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1 Introduction 

The Fermi function (F-function): 

I 
fF(r) = I+ e!'-')(o 

(1.1) 

is widely used in nuclear physics. It has been extensively used [1]-[4], originally by the 

Stanford group, to represent the charge density PF(r) = p0fp(r) of nuclei for a wide range 

of mass numbers. Then, beginning with [5] it was often used in the so-called high-energy 

approximation in calculating the charge form factors of nuclei. Furthermore, the ''form 

factor" of the conventional \'Voods-Saxon potential [6], which is a fair .first approximation 

to the self-consistent single-particle potential, is an F-function. Amoni other applications 

of the F-function, we mention its use in connection with the strong absorption models 

[7]-[11]. 
Another function which is closely related to fF(r) and which we also study in this 

paper is the symmetrized Fermi function (SF-function) (see,e.g., [12],[13]): 

I I 
fsF(r) = I + e!•-,)/o + I+ e (,+,)/o -!. 

(1.2) 

The function fsF(r) has the property fsF(-r) = fsF(r) and may also be written in the 

following forms: 
1 

}SF(r)= . _-
1 + e(r-c)fQ. 1 + e(r+c)jQ.' (1.3) 

fsF(r) = sinh(c/a) 
cosh(r/a)+cosh(c/a)' (1.4) 

1 c+r c-r 
!sF(r) = 2[tanh(2a)+tanh(2a)]. (1.5) 

It is evident since fsF(r) is an even function that it can be expanded in even powers 

of r and has a zero slope at the origin fSF(O) :::: 0. Furthermore, it has certain analytic 

advantages. For light nuclei with cfa > 1, it resembles a Gaussian function while for 

heavier nuclei it goes over to the Fermi distribution. Thus, it might be said that it is 

quite appropriate to be considered as a ''universal" nuclear density. In practice, however, 

at least for medium and heavy nuclei, it leads to results very similar to those of the usual 

Fermi distribution. VVe may also recall that the so called "cosh" [14] and the SF-potentials 

[15] are appropriate to represent cluster model potentials [14]. \Ve finally note that very 

recently D.Sprung and J.Matorell [16] studied as well the symmetrized Fermi function 

and its transforms and also emphasized in their independent study pertinent analytic 

advantages. 
In a recent publication [17] the ''expansion of the Fermi distribution" was derived in 

terms of derivatives of the 0-function in an alternative way to the traditional one: 

I ~ 

1 + e<r-c)f.,. :::: O(c- r)- L 0(2k+l)(r- c)a2k+2 Azk+t 

k::O 

(!.6) 

with the coefficients An :::: A2k+1 expressed through the Bernoulli numbers. In the above 

expansion both sides should be understood under the integral sign, with a well-behaved 
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function q(r). These int€grals were discussed in [2] and called "the Fermi type illt.c.>grab". 
In those cases when eq.(1.6) has meaning, the corresponding integrals are corrected b.Y the 
exponentially small terms of the order exp(-c/a). They have been omitted In {17) as well 
as in other studies (e.g., [18], [19]), where only the first terms of (1.6) have been derived. 
In the following Sects. the exact formulae and estimations for omitted terms will be givc~n 
and some examples where their contribution can be important will be considered. 

The purpose of the present paper is to extend these results in three directions. Firstly, 
in Sec.2 we extend the approach of [17] to the case of the SF-function, and we pay at.tention 
to the conditions of validity for expansions sirhilar to (1.6). Secondly, in Sec.3, we allow for 
more general integration limits, namely from H.; < c to R1 > c, including in the expansion 
the exponential terms in a convenient form. The same procedure is applied to the SF
function, and the results for both distributions are obtained in a unified way. Thirdly, in 
Sec.4 an alternative treatment is carried out on the basis of Fourier trandorms and the 
properties of the hypergeornetric functions. The results are obtained in a general form for 
the F- and SF-integrals with arbitrary limits, and in particular cases the expressions for 
the correction terms are given in "closed form" (i.e.,in terms of known functions). lu t.he 
final section, specific cases are considered and numerical calculations are performed. 

2 On an expansion of the symmetrized Fermi func
tion 

In this section we derive a general expansion of an integral containing the SF-function. 
Using for fsF(r) the form of {1.3) we write: 

Isp= J.oo fsp(r)q(r)dr=Ip-J<+I, (2.1) 

where the "standard Fermi integral" considered previously in [17] is 

I - J.oo q(r) d 
F- o 1 + e(r c)/a r. (2.2) 

As to the second term in (2.1), we introduce the designation ,;C±l, useful for calculatious, 
with the replacement r ::::: az - c : 

J(±) = roo q(±r) dr = ·100 q(±(az-c)) dz. (2.3) 
Jo 1 + e(r+c)fc. cfc. 1 + e"" 

In the following we shall simplify the method of [17] to make it more transparent and 
suitable for further considerations. To this aim let us transfom (2.2) by changing the 
variable r ::::: az + c to obtain: 

I 
J.

00 q(c+az)d J.''"q(c-az)d 
F::::: a z +a z. 

o l+ez 0 I+ez 

Substituting into the second integral the {1 + exp(-z))-1 by means of the identity 
(I +exp(-z))-1 = 1- {I +expz)-1 and then using the relation 

i''"q(c-az)d J.
00

q(c-az)d 100 q(c-az)d z::::: z- z, 
0 1 + e"" 0 I + e~ cfa 1 + ez 

2 

(2.1) 

(2.5) 

one can write: 

where 

]p::::: fs +fc.s + ,;<-), 
fsp:= ls+fc.s+.J, 

!.
,,. 1.00 

I,= a q(c- az)dz = 
0 

0(c- r)q(r)dr, 

I 
_ J.00 q(c+az)-q(c-az)d 

as-a Z 1 
o 1 + e~ 
J = JH -J<+I, 

and 0(x) is the unit step function: 

0(x) = C for 

for x2:0 

X< 1. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The representation for the f. and SF-integrals (2.6) and (2. 7) is rather instructive. Indeed, 
the first term /, contains the very simple sharp cutoff function in an integrand. The 
second term las includes an ''antisymmetric'' functiong(z) ==q(c+az)-q(c-az). The 
property g(z)::::: -g(-z) enables one to simplify considerably its evaluation .. Finally, 
the integrals ,;<±) and .J are usually exponentially small since merely the integration 
from a large number (z::::: cfa >> 1) to oo, where only the tail of the integrand function 
(1 + ez)- 1 ~ e-~ < 1 contributes to them, is involved. 

Now, when calculating the las· integral· we assume that q(c ± az) can be· expanded in 
the series 

oo <•I( ) 
q(c± az) = q(c) + 2)±1)"a"L.-f-z". (2.11) 

n. 
n=l 

Inserting {2.11) into (2.9) and then changing the order of integration and summation 
(which is assumed to be valid) we ~et: 

00 

las::::: a LDnanq(nl(c), (2.12) 

n=l 

where the decomposition coefficients Dn are related for the odd n~values to the Bernoulli 
numbers {see, e.g., {20], p.53 and {21]): 

I- {-1)" 00 z" ' {0 
Dn ::::: --dz ::::: 2 1l'n+l 

n! f. I+ e' ---{2"- I) [Bn+d 
n!n + 1 

Thus, for example, one can obtain, the first coefficients: 

,-' 
Dt:::::tf' 

Further, accepting the relation 

7 r.4 
D3=49o' 

31 r.• 
Ds = 16 945' 

for even n 

for odd n. 

q<•>(c)"" (-1)" 1.
00 

o<•>(r- c)q(r)dr, (n = 1,2,3 .... ), 

3 

{2.13) 

(2.14) 

(2.15) 
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as valid for some class of functions q(r) (see, e.g., [22]) one can write the fiual result. for 

las: 
00 roo 

I.,= -a L a" D. Jo fil•l(r- c)q(r)dr. 
n=l,odd 0 

(2.1 G) 

Thus, we obtain the integrals IF and !sF expanded in powers of the diffuseness paramct(~T 

a: 

lsF(F) = 100 

fsFIF)(r)q(r)dr = 100 

0(c- r)q(r)dr-

00 roo L D. a" Jo fil•i(r- c)q(r)dr + :J (.11-i). 
n=I,odd 0 

(2.17) 

To this approximation when one can ignore the last terms in (2.17), the expansions 

for the SF- and F-functions coincide with each other, and therefore one can write: 

fsp(r) = sinh(cja) oo 
cosh(r/a) + cosh(c/a) - O(c- r)- L a"+

1 
D,fil•i(r- c). 

n=l,odd 

(2.18) 

The explicit form as a series with terms proportional to the odd derivatives of the 

0-function may be useful for practical calculations. However1 in all the cases one needs 

to keep in mind the conditions of its validity, viz., (i) existence of the expansion (2.11 ), 

(ii) possibility of the transition from (2.11) to (2.12), (iii) determination of the da<is of 

functions, on which the generalized 0-function and its derivatives act. As to the disre

gardness of integrals .J (.J<->) their calculation is a separate task. For sufficiently ~mooth 

functions q(r) they are thought to be of the order e-(c./a). Indeed, when evaluating the 

integrals .J(±) it is often convenient to use the following presentation: 

¢(r) _ __ __ .P(r) 1oo c•l>) loo 4>" loo 
o e dr-</>'(r)o+[</>']'e o+ ... , (2.1 9) 

which can be obtained through integration by parts. Here we have the integrals 

:Ji±) oe e-£ 100 

q(±r) e-<dr (2.20) 

with >/>(r) =In q(±r)- ~· It follows from (2.19) that 

,(±) _ q(O) { 1 , ¢"(0) } 
...., _a ~ +a [ , 2 + ... , 

1 -a q(O) 1- ai12lj 
q(O) 

(2.21) 

if the function q(±r)exp(-rfa) tends to zero as r---+ +oo- In particular, one can sec 

that for a frequently oscillating q(r) with a[q'(O)/q(O)[ »I the additional small factor 

=Fq(O)fq'(O) appears in the estimation (2.21). Moreover, for even functions q(r), the 

"correction" term .J becomes zero. In general, this is not the case for each .J(±) ta.k<~n 

separately. In order to make the essential points more transparent let us consider a-; an 

example the form factors: 

roo d 
FsF(F)(P) = Jo fsF(F)(r) sin(pr) rdr =- dp lsF(F)(p), (2.22) 

4 

where 
ls,..1n(J>) = f.<~ u··1(r) cos(pr) dr. (2.n) [, ' 

. u 

First. it is <'asily s<'<'ll from (2.8) that /., = sinpcfp. Tlwn. in ndculating /,_. hy nwalls 

of(:2.1:2)\\"t'llS<' d"cosprjdr"=(-J)I"+t)/1 p" siupr for n=udd andth<'rclationfrom 

\20] (p.liG): 
I ( • ) I (-)• II(=)=: c=-:- 1 =:: L /J, = 1=1 < "· (2.21) 
- Sill~ " n:=\,odd " 

Thus. we obt.<1in: 

'"·' = aisinpr. L n ... (ir.pa)" = 'r.fl _sinpc _ smpc 
,=J.,,f,f r. snth npa p 

pa < l. 

lkaring iu mind that for til<' <'\"('II cospr-functiou J = 0. Oil<' gcts:' 

d ;;asinpc 
l-:<i··(p) = -·- . . 

dp smh;;pn 

(:!.:?:'1) 

t:?.:?(i) 

Then, applying <'q.(:2.'21) to cakulal<' I II<' intq;ral of ittte·n•st with q(r) = e·:xplifH') ont· t'an 

~how t hal. 
. d [ sin pc a 1.1 ] 

h:(p) = -- J.a-.--- + --.-. c-' '' 1 . (:?.:!7) 
dp smh I.JW I + a:lJl~ 

One should sl.n•ss an it11portaut poittl. uantely that the results (:!.:!(i) anti (:!.:21) lt<l\'t' 

hcen obt.oitl<'d for the SF- and F-int.<>p;rals with the <)scillating fuut·tiotl cosw tlttdt·r tht• 

condit.iou pn < I which eusun•s tlw conwrgcttn• of the series in (:!.:!;l). 11 means that 

the Jl]('\hod used may be applied if t.hc ~\\'(1\T lenp,tlt .. p- 1 is greo\n than \\11· \hid:.\\t'S:<. 

a of a "surfan~ layer" of the SF- and F-fmtctious .. \lotn)\·er. the quantity/,,., i.-: a slllotll 

rorn·c:t.iou t.o the "sharp- cdgC'" nmtrihntion 1 .• under t!H' stronp;n condition pa «I. In 

fact., we have 
r.2 2 2sill]IC ,.z 2 21 

I ::--)>a --=--}>a 
Q.t G 7' G .• 

t:?.:?S) 

ret.aining only t.hc t.r:rm wit.h 11 = I i11 til(' S<'l'iC's (2.:15). In ot\u•r words. <I~ tHU' should 

expect, the diffuseness df<'rts w\lirh a1T at·rmnu\nt<-d it~ 1 h<' krms with t h<" d<•ri,·at in's uf 

t.lw decomposition (2.1~) ar<' not. <"onsidcrohl<' if th<• "wm-c l<'llp;th" p-
1 

is nnwh ~n·;Jit'r 

than n. On t.he ot.hcr hand, if om• <'\'olnai<'S the int.cgrctl (:.Ul) h,\' u~inp; the n•:;tdt fnnn 

\21] (p. 505) we obtain 

/,,,, = a d:; = J.a . - --1
00 ('os[p(c:+a=)J-cos[l'(c-a=)J ~in}ll' Slll/JC 

0 ] +(:~ Slllhi.pll Jl 
t :?.:?!1) 

for any value~ of the dTertivc paranl<''-<'r 1m- The 1·.h.s. of (:1.~9) 1Hil,\' ht• t'X]liU!ded in tl~t• 

s<~ri<~\', appearing in (:2.2;)) <mly unekr the• condition Jlrl < I. This an;dysis shows I hat !lw 

mdhod ba:>ccl on the expausion (2.1 ~) hC'colli<'S impract.ical wht'll \\'<'deal with fn•qnt·nt 1.'· 

oscillating functions. HaJlwr it. is applicahl<• for C'\'<t\uations of th~· h•nni-typt' intt'_!!_rab 

with slowly V<lt·ying fttnrt.ions (for itlSI.itllC<'. of t!w po]_,.llt)lllialty]H'). 

Also, it is :->t'<'ll front (:l.:ti) !.hat. t.lw "corn·rtion" it'nns of the ort!t·r c;-.:p( --·c/a) lll<l,\' 

])(~ comparable~ and in ~onw <·a~<·s l<~rgt·r !hall tlu• oscillating ~-out ri 1utl ion ltl tlw !'urtll 

fa<·tor. In tlwsc t·ascs of l'apid\y \'aryinp, functions lJ{r) one IH't'ds to dt·\·t·ltlp 111c1hud:-; 

which cakulak these• rontrihut.ions in a ~atisf<tclory way. In Scc.·l il lllt'lhod will l,c 

dt·snilwd in whidt tlw n•snlt.s an• <'XP!'t'Sst'd I hrough tlw hypt·rp,t·onwt ric !'nne\ itut:- <llld 

the t'OlTt'~ponding series an•. in fad, tlw dt•contposit ions in tIll' :'Ilia!! p<~ rillll<'kr t'C\ p( 1·.-' o \. 
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3 A general method for the calculation of the Fermi 

type integrals 

3.1 Expansion of the "generalized" Fermi type integral using 
a Taylor series 

Here we extend our consideration by introducing the integration limit~ H; < c and 

R1 > c, so that the "standard Fermi integral" is a special case of the integral we calculate 

(namely, for R;-+ 0 aud R1-+ x). Such a generalization is 110l only of matlwmatica] 

interest but it is abo rcJc,:ant {pertaining to the upper limit) to a prohkm of phy::.h:a\ 

interest (sec Sec.5). Hcnc('forth in this Sectiou we proceed in the same way as iu cert<~in 

treatments made for more specialized cases [23]. :'\amcly, let us split the second iutcgral iu 

a form suitable for the the use of the well known formula for the geometrical progression. 

Rcspectivclj\ one can write 

1R1 q(r) j' q(r) 1"' q(r)c-1•-o)/• 
I · K R = dr = dr + dr = 

F ( '• I) 1 + e{r-c)/a. 1 + e.(r-c)/a 1 + e-(r-c)/a 
A A ' 

f:(-!)m [1' q(r)em(>-o)/•dr + 1"' q(r)e-Cm+l)(•-o)fndr]. (3.1) 
m:=O Jl, c 

Further. separating out the first term of the first sum in eq.(3.1) and sl)\f\.\ng the 

durnrny index in the second surn {by setting m + 1 = m' ---t rn) we find 

IF(R;, RJ) = [ q(r)dr+ f:(-l)rn [[ q(r)eml•-o)/•dr -1111 
q(r)e-m(>-o)/•dr]. (3.2) 

R, m=l n, c 

\Vc now assume that the function q(r) can be expanded in a Taylor series around r = c 

"" q(r) = I>l•l(c) (r- c)" 
n=O n! · 

Substituting (3.3) into (3.2) and making the replacement az == r- c we get: 

or 

lr·(R.;,R1) = {' q(r)dr+ 
ln. 

~ (n) 00 [ (o-11.)/n 

~ q nic)a•+l ~(-l)rn (-!)" ! z"e-m'dz-
(Rro)f• l I zne-mzdz ' 

0 

{' 
00 l•l(c) 

1,.·(/i;, R1) = }, q(r)dr + LTa"+'{ n 1D.+ 
R, n=O 

(3.3) 

(3.4) 

~ (-!;~ [(-I)"+'l'(n + l,m c- !!.;) + !'(n + l,m RJ- c)]}. (:l.5) 
L...., rn"· a a 
m=l 

whc~re J'(a,y) is the incornplctc r-function defined by ([24], p.l38): 

l'(o,y) = !,~ e-'t"- 1dt. 

6 

(3.6) 

\\!ht"n deriving eq.(3.5) we have used the relation: 

~ !.~ f."" t" 1(-1)" -!) 2:)-I)m e-m't"dt = 11- (-1)") --,dt = n!D., 
m=l o o 1 + e 

(3.7) 

where Dn is determined by (2.13). Then 1 using the decomposition 

n t 

r(l + n,x) = n!e-% L 7f. 
1=0 

(3.8) 

eq.(3.5) can be written as 

IF(R.;, R1) = 1' q(r)dr + f: q1•1(c)a"+1 {D.+ 
R, n=O 

1 +l C-Hi .&.==. j-C ~ n [ ( o.)' (R )' ] ~jj (-!)" -a- F(-e • ,n+l-1)- -a- F(-e • ,n+l-1) }. (3.9) 

Here according to (120), p.45) the function F(z, s) is determined by 

F(z,l) = f: z~ = z<l!(z,l, 1), 
m=l m 

where ~(z, l, 1) has the following integral representation: 

1 t'" tl-le-t 

4>(z,l,l) = f(l) Jo 1- ze_,dt, 

which is valid if either lzl :S I, z # I and ReI> 0 or z =I and ReI> I 
(3) in 120], p.43). Here f(l) is the ordinary f·function. Note a compact form: 

(3.10) 

(3.11) 

(see eq. 

IF(R.;, RJ) = l~ q(r)dr+ t, ql•l(c)a"H {D.+( -1)" Dn (c-aR.;) +Dn ( R1a-c)}, 

(3.12) 

where 
2 r~ __ t" dt 

D.((J) = ;;j }p e' +I ((3?: 0). (3.13) 

Eq.(3.9) follows from (3.12) if one uses the geometric progression expansion in powers e-t 
for the denominator le' +I)~ e-'11 + e-•J-' in the integrand of (3.13). 
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3.2 Integrals with the SF-function 

It is convenient to use form (1.3) of the SF function. Thus we have only to calculate the 

integral which corresponds to the second term in (1.3). In this case no separation of t.hc 

interval of integration is needed and we obtain after some algebra 

{RI ( ) oo •+I 
:JC+l(R;,R1) = Jn 1 +~(:+,)/•dr = I>'"l(c)an! . 

' n=O 

{ t. ~ [ ( R1a+c)' F ( -e-CRt+o)f•, n + I - s) - (~+c)' F (-e-(R,+o)/•, n + I - s)]} , 
(3.1·1) 

The above result can be combined with the corresponding one of the previous scctiou and 

therefore we obtain immediately the expansion of the integral with the SF distribution. 

However, it is more expedient to write the results obtained· in a unified way, that i!i to 

write in a simple formula the expansion of both the F and SF-function, by introducing<, 

which is equal to 1 in the case of the SF function and 0 in the case of the usual F one. 

Thus, we write: 

{Rt 
l(R;,R,,c) = }R; q(r)f(r)dr = h(R;,R1)- c,JC+l(R;,R1), (:l.15) 

where 
I I 

f(r) 1 + e(r-c)Ja- {1 + e(r+c)Ja' 
(3.16) 

and the final expression for the integral is writ.ten in both cases: 

[' 00"1 { 
I(R;,RJ,<) = ln; q(r)dr + ~~ n!/!a•+•qC•l(c) n!D,.o1.o+ 

R,- c ~ c- R; ~-R ( )I ( )I -a- F ( -e- • ,n+l-1)- (-1)" -a- F (-e-"-T,n+l-1) + 

R1 + c !t.!! Rt + c ~ 
[( ) I ( )' l} ' --a- F(-c- " ,n+l-1)- -a- F(-e-" ,n+l-t) . (3.17) 

In the special case in which f4 - 0 and R1 - oo the aboYe formula is simplified, as 

follows: 

l(O,oo,c) = 100 

q(r)f(r)dr = [ q(r)dr + t.qC•>(c)a"+ 1 [Dn + B.(cfa)], (3.18) 

where Dn are given by (2.13) and B.,(cja, c) is defined as follows: 

. n 1 C I 

B.(c(a,c) = L (c(-1)1
- (-I)"] T! (;;) F(-e-'1",n + 1-1). 

1=0 

p.19) 

The prec('ding results have been obtained by expanding q(r) around the point 1· o= c. 

8 

In certain <·a~<'S. altcrn<~t.in• c·X]><Wsions 1nay lw more approprial<'. For PXampl<•. if\\'{' 

c·xpand q(1·) around tlw point r == 0 

q(r) = t 1/"1(0);. c:l.10) , .. 
n=O 

W<' ohtaiu t.hc following final result: 

1u, q(r)dr · 111
' q(r)dr ~·· 

I (II;, n,,<) = I+ ,cc-c)fo- I I+ ,(•+··)/o = q(r)<h·+ 
H, · H, · . H, 

L q(")(O)a"+' L -- /J, (-) + ~ { " I [ c ,_1 

•1=u I=O (n -f)~ a 

(n;)',_,. r ( '-'-"' ) 1 ( ~ )] '7 t"' -c- " .1+ I -(-1) /-' -c- " .1+ I -

f :2.!!.L ~ (/1 )"-1 1} 
-;: [<~'(-c-·.1+1)-t(-<-".1+1)]. c:l.c 1 1 

This is again silllplificd in tlw casC', when H~ --+ 0 and li1 --+ x. \\i.· obt<1in. hy 

chclllging \.lit' frc<' iudc•x frolll 11 t.o m: 

/(0, oo, <) = 1~ q(•·)J(r)di· = 1' q(r)dc + t, </"'l(O)a"'+'. 

{ 

m 1 (')"'-1 } 2::-(--JJ1 ~ +[<-(-1)"']1-'(-c-·1•,111+1). 
l=o m -/)! 0 

(:Ul) 

In t.he 5pecial case in which q(r) = r", all tlw tcnn5 ill tlw 5um on•r 111 an• Zt'n>. bt·c<liiSt' 

of the derivatives of q(1·), cxn·pt. the one with 111 = n. siun• in this raM' cf'"l(O) = u!. 

Thcwf<lrc, \\-'e fiH<l: 

/,(O,oo)= •·"f(r)th·=-- 1+(11+1)1 
'- • 1~ c"+l { ( ')"+' 

0 11 + l (" 

[ " I (')"-1 1} 2::--U, ~ +[<-(-1)"]1'(-<-''~".<11+1) . 
I=O (n- /)! a 

(:U:J) 

The followiHg remarks <~all be mcHk r<'garding I his exprt'ssiott: 
Fir$t.ly, in t.hc ca..'><' of t.hc Fermi distrihution (t = 0) it n·dnn·s to thl' t"l'Slllt \\"hit"h 

follows from the genera.\ exprcs5ion of t.he "Fermi integral"' 1·:,(1.-).A· = (cja) qttokd hy 

Elton (sc·<~ 1\pJ)(~IIdix of rd.j'l)) sinn' _t;;· 1·"JF(1}fr = <t"+ 1 I-', (A·). \\'t' Htlll' thc11 ~t'llt'r 
alizat.ions to llOll·inkgral valtu•:-> of n de in monwnf ndrulatiuns hcn·t• \wen discu~:<t•d in 

lit.craturc ([2:')}, [2(ij, ['17]). Secondly, in th<' ra~t· of the Symmdrizcd Ft•nni distrihttli••ll 

( c = 1 ), I IH~n· arc 110 t'XJHHH'Jll ial l.c'rms when 11 is <'\"Ctl. 'J'Ints. tlu· ttsl' of I l~t· s.\"JJllltt'! ri/t'tl 

Fcnnl rlis1ri\m\ion hn..'> t\w ad\'(l.Hta)!;t' that. 1dl it.s t'\"<'11 tllOlllt'llls <ll"l' frt't' nf c:xpottt'tJlial 

t.crms, which simplifies their trcalnwnt.. It is Sl't'll thcll thi~ n•sult is in <l_!!.l"l't'tl!t'lll \\'ith 

that. found in Sc•c. 2, sitl<"t• when 11 is c·n•n q(1·) = r" i~ s.nnmd ric whill' w!wn 11 i:- odd 

q(r) is antisynHnc~tric 
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4 Treatment on the basis of Fourier transforms and 
the properties of the hypergeometric functions 

4.1 The hypergeometric series for the typical Fermi integrals 
The pre,·ious results ha,·c been based on the a'isurnption that the function q(1·) may be 
expc:Ilded in a power scric.s at a vicinity of the radius r =c. In this section we sh<tll rdax 
this assumption and consider the exponential Fouri<·r transform :J: 

q(r) = F{q(p);r} = (lj'h) 1: ij(p)c"'dp. ( 1.]) 

In calculating the Fermi type integrals with such function:-; q(r), for which the fourier 
transform exists one can use the following representation for the Gauss hypergeorndric function F(a,b;c;z) ([21), p.319): 

/,~(I - c-'j'- 1 (I - !Je-•)-'e-"'dx = B(p, v)~(p, p; v + p; (]), (1.2) 

where 

Rep> 0, Rev >0, (arg(1- !J)I < ~, 
and B(x,y) is the beta function: 

B( )- r(x)r(y) 
x,y- f(x+y)' 

Let us set q(r) = eipr and calculate the integral fo'X> q(r)JF(r)dr. Obviously, this is the 
case when in the more general expression (4.2) one sets p. ==:.I- ipa,v;:;:: l,p;:;:: I and 
,J = -c'''· Therefore, one can obtain [28), [29): 

1
= e;,, 

AF(P) = 
0 

I + efr ella dr = aB(1 - ipa, 1)ee/a F(I, I - ipa; 2- ipa; -ecfa). ( 4.3) 

Furthermore, because for the applications in question cxp(cja) > I (or even ecfa ~ I) it 
is pertinent to transform (4.3) into 

Ap(p);:;:: .. 1ra eipe + ip- 1.F(1, ipa; I+ ipa; -e-(efa)) 
t smh 1rpa ( 4.4) 

1\ihcn deriving cq.( 4.1) we have used one of the Kummer relations ([20), p.116, cq.{2)) for 
the hy pergromctric Sf~ries 

F(1,b;b+ 1;-z) = B,z- 1F(I,l-b;2-b;-z- 1)+ B,z-•, {(argzl < ~), ( 4.5) 

where 
13 = f(b+ 1)!'(b- l) 

I J'2(b) ' B, = f(b+ 1)!'{1- b), 

aud the formula 
l'(b)l'(1 -b)= ~b. 

sm r. (4.6) 
~=-~~~~~~ :1\\'hal follows is I"!Bsily P.Xtcndl"!d to the sine- and cosine Fourier transforms and the J,aplace one. 
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Thus, the Fourier transform of the Fermi distribution has been expressed in terms of 
functions of well-known properties. One should emphasize that the exact result (4.4) reflects explicitly the interplay between the physical parameters involved, viz., the radius c. the diffuseness parameter a and the "incident frequency" p. In many applications the latter plays the role of momentum transfer. 

Pormula (4.4) enables one to separate all at once the oscillating part of the form factor 
AF(p) (the first term in the r.h.s. of (4.4)) from a comparatively smooth p-dependence which is determined by its second term. Note that the separation has been achieved without those constraints inherent to the previous approaches (see Sect.2 and 3). \\le see that the corresponding oscillations at pc > 1 (the "edge" effect) have an exponential falloff generated by the factor [sinhr.pat 1 "'exp(-r.pa) at pp 2: 1 (the ,,surface diffuseness,, effect). · 

Further, by using the definition 

F( a, b; c; z) = 1 + ab .:_ + a( a + 1 )b(b + I J z' 
c!! c(c+l) 2!+ ... (4. 7) 

of the Gauss series, the smooth contribution to AF(P) can be splittcd into the pole term 
p- 1 and an expansion in descending powers of an "effective" parameter exp( -;) < 1. The 
former is cancelled at p = 0 with the same term which stems from -i1ra[sinh 1rpat1 exp(ipc), while the latter may not be disregarded even for the values of c/a ~ 1. In fact, at high 
frequences with 1rap"""' ; all these exponentially small contributions get comparable to one another and the formula gives a systematic way to calculate each of them. 

Now, we apply this result to evaluate the integral considered in Sec.3: 

1Rt q(r) 
IF(R;,RJ) = I ( )/ dr = !F(R;,oo)- lF(Rf>oo) R; +er-e a (4.8) 

with finite lower R; and upper R1 limits which satisfy the condition R;, < c < R1. Here 

1= q(r) 1 1= IF( R, oo) = 
1 

( )/ dr = -
2 

dpij(p )AF(P, R) R + e r-e a 1r -oo 

with the function q(r) being replaced by its exponential Fourier transform. 
problem reduces to the following: 

A R - dr - e'PR dr 1= e'"' . ;,= e'P' 
F(p, ) - R 1 + e(r-c)/a -

0 
J + e(r-c+R)fa . 

By using {4.3) one gets 

AF(p, R) = aB(1- ipa, l)e;pRe('-R)!• F{l, I- ipa; 2- ipa; -e<'-R)f•). 

Two cases should be considered, namely: R < c and R > c. 
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Casei)R<c: 

In this case it is convenient to convert the hypergeometric function of ( 1.11) into 11H' 

corresponding hypergeometric series ( cf., the transition from ( 4.3) to ( 4.4) ). Thus we ha.\"c 

Ac(p,R) = eipR { • "~ eip(o-RI + ~F(!,ipa; I+ ipa; -e-(o-R1f')} = 
sm(r.1pa) p 

(-1.12) eipR { • r.~ eip(c-R) _..;.._+ __ a __ -e-(c-R)fa + 0 (e-2(c-R)fa)}, 
sm(r.zpa) tp 1 + zpa 

or omitting the terms of higher order in e-(c-R)/o. we obtain 

AF(p, R) = r.aH(r.ipa)eipc + f c,ipr dr + eipR __ a __ -e-(c-R)/a' 
Jn l+tpa 

(-1.13) 

where the function 1-J(z) == sin-1 z- z-1 is the function considered in Sec.2. Suhst.itul ing 

{4.13) into (4.8) and preserving the exponential Fourier transform in r-space we arrive at 

the expression 

lF(R,oo)=r.aF{ij(p)H(r.ipa);c)+ f'q(r)dr+aF{ ij(p) ;R) e-(o-R1fo. JR 1+tpa 
(1.1-1) 

Case ii) R > c: 

In this case eq.(4.11) includes the hypergeometric series directly from the beginning 

and therefore 

AF(p, R) = -
1 

a. eipRe-(R-c)ja F(1, 1 - ipa; 2- ipa; -e-(R-c)fa). 
- tpa 

If the parameters involved meet the inequality c(R-c)Ja « 1 we find 

( 4. I 5) 

AF(p, R) = _a __ -e'''e-(R-o)/o (4.16) 
1- zpa 

and finally making the same substitutions as in the case i) we get for ]p(R, oo): 

[p(R,oo) =aF{ q(p) ;R) e-lll-o1/o. (4.17) 
1-zpa 

Combining eq.(1.14) and cq.(1.17) we get 

Ir(R;,R,) = r.aF{q(p);c) + {' q(r)dr+ 
}H; 

aF { q(p) ; R;} e -(<-R,){o _ aF { ii(p) ; H } c-(11 1-c1fo. 
1 + rpa 1 - zpa 

1 (4.1 S) 

As an illustration of 1 his method we c\'aluatc the generalized n-th momc~nt. for tl11~ F-

distribution: 

l
ilt 1RJ n 

< rn > == 1' dr. 
R l + e(t-c)ja n, , 

('1.19) 
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To this point not<' t-hii\. 

I"' < r" > = (-i)"[,l\:' 1(0./1;)- A~1 (0.11,)]. 
II, 

(4.20) 

where A~; 1 (0, H) denof<'.s the n-ordcr derivative of the intC'gral (-1.10) at 
Finally the following result. is obtained: 

t lw poiut p = 0. 

l

u, cn+l _ /?'!+1 
< r" > = ' 

U, 71 +} 

" I { +a L ~an-I cl /).,_/ + {-I/ n:(_-(t-R,)j"- l?~r -(HrcJI-·}· 

1=0 
(4.21 1 

with (n -I) odd. 
\Vt• po'mt out that the fornml<w hold if mw neglects thC' <'Xpmwntla\\y snlaH rontrihn

tions t.o t.hC' series (-1.12) and (·I.Li). If only one of tlw limits ll,_f is c]os(' to c tiH'n OlH' 

JWcds t.o employ tlu• general c~xpr<'~sions for I hcse scri1•s. 

In t.h<' case wheu Hi- 0 and U1 - oo <'q.(-1.:21) yiclrls tlw ordinnry 11-th 111011}{'111: 

" / "+1 
" 1 L C 11-l/) (' 1 n+l -,-j, < r >F= an. -11 a ,_1 + -- + n.a c . 

. n + I 
/:::U 

(4.22) 

It foll<JWS from (1.22) that: 

< r2 >F= <":Jj:~ + '2a2c/)J + 'J.a\·-··1·•. (4.23) 

< r·" > 1-·= c~ /5 + 1a2
c:l [n1 + 2 ( ~r 0:~] + '2-la-\·-··f". (4.24) 

4.2 A "closed form" expression for the generalized symmetrized 
Fermi integral 

According t.o l.h<' dcromposil.ion (I .a) tlw iHI.C'grnl of illlcn·st 

1
111 

Is,..( II;, 1!1) = q(1·).fs,..(r)d1· 

"· 
(+.25) 

can be written as 
fs,..(/1;,1!1) =!,.·(II;, 1!1)- Jl+1(/i;, 111). (4.26) 

where 

1
111 

q(r) dr. 
Jl+1(/l;, /11) = -~-+--',-7{-,>+-,;c\7/" 

'· 
(4.27) 

Similarly a.'-' in subsc•ct.ion 1.1 the evaluation of l.lw ,!?,1'1H'r;.di7-<'d form fac1or:-; (-1 :2.~1) l"<lll ht' 

reduced to the int.c·grals !11-·{p, U) and 

Al+1(p.li)= r· ,.,.. ,, .. 
Jn I + ci'+··)J•• 

Using eq.(1.2) \\'('find: 

aerll 
A(+l(Jl. U) = ---. -t·-{c+li)J" F( I, I - i1m: ~- ipa: -t -(.-+I?J/·•) 

I -11m 
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or if the higher order tPnns (i.(f., 0(f-':!{~+R)/c:)) are omit.t.ed then we have 

Ai+l(p, R) = --"-.-c-ic+R)/o_ (-1.:lO) 
. 1-lpa 

Combining cq.(4.12) with cq.(4.29) one gets: 

A5 p(p; R) = A,-(p, R)- Al+l(p, R) = 

eipR{ . . r.a cipc +~+ __ a __ -e-(c-R)/a F(l, 1 + ipa; 2 + ipa; -c-(c-R)fo.) 
1 smh r.pa p I + tpa 

- --
0

-, -e-{c+H)f<~.F(l, l- ipa;2- ipa; -e.-(c+H}fn)}. (1\.al) 
1 -tpa 

In deriving this formula we have used the relation: 

b .• 
F(l,b; b+ I; z) =I+ b+ I zF(I,b+ I; b+ 2; z). (4.32) 

Putting in (4.31) R = 0 we find for the ''standard" form factor the following expression: 

sinpc 
lsp(p) = ReAsp(p; 0) = r.a~.=:_:__ 

smh r.pa 
(4.33) 

The approach described in this section is an alternative way to evaluate the integrals in 
question.The following comments can be made: (a) It is relied on the weil known results 
of the theory of special functions and can be presented in a mathematically compact form. 
(b) Vv'e have managed to bypass the too strong assumption (2.12). (c) The corrections 
of any order in exp( -cfa) may be evaluated in a systematic manner. 

5 Applications and discussion 

In this section we consider certain specific cases and we also give the results of numerical 
calculations related to nuclear physics problems. 

First, let us estimate tbe effect of the exponentially small contributions to the relation 
between the parameters c and a, which follows from the normalization of the nucleon 
density p(r) = Pof(r), where f(r) is given by (3.16) for nucleus of A nucleons [2], [31]: 

4r.po !.~ f(r)r2dr =A. 

Using formula (3.23) we obtain 

c3 + ( r.a )2 c + 6( c - 1 )a3 F ( -e-'1', 3) = r~A 

or rt(~gkc:l ing the corrections of the cxp( -2c/ a )-order and higher 

c3 + (r.a) 2 + 6(1 - ()a3e-~fa = rgA, 

(5. I) 

(5.2) 

(5.3) 

when: rJ = :J(('17rp0 ). Eq.(.5.~3) with ! = 0 follows also from (1.23). It is clear again that 
for 1 h(: SF function th<:rc are no exponential terms. In such a case, or if they are negligible 
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in the case ofF function the above third order equation, which is of the same form as in 
the case of the trapezoidal distribution [32J can be solved for c, which is then expressed 
in terms of a and ro (that is Po): 

(I) 1/3 
c = 2 r0A1/3 [(I+ b)'/3 +(I- b)'/'], (5.4) 

where 

b- I .±_ ~ [ ']'~ - + 27 C,Al/3) 
In the <:a.se of the Fermi distribution (t = 0) an improved expression for c may be obtained, 
if the exponential terms (which are assumed to be small) are not Completely neglected 
but are estimated using an approximate expession for c: c =Cap, such as c = r0 A 113 or 
expression (5.4). Then the improved expression for cis given again by (5.4), but instead 
of ro the quantity 

r~ = ro [1- (6/A)(< -l)a3 F (-e-'"'/',3)] 113 
(5.5) 

appears. It is easily shown that the normalized Fermi distribution corrected by the small 
terms of the exp( ~cf a )-order looks like 

where 

pg 
pp(r) = r -'c' 

1 +exp~ 

F 3,1 [ r.2a2]-1 
Po=-- l+-

4r.c3 cz ' 

'- F[ Po-Po 1+8], 

a' g = -6- e-cfa c' ' 

(5.6) 

(5. 7) 

We also note that the central density p(O) of the nucleus may be expressed in terms of 
the half-density radius c and of the diffuseness parameter a1 as follows~ by using (3.16): 

3 [ I < l p(O) = 4r.ro3 .1 + e-c/a - 1 + ecfa , (5.8) 

where 
c' rg = A [1 + (r.afc) 2 + 6(<- I )(a/c)3 F ( -e-'1',3)]. (5.9) 

Finally, the m.s. radius of the nuclear density 

2 J r 2p(r)di J;' r'f(r)dr 
<r >p= jp(r)di = J:0r2 f(r)dr (5.10) 

is expressed jn terms of c and a as follows: 

2 c' 3 + IO(r.a/c)2 + 7(r.a/c)4 + 3 · 5!(<- !)(a/c)5 F ( -e-'1', 5) <r >F= 
5 I + (r.afc) 2 + 3!(<- l)(ajc)3F ( -e-'1', 3) (5.11) 

It is observed that in the limit a ----+ 0 the above expression reduces to the well·known 
expression of the m.s. radius of the uniform distribution < r 2 >,.= (3/5)c2 • Furthermore, 
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in case of the symmetrized fermi distrilJution (c = 1) we obt.nin t.he 
expression (see, e.g., [3_3]): 

2 3,[ 7("")'] < r >sF= 5c 1 + '3 7 . 

following C'XiH'I 

(5.12) 

For the Fermi distribution such an expression holds approximately, as long as the expo
nential terms are small, which is the case even for light nuclei. A carcfull calc.ulat iou 
for 40Ca, 12C (with the parameters c and a from [2]) and for 6 Li, 4 /h (with pa
rameters c and a from [34]} has shown that the corresponding corrections t.o the r.m.s. 
radii of t.he nuclear densities are: 4°Ca : 3.310-5

; 
12C : 8.1 10- 5

; 
4 Li : 6.910-:J and 

4 He: 1.210-3 , i.e., do not exceed 0.05 %. 
Finally we consider, for the above nuclei the influence of the exponential term:-; in th<' 

values of rg. These values are given in Table 1. 

Table 1 

Nucleus rJ ri 
With cxp. terms \Vithout cxp. terms 

4UCa 1.496 1.496 
"C 1.379 1.379 
6U 1.312 1.285 
loJJe. 0.919 0.915 

It is seen that the effect of t.he exponential terms in the \'alue of r 0 depends on t.hc 
nucleus, but is still very small, although somewhat larger in comparison with that iu t.hc 
r.m.s. radii. 

Vl/e consider now the generalized Fermi-type integral J0R
1 f(r)r 2dr. The physical in-

terest in integrals of this or ot.hcr similar forms, such as J0R
1 J(r)r4dr, originates from the 

equation which determines the value Ro: RM J35] of an harmonic oscillator (1-IO) rot.cnt.ial 

,., 
VHo(r) = -D + D RM'' (.\.13) 

which approximates a given \~'oods-Saxon (or symmetrized Wood-Saxon) nucleon-nucleus 
or .'\-nucleus potential; Vws(r) = -Df(r) (t-hat is with f(r) gi\'cn by (3.16) in a sort. 
of "best approximation in the mean" (in the nuclear interior and t.o some cxt.eut in t.he 
region of nuclear surface)): 

More precisely, 
integral [35]: 

provided that 

[ 
2 1 l tM 15 + 4 f'(RM) It'M = Jo f(r)r

2
dr. (5.14) 

the value Ro = RM, determined by the above equation minirni;-:cs the 

!'" Jo(iio) = Jo [Vws(r)- V,10 (r)[
2
dr, (5.15) 

f(RM) < [~ + ~f'(RM)l + RMdJ'(Iio)l . 
4 df?o Ho=H.~1 

(!i. lfi) 
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Tl1r nho\'<' pron•dur<' m<~y h<' used in d<•t<·rmiHiug tlw ,·ariation with tlw mnss 11111111wr 
of the cor<~ nucleus Ar:::::; .'1 of the harmonic oscillator <'ncrgy kn·l spaci11g for a nucl<'on: 
h(A)s or for n :\-part ide: hi.J..,',\• sinn· 1\w spring nmstant is gin·n by k = p .... ·2 = (2./)j/{~) 
a11d th<'rdon• 

[II' ]'''I 11..:= -2/) -. 
p H.u 

(o.l 'I 

w!Jere pis the l'<'dllC<'d Jnass of tilt' niJCic·oJJ (or .\-partick)-con• s~·stc•m. Sllt'h a tn•atJJWJit 
has also bt~en cousidt•rNI n•c<~lltly for atomic clusiC'rS FJGJ. [:37J. 

Iu order to find thc valuC> of H.\t which is JI('C'dcrl. one hils to sol\'1• pej.(.i.l·l) and 
then•forc to calculat.e th<~ integral J:~, f(r)r2dl' for ,-arious \'alut•s of){J ond choost• that 
one for which cq. (5.1-1) is satisfied. This can he don<' C'it hC'I' by IIH'OIIS (lf o suhrout int' for 
the comput.ation of integrals or by lllC'alls of tlw rciC'\'Oill formula of st•cl ion :t Tilt' lot lt·r 
proc:cdurr is in a way pn.fNahle• since it con IC'nd to au approxi!llnlt• auiilyt ic solution 
of eq.(5.11) and tbcrdow t.o a formula for tbt• \'ori<~tiou of h.,..· \\'ith th<• mass umnht•r. 
in t<mns of llw port ide· mass iiJJd til(' paranH'I<•rs of the• \\'oods-Saxon (or symnwtrizt•d 
\Voods-Saxon) pol<-ntial. In such o pron•dmC' it. is of intcn•st to know th<' Jlliip;llitul<' of 
t.hc exp<mcntial terms, in ord<'r to be• sure t bat tlwir omissiou or opproximol<• <'\·aluat it)n is 
justified. This is eXpC'dC'd to he• t.hC' ca...:;<• from I h<· r<'snlts of r<'f [:!i>J. \\'t' furl hn clahoratt• 
on this point lwr<'. An~ordiHg t.o <'q.(·L~I) th<' intt•grnl in qucslion is equal ttl: 

!"' I,(O,RJ) = Jo •·'J(,-)dr = (c"j:!) [1 + (r.ajc) 2 + 1']. p.l>') 

C = () - c-r-fa - (:-(Urr-l/r~ 1 + _l_ + ~ . a"{ [II II']} 
c1 a 2a 2 

('"l.l!l) 

Substitution of (5.18) with R1 = H,\1 iuto (5.1·1) kods to tlw followill,!!; t'<JU<llion for 
the determination of UM 

[(2/5) + (:!j1)J2(//.11)] (liM/c)"= I+ (r.afr-)' +C. (''·~])) 

We consider as au example the hyp{·rnudt•us l:1C and \\'(' ust' tl \\'nods-Saxon .\-uul'lt'us 
potential with param<'t.ers [:l5] /) = 2~.:3 MeV, 7'o = 1.20.1 fm aJH! a = 0.:1.:-l /111 \\'!Jid1 
have been ddcrmiued by fitt.ing to ground·st.cll.<• <'ll<"rgi<"s of tht• .\-part it"!<' in hypt'l'llll!'lt·i 
using as half-depth radius c t.hC' expression {5.1) (sC'<' r<'L[:mj for mon• ddails) \\'<' nott• 
that for ~3 C the value of cis 2.6l:J fm. 

ln Table 2 the values of t.lw int.<'gral /:.!(0, H1) arc gi\'l•n for \'orious \'alm·s of H1 :--- t·. 

aloug with th<~ contribution of !.h<' non cxpoll<'lll-iaJ ond t•xpoiH'III ial lt'J'IllS. as "'"" as tlw 
percentage wnt.rihut.ion of the latt<:r. It. is S<'t'll that as 1?1 dt•nt•ascs tilt' t•xpont'JIIial 
t.erms lwcome mon~ important.. Fort.lmal.dy for 111 = /f.~tth<'ir nmtrihution is small. Tlw 
magnitude of these tt•rms dt'J>encls also 011 I lw hypt·rnudt•us nmsidt·n·tl. lwiug larp,n for 
lh<~ tight.<:r nn<·.b, and a!~) o\1 l.ht~ po\.t'utia\ JMr<mw\ns. 
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Tabie:! 

Values of Values of Values of non- Contribution Percentage 
/11 > c 12(0, /11) exponential of cxponcul.ia] ront.rib111 im1 

t.ern1s terms 

I ::~ 
6,988 6,999 -0,011 0.16 
6.873 6.999 -0,126 L8:l 

R.\1=3.693 6, 7-11 6.999 -0,258 :!.80 

130 
-5.846 6.999 -L10:1 19.71 

2,7 -5.027 6.999 . J.9i2 
. 

:19.22 
' 2.6 J:l 1.740 6.999 -2.218 -17.1-1 I 

If the potential parameters of ref. [38J arc used, I hal is D = 28.0 .H c \1, r 0 = l. J 28 f 111, 

c = _,1 113 ].]28(1 + ~:;;iA- 213) Jm, a= 0.6 fm, we obtain somewhat larger exponc•ntial 
terms (see table 3). In this case, for rc, c = 2.i74 fm. 

Table 3 

/ Values of Values of Values of non- Contribution Percentage 

I R, > c 1,(0, /11) exponential of exponential Contribution 
terms - terms I -50 9.916 10.403 -0.157 4.59 

ilM=1.273 9.2-58 10.103 -Ll15 12.72 
110 8.820 10.103 -L583 17.91 

3.0 6.02-54 10.103 -4,378 72.66 
2.9 -5.653 10.103 -4.749 84.01 
2.775 5.177 10.103 -5,206 100.55 

-- --

The fact that the exponential terms and also (l/4)f2 (R1) are usually small for R, = 
fl.u makes it possible to obtain to a good approximation an analytic solution [35] of the 
equation (.5.14), by omitting these terms: 

14, = Rr:i = m ,,, c r~ + C") 'J''' (5.21) 

Furtl1crrnorc, improv~d analytic expressions can be derived, if instead of omitting these 
terms we estimate them by using an approximate expression for RM (RM ~ RM(O))., e.g. 

flfll _ I + (r;ajc)2 + C 
[ ] 

,,, 
M - c (2/5) + (3j4)f'(Rr:f) 

(5.22) 

This procedure rnay bf! iterated until self-coSistency is achieved to a desirable accuracy." 
fl should he noted that exponential terrris exist in this case even for a symmetrized \'Voods
S<txon potential (l. = 1 ). In Table 4 the various values of R~) which are obtained by means 
of 1 he above mentioned iteration procedure with the corresponding values of hw arc shown 
in the: ca~c of ~=~c usiug the potential parameters of c = 2.7 Jm, ro = 1.423 Jm of rcf./35] 
for the \Voods-Saxon potential. 
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Table' -1 

n !?~, fm h .... ·. ,\/r I' 

0 1.2730 
I -1.0951 JU16 
2 -L0-1-17 11..15~ 

3 1.02ii I L506 
-I -1.0216 IIL'o2-t 
5 -1.019-1 11.5:W 
6 1.01Sfi I L'>:l2 
7 •1.0183 I Li:l:l 
s ·1.01({:! JL5:l:l 
!) ·1.0 I~:! I 1,,'):1:1 

From 1.1H· <llwly:-:i:; oft his s('('\ ion and from the n·marks madt• in I lit• prt'\'ious Ollt':-'. it 
is d('al' that. tht• t•;.>pOIH'Illialtt•rm:-: art· 1101 IH'glihip,l<' in cntain t'il:-'t':-'. 
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fpeiineoc M. "'Jlp. 
Pa3no>KeHIDI <jlepMH- "' CHMMerpH30BaHHbiX <jlepMH-HHrerpanoB 

H HX npHJIOJKeHID! B li.UepHOH <jlH3HKe 

E4-98-76 

C nOMOIIlblO p33J1HtlHbiX MeTO,llOB npoBe.[leHO .neTaJibHOe H3ytieHHe H BbiBO.llbi 

pa3no>KeHHH HHTetpanOB, CO,Uep>KaiUHX <jlepMH- H CHMMerpH30BaHHb!e <jlepMH-pac

npe.ueneHH5I. Pe3ynbT3Tbi nonyqeHbi s MaTeMaTJt:\IeCKM KOMnaKTHOH cpopMe H npeJl

cTaBmnoT o6o6memt:e H pacwupeHMe paHee H3secTHbiX pa31IO)KeHJdt. 

YcTaHaBnHsaeTCSI cB513b 3THX pe3ynbTaTOB c pa3JIH\IHbiMH pro.uenaMH MepHoH 

¢m3HKH. Oco6oe BHHMaHHe y.nen5IeTC51 TaK Ha3biBaeMhiM 3KCnOHeHUHaJibHO MaJibiM 

nonpaBKaM, KOTOpb!e B HeKOTOpbiX CJl)'\IasiX MOryr Hrp3Tb BeCbM;a BruKHYlO pOJib. 

Pa6ora BbtnOnHeHa B Jla6oparopHH reoperHqecKoii <jlH3HKH HM. H.H.Eoromo-

6osa OIUIH. 

npenpHHT Qfue.IUIHeHHOrO HHCTHT)'Ta l!.UepHbiX HCCJJe.U0BaJmif.lly6Ha, 1998 

Grypeos M. et al. 
Expansions of Fermi and Symmetrized Fermi Integrals 

and Applications in Nuclear Physics 

E4-98-76 

A detailed study is undertaken, using various techniques, in deriving expansions 

of integrals containing the Fermi or the symmetrized Fermi distributions. The results 

are presented in a mathematically compact form and consist of generalizations and 

extensions of previously known expansions. The relevance of the results to quantities 

of interest in nuclear physics is recalled and particular attention is paid to the so-called 

exponentially small terms which may play an essential role in certain cases. 

The investigation has been performed at the Bogoliubov Laboratory of 

Theoretical Physics, JINR. 
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