this law (J.l -+ e"f, eJf, eee etc.). Intensive search of these 
extensions was performed in 1977 [1]. The modern state of the subject is elucidated 
in papers [2, 3] and references therein. Indeed, if there is a unification of quarks 
and leptons, then the existence of b -t S"f decay leads to that or J1 -+ €"'f. Different 
models give a wide range of predictions for the branching ratio of this neutrinoless 
muon decay. The present experimental upper limit [2] on the branching ratio is 

B= f(!L-->ei) <4.9·10-u. 
rtot 

" 
(1) 

This value imposed already strong restrictions on parameters of supersymmetric [4, 
5] and other models [6]. In the model independent approach [7] one gets boundaries 
on parameters of possible structures in the matrix element of muon decay. Several 
new experiments are planned to improve the precision. They will either find the 
decay or put much more stronger restrictions and even discriminate some models. 
The forthcoming experiment at PSI (if doesn't find the decay) will put the limit on 
the J1 -t e1 decay branching ratio of about 5·10- 14 . Another experiment is proposed 
at BNL, where they are going to reach the level of 10-16 • These experiments are 
very important, since they have rather wide possibilities for the search of new 
physics comparable with those of high energy colliders. In this paper we consider 
the important background process 

!L(P)--> e(p,) + 1(ki) + (v, + v,)(q) (2) 

in the kinematical situation, imitating the neu~rinoless decay. Namely, we suppose 

2p, q 2kl q r;;; r:;n:;; 
n= M' ~l= M' ~yQ2 =yq2/M2 «1, 

where q is the 4-momentum carried by neutrinos, and M is the muon mass. The 
width in the lowest order of perturbation theory was calculated many years ago [8]. 
The expression for the width reads: 

df"-+'""" = 2aG} d
3
p,d

3
k1 [- (M

4 
_ q' (q' _ M')) (L _ ..!!:!__)' 

Bocn 6(27r )6 M e2W1 2 2 pkl p,k1 

+ 4q' + (p,~\~~k!) (2q' + M')] , q = p - p, - k~, w1 = k~. (3) 

Validity of this formula may be confirmed in the limiting case of soft photon. Mul
tiplier 2 was lost in right hand side (rhs) of expression for the width in [8]. The 
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polarized muon radiative decay was considered in [9), and as a background to the 
neutrinoless decay it was extensively discussed in Ref. [3]. 

2 Radiative corrections 

In the imitating kinematics (IK) we introduce the relative energy deviations of hard 
electron and photon from M /2 and the acollinearity angle 0: 

Here we suggest 

2wl 
a1 = 1 -M, 

2.:, 
a2 = 1-M' 

O"j ~ u, ;..., 0 « !. 

0 = P2-::k1• ( 4) 

(5) 

Rearranging the phase volume 

d
3
p d

3
k (M)' d\1> = 2 1 = 8,-2 

-
2 

(1 - u!)(1- u2)du1du,OdO, 
W1C:2 

and expanding expression for width in the Born approximation [9], we obtain: 

drsorn 
= du1du,Od0 

dfo 
= 

du1du,OdO 

~ = 

Jl = 

+ 

dfo 
du1du

2
0d0(1 + 01 ), (6) 

aGl M' ( O') _ : •. R, R = ui(l + 0 + 4ulu2- 2 (1- 0- u,Ory, 

s cos(B,P2), ry = s sin(B,P2) cos <p, k1s = w1( -~cos 0- ry sin 0), 

~ [( -5 + 3~)u;u,- 4(1 - Ouio-1 + 2(1 - Oo-18' + ~(3- ~)u,02 

5 3] 4ryu1 u,O - 4ryo . 

Here s denotes spin of the muon, and cp is the azimuthal angle between planes 
formed by (s,p2 ) and (s,k!) in a rest frame of muon. Note that averaging the 
above expression over <p angle, one immediately gets result presented in [3]. We 
shall name higher than second order contributions in rhs of (3) (and J1 in rhs of (6)) 
as relativistic corrections. In this paper we will consider the radiative corrections to 
this width bearing in mind virtual corrections described by the Feynman diagrams 
drawn in Fig. 1 together with those arising from emission of additional soft and 
hard photons. 

Taking into account emission of additional hard photon requires to distinguish 
the cases with or without external magnetic field. In the case without magnetic 
field the additional hard photon, moving along the final electron trajectory within 
a small angle, which is equal to the detector angular resolution, is registered together 
with the electron. In the opposite case (with magnetic field) those events will be 
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Figure 1: The subset of Feynman diagrams for radiative in:~10n decay. 

rejected from statistics, because the energy of the electron will be small. The 
standard calculation of one-loop virtual corrections can be considerably simplified 
by using the IK features. Some details of our calculations (traces, vertices and the 
Tables of relevant integrals) are given in Appendices. 

Ultraviolet divergences of loop integrals are eliminated in a standard way using 
the renormalization constants of the wave functions of electron and muon: 

z1. a [1 A' >.' 9] = 1-- -ln-+ln-+-
21!' 2 m2 m2 4 ' 

{7) 

z~. 
a [1 A

2 >.' 9] = 1-2,. 2lnM,+lnM,+4, 

where m, A, A are the electron mass, infrared and ultraviolet cut-off momentum 
parameters, respectively (>. « m, A » M). The final result for one-loop virtual 
corrections reads: 

dr"'" dfo {8) = Ov, 
du1du20d0 du1du20d0 

a { (3 Mm 1r
2

) a2 ov = - R -L-(L-1)1n-+- +....!.(1-0 
,-R 2 >.> 6 4 

( "') [ 23 c 2,-')] + ui -3-2£+6 (1+0+ulu, -4+~ 4+4£+3 

[13 c 1 "') l c ) ,., } + 02 --~ -+-L+- +u20ry -+2L --u10ry 
16 16 2 12 4 12 , 

M 
L = ln-. 

m 

Taking into account the emission of additional soft photon requires some care. The 
reason is that the energy-momentum carried by soft photons as well as by neutrinos 
cannot in principle be distinguished in the experiment. We introduce some Small 
energy fraction parameter A1 = 2w,,t{ M « uh o-2 , 0 which should not affect on 
observable quantities and actually cancels out in the final result. Emission of an 
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additional soft photon.having energy lesser than M tl.J/2 can be taken into account 
in a usual way [10]. The corresponding expression looks as follows: 

dr~" df 0 a [ 2tJ., e 2 "'] ,, .•. = d3p,d3k/s, lis=; 2(L-!)1n-A--L +L+J- 6 . (9) 

Let us suppose, that a photon with momentum k2 , having energy more than ~1c, is 
emitted in such a way that we have still allowed values of the final electron and hard 
photon momenta. In this case the additional photon cannot be called soft, because 
it changes the kinematics of the process. We have to consider the corresponding 
contribution applying complete set of kinematical restrictions. The main condition 
is that the missing :ffiOmentum squared must be positive: 

-2 ( 2 q = p-p,-k,) > 0, ij=q+k,. (10) 

Having in mind that the matrix element squared is proportional to the second power 
of small neutrino momenta, we can write down the contribution under consideration 
in the factorized form 

df' 
dro }_( _-'!...) r 3

k2 ( J!... _ _12_ )' R0 (ii') (ll) d3p,d3k, = d3p2d3k1 R 4rr2 w, pk, p,k, ' 
R = 2Q' + 2in + i' + (( -2Q' - 2in + i'), 
-, I ' Q = 0'10'2- 46 - XO't, l = 0'2- x, fi=ub 

Q' 2 -2 - 2ijp, - 2ijk, 2w, 
w2 = k~. = Mq, I=M' n=M, x=-, 

M 

The difference in respect to the case of pure soft photon emission is that we have 
the shifted quantity R instead of the Born one (R) under the integral sign. The 
above expression guarantees that the energies and angles of the observed electron 
and photons are the same as defined in (4). Transforming the above formula we get 

<m., d [ (MO )] ( 0
2 

) o~ = 
2
: j xxR(x,c2 =!) -2+4ln 

2
m0 

0 o-1o-2 -4-xo-1 

"' 
' 

1-82/2 'll'd 0 Z"mud 2 ()2 
+ j :[,' j de, j xx R(x, c,, <p2 ) ( -1 + 

1 
_ c,) 0 ( o-,o-,- 4 0 -1 6.1 

~(o-, + o-, + c,(o-, - o-,)- 0)1 - 0 cos 1"2))' (12) 
'\ ,.· 

c, = cos(k,,p,), Xm~ = ~(a, + o-, + J(o-, - o-,)' + 0'). 

In this expression we introduced an auxiliary parameter 00 in order to separate 
the contribution, when the additional photon is emitted collinear to the electron 

4 

momentum; 00 « I. So, the first term of Eq. (12) can be integrated analytically 
in order to keep track of the leading logarithmic part. We checked that the final 
expression does not depend on Oo. 

Then we arrive to the total answer, that has the form 

df 
dfo =I +li.+liv+lis+li,. ( 13) 

The dependence on the soft photon parameter .6. 1 cancels out in the sum Os + 0.., 
whereas the fictitious photon mass). disappears in the sum Os + Ov. 

If the experimental set-up does not distinguish in the detect~r·an electron with 
a collinear photon, we have to modify our results in the following way. Let Oo define 
the aperture of the narrow cone, within which the two particles would be detected as 
a unique one. Then we should take the non-shifted value for R in the first integral 
of Eq. (12). We have to add also the rest contribution of hard photon emission 
within the same cone. It can be obtained using the quasireal electron method [llJ: 

drhard 

do-, do-20d0 

X~ax 

= dfo 2:, j' dx I+ (1- x)
2 

In (MOo) , 
do-1 do-20d0 " , x 2m 

O' 
== O't--. 

4o-, 

Z"m•K 

(14) 

The lower limit comes here from the 0-function in the first integral of Eq. (12). 
In the presence of a magnetic field, when the electron trajectory is curve, t.h<> 

above expression will give a part of the background to the process Jl --t e·•rr, con
sidered in paper [12]. Really, the final electron will have the energy M(1- x)/2, 
whereas the quantities u 1 , 0'2, 0, which characterize the missing energy and momen
tum, are the same as in the case of single photon emission. 

3 Conclusions 

In Table 1 we give numerical values for oh Osv')' = Os+Ov +0')' versus UJ.0'2, 0 and(. 
For typical expected values of u1 "'u2 "'0"' 10-2 one can see, t.hat thC' relativistic 
and QED corrections should be taken into account on the same footing. 

A measurement of the radiative muon decay in the kinematics imitating that or 
neutrinoless decay is required to get an independent normalization. F'or this aim 
our results are very important. 

We would like to mention here result obtained in [13] on the background to th<• 
three lepton neutrinoless decay p.+ --t e+e+e-. For an experimental set. up v·:hcn 
the electron and positron energies c;± are measured, it reads 

df o 2 13 M 2 

I'd'= 2 .
16

(2-w)
2
ln-2 , oL.l. n,> rn 

2 ( + + -) w=Me:l+c:2+c:, w --t 2. ( 15) 
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N W'u1 IO'u, 10'8 10'6, 10'.Ssv, 
. ~-0 ~- 0.5 ~- -0.5 ~=0 (- 0.5 ~- -0.5 

I 
2 
3 
4 
5 
6 

1.0 1.0 1.0 1.2 1.0 1.3 10.5 -10.7 
3.0 3.0 3.0 3.7 -3.0 -4.0 -8.3 8.5 
5.0 5.0 5.0 -6.1 -5.0 -6.7 -7.2 -7.5 
6.0 6.0 3.0 10.0 8.6 10.8 6.6 6.9 
3.0 3.0 5.9 4.4 3.8 4.9 -13.1 -13.2 
4.0 4.0 3.o__ 6.0 -5.0 -6.5 -7.5 7.8 

Table 1: Numerical estimations for 81 and Osv versus qt,u2,B 

' 

10.3 
-8.1 ' 
-7.1 I 

6.5' 
13.0 

-7.4 I 

\Ve have to discuss some features of the results presented. At first we note, that 
the large logarithm L does not factorize before the Born-like structure (R), as one 
may expect. We claim that the factorization theorem, which was proved for high 
energy processes, should not work here. Another problem is that if one integrated 
out over the whole phase volume of the second photon, he would still have in the 
answer the logarithm of the mass ratio. FormaBy, this violates the Kinoshita-Lee
Nauenberg theorem [14J; the formula is infinite in the limit m ~ 0. But again, the 
conditions of the theorem allow us to say, that the process of radiative muon decay 
is a legal exception. One can see the same situation in radiative muon decay at the 
Born level [10, 15). 
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Appendix A. Tables of integrals 

Here we put the tables of relevant integrals appearing in the loop momentum inte
gration. The denominators of amplitudes, which correspond to Feynman diagrams 
drawn in Fig.!, have the following form: 

(!) = (P- k)2 - M 2 , (2) = (p, -k)2 -m2 , 

(I)= (p- k1 - k)'- M 2 "'k2 - 2kp,- M 2 , 

(2) = (p2 + k1 - k)'- m 2
"' k'- 2kp + M', 

(0) = k'- >.'. 
(A.!) 

We use a symbol "' to underline the peculiarity of imitating kinematics. Namely, 
working out traces we use 

p~ = k~ = 0, 2p,k, = M 2 =I, q = 0. (A.2) 
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The scalar integrals considered have a form 

I dk I dk 
(i)(j)' (i)(j)(k)' I dk 

(i)(j)(k)(l)' 
d 

d4k 
k=

i1r2 • 

Vector and tensor integrals are parametrized as follows: 

I k"dk k" d" N=ct+ P2, 

I k"k"dk pv + k"k" + fJ p v + (k )"" ~=gg at t P2P2 I t1,P2 , 

I k"k"k"dk . 
N = (G('l(g, ki) + c''>(g,p,) + K(k1)' + r(p,)' + 

(A.3) 

,P(p2 , k" k,) + p(p2, p,, k1) )""" , (A.4) 

where we denote different symmetrical combinations, for instance: 

(g, a)'ik = g'ia• + gikai + gi•a•, (a,b)'i = a'Oi + aib', ... (A.5) 

Below we put the values of the coefficients and the scalar integrals. In the tables 
2 + 7 we used Y = In ~

2

2 , L =In~' X = ~' Z =In Af~. All the integrals we put 
in dimensionless form by setting M = 1. 

Appendix B. Gauge invariant subset of Feynman 
diagrams 

Amplitudes, describing Feynman diagrams with loop correction to the real photon 
emission vertex, and the ones, taking into account self- energy of fermions (typical 
diagrams are shown in Fig.la,b), provide a gauge invariance in respect to the real 
photon polarization vector. It has a universal form and may be taken into account 
by substitutions in Born amplitude of the form. 

p-k.+M a[ ( -pe) ·] _ 2pk
1 

eu(p) -t 2" A1 e- k1 pk, + A2k1e u(p), 

M ( t ) -t A,= 2(M' +t) 1-M' +tL' , t = -2pk., L, =log M', 

N 1 2t2 +3tM2 +2M4 

A,= t + 2(t + M 2) - 2t(M' + t)' L,' (B.!) 

M' [ (M' + t)] [1 ln(1- zx) N = - 1- Li2(1)- Li 2 -xf2 , Li,(z) =- Jo _ dx,. 

where e is the polarization vector of the real photon. In the IK we have A, = 
1/(4M), A,= (1r2j6 -1/4)/M'. In a similar fashion for the diagrams, which can 
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be obtained from depicted in Fig.la,b by emitting a real photon from another leg, 
we have 

P, + k, + m a [ (· • p,e) • ·] u(p,) 
2112

k, --> 2"u(p,) B1 e-k1 p,k, +B2k1e . (B.2) 

In the IK, omitting the terms disappearing in the limit of zero electron mass, we 
have B1 = 0, B2 = {1/2- 2L)/M'. 

Appendix C. Averaging on neutrino states, traces 
To rearrange bispinors in the matrix element we use Fierz identity: 

u10,u2u30,u4 = -u,O,u,u,O,u,, 0, = '"f,(l +'ls)/2. (C.1) 

Summing on the neutrino spin states of the matrix element squared one obtains 

Eu30,u2(u30,u2)' = 2({q1q2)''- q1q2g'') = L,,. (C.2) 

Averaging over the neutrino momentum is performed using the invariant integra
tion: 

f d
3 d3 

1T q, q, qrqlo'(q, + q,- q) = -6 (q'g., + 2q'q'J. 
qwq2o 

Application of this formula to the tensor L'' gives the result: 

(C.3) 

f d3q,d3q, u'&'(q, + q,- q) = 43" (q'q'- q'g'') = 43" o••. (CA) 
qwq2o 

The doubled interference term of Born and one-loop amplitudes looks as follows 
(we consider IK): 

• 2
8aG}" [ 2EM8 M, = 
3
M -A,T, - A2T2 + B2T3 + 

1 J [ s, s, s3 s, ]] 2 dk (0){2){1) + {0){1){2) + {0){1){2){1) + {0){1){2)(2) ' 

where the traces are: 

T.· = ~ Tr(T'')O'' 1 4 1 , 
S1 = ~Tr(Stt- S;nooc. 

The list of rr, Sf{, S~c is given below: 

T, = fon.h•- 2k,p,fM')(p + Mho(p,+ Mh,fM', 
T, = p + 2'),k!'Y,(P + Mh,(Pd Mh,f M'' 
T3 = "h'"f,kn,P'"fdrr,h•l M' , 
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(C.5) 

(C.6) 

• 

., 

..• 

(02) \22) 
Y +2L + 1 Y+2L 

Table 2: Scalar integrals with 2 denominators 

Table 3: Scalar integrals with 3 and 4 denominators 

{01) (01) (02) {02) {12) 
d I ~y- 1 ~y ·~ ;Y+L-' _iy + ~ Y:_i 
C I ~y- * 0 0 ~y + ~ ~y . ~ 

{12) (21) (22) (11) 
d Y-~ y- ~ Y +2L · ~ Y-~ 
c Y-~ 0 ~y + L- ~ ~Y- ~ 

Table 4: Vector integrals with 2 denominators 

{012) {011) (012) (112) (012) 
d 2L I X L ; 1 ~~ 
c -1 X 2 0 -~ -

{022) {122) {0112) {0122) 
d 2£- -2L X 1 2L 2L- X+ 1 X- 2L' 
c 2L 2 L+' X 1 1 2L 

Table 5: Vector integrals with 3 and 4 dcnominat.ors 
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(012) (011) (012) (112) (012) 
g !y +! lY-~X+~ -Y !y-! -Y + < 
(3 -L -X+" -'L-! -I -;, 

"' 
_! -X+> 0 -~ -~ 

I -~ 2X -~ 0 _! -.; 

(022) (122) (0112) (0122) 
g ±Y + * ;;Y -!X+! _! 

(3 2£'- 3L -X+~ -2£ +I L-X+' -2£' + 2L +X - ! 
"' L I -~L + ~ X+L L+~ 
I 2£-; L+~ 2X 3 -2£+2 

Table 6: 2-rank tensor integrals with 3 and 4 denominators 

Q(l) QI'J T 

(0112) ~X-£ -F+s ~L X+,. I 

(0122) -~ _! -2L'+3L+X I 
I< p 

"' (0112) X-f* 3X 'f 3X+5 
(0122) -~L+f!t -2£+ ~ -L+I 

Table 7: 3-rank tensor integrals with 4 denominators 
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s3, = (fi + l)l,p,,f,l"(fi,- kh.(fi,- k + lh,(fi- k + lh", 
S12 = (p, + l)l,(p+ l)id'I'P'I"(p,- k)l.(p,- k+ lh", 
S" = (p+l)i,h,fin•h"(p-k)l.(p-k+lh"' 
s" = (P+ lhh•fin"(fi,- k)l,(fi- k)l.(fi- k + lh", 
S32 = (p + l)i,(P, + l)i,pn"(p,- k)I.(P,- k + l)l,(p- k + 1)1", 

s., = (fi + l)·lb(fil + lh,fin"(fi,- k)l,(p- k)l.(p- k + lh", 
Sn = (fi, + I)·Yb(fi+ l)i,(p, + l)l,fi,l"(p,- k)l.(p,- k + lh", 
S, = (p+lh,(P,+I)I,pn,P,"(p-k)l.(p-k+lh~--

s, = s"- s", s, = s"- s,, s3 = s3,- s3,, s, = s"- s.,. (C.7) 
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Ap6y30B A.E. H np. 
Pa.uHauHOHHhie nonpaBKH K <jJoHoBoMy npoueccy 
JlJI• pacna.ua J.l ~ ey 

E4-98-89 

PaCCMOTpeH pa,nHauHOHHbiH: pacnart MIOOH3 B KHHeM3THKe, HMHTHp)'IOIUeii 

6e3HeHTpHHHbn1: pacna.u Jl ----+ ey. BLI'·mcneHbi pa.uHauHOHHLie o.rmonernesbie no
npasKH C Y"ieTOM H3Jlyt~eHH.SI .llOOOJIHHTeJibHbiX WIIlCOfO JUlH )KeCTKOfO cfJOTOHOB. 

flpe.UCT3BJieHbl 3HaJ1HTMtteCKHe BblpiDKeHJi.SI H ,ll3Hbl \IHCJieHHbie OUeHKH. 

Pa6orn BbmonHeHa B Jia6opaTopHH reopeTwqecKOii <jJH3HKH HM. H.H.Eoromo-
6osa 011$111. · 

DpenpHHT Qfue.ImHeHHOfO HHCTHT)'T3 S!ltepHbiX HCCJJe.nOBaHHH. ,Qy6Ha, 1998 

Arbuzov A.B. et al. E4-98-89 
Radiative Corrections to the Background of J.l ~ ey Decay 

Radiative muon decay in the kinematics similar to the neutrinoless decay 
J.1 ~ ey is considered. Radiative corrections due to one-loop virtual photons and 
emissiOn of additional soft or hard photons are taken into account. Analytical 
expressiOns and numerical estimations are presented. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, J!NR. 
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