


1 Introduction
"The Fermi function (F-function):

1
fr(n) = o (1.1)

is widely used in nuclear physics. It has been extensively used [1]-[4], originally by the
Stanford group, to represent the charge density pr(r) = pofr(r) of nuclei for a wide range
of mass numbers. Then, beginning with 5] it was often used in the so-called high-energy
approximation in calculating the charge form factors of nuclei. Furthermore, the "form
factor” of the conventional Woods-Saxon potential [6], which is a {air first approximation
to the self-consistent single-particle potential, is an F-function. Among other applications
of the F-function, we mention its use in connection with the strong absorption models
7111,

Another function which is closely related to fr(r) and which we also study in this
paper is the symmetrized Fermi function (SF-function) (sec.e.g., £12),113]):

1 1
Ise(r) = {oo=an T Ty e-trale (12)

The function fs#(r) has the property fsp(—r) = fsr(r) and may also be written in the
following forms:

1 1 .
Jsr(r) = 1+ elr—clfe T g elrte)e’ (1.3)
_ sinh(c/a)
fsr(r) = cosh(r/a) 4 cosh(c/a)’ (1-4)
forr) = Hltenh(SET) + tanh(~5 ) (15)

It is evident since fsp(r) is an even function that it can be expanded in even powers
of r and has a zero slope at the origin fte(0) = 0. Furthermore, it has certain analytic
advantages. For light nuclei with ¢fa > 1, it resembles a Gaussian function while for
heavier nuclei it goes over to the Fermi distribution. Thus, it might be said that it is
quite appropriate to be considered as a *universal” nuclear density. In practice, however,
at Jeast for medium and heavy nuclei, it leads to results very similar to those of the usual
Fermi distribution. We may also recall that the so called "cosh” [14] and the SF-potentials
[15] are appropriate to represent cluster model potentials {14]. We finally note that very
recently D.Sprung and J.Matorell [16] studied as well the symmetrized Fermi function
and its transforms and also emphasized in their independent study pertinent analytic
advantages.

In a recent publication [17) the "expansion of the Fermi distribution” was derived in
{erms of derivatives of the §-function in an alternative way to the traditional one:

1

e = o) - 3 8 — )™ Az (1.6)

k=0

with the coefficients A, = Aziqn expressed through the Bernoulli numbers. In the above
expansion both sides should be understood under the integral sign, with a well-behaved



function ¢(r). These integrals were discussed in [2} and called "the Fermi type integrals®.
In those cases when eq.(1.6) has meaning, the corresponding integrals are corrected by the
exponentially small terms of the order exp(—c/a). They bave been omitted in [17) as well
as in other studies {e.g., [18), [19]), where only the first terms of (1.6) have been derived.
In the following Sects. the exact formulae and estimations for omitted terms will be given
and some examples where their contribution can be important will be considered.

The purpose of the present paper is to extend these resuits in three directions. Firstly,
in Sec.2 we extend the approach of [17] to the case of the SF-function, and we pay atiention
to the conditions of validity for expansions similar to {1.6). Secondly, in Sec.3, we allaw for
meore general integration limits, namely from R; < cto Ry > ¢, including in the expansion
the exponential terms in a convenient form. The same procedure is applied 1o the Si-
function, and the results for both distributions are obtained in a unified way. Thirdly, in
Sec.4 an alternative treatment is carried out on the basis of Fourier transforms and the
properties of the hypergeometric functions. The results are obtained in a gencral form for
the F- and SF-integrals with arbitrary limits, and in particular cases the expressions for
the correction terms are given in "closed form” (i.e.,in terms of known functions). In the
final section, specific cases are considered and numerical calculations are performed.

2 On an expansion of the symmetrized Fermi func-
tion

In this section we derive a general expansion of an integral containing the SF-function.
Using for fsp(r) the form of (1.3) we write:

o
Tso = [ forhte)dr = 1p - 79, (2.1)
[1]
where the "standard Fermi integral” considered previously in [17] is
_ [T
IF —-./0 mdﬁ‘. (2.2)

As to the second term in (2.1), we introduce the designation J&), useful for calculations,
with the replacement r =az—c¢:

o oo
) _ glxr) ] g (£(ez —¢)) .
J j; T3 oerar dr=a e T dz. (2.3)

In the following we shall simplify the method of [17) to make it more transparent and
suitable for further considerations. To this aim let us transfom (2.2) by changing the
variable r = az + ¢ to obtain:

o< cfa
glc+ az) ]’ g(c—az)
= _'-_H_d ———— e . Ly
Ir a/o 11e #¥ef Tro=d (2.4)

Substituting into the second integral the (1 + exp(—z))™" by means of the identity
(14 exp(—2))"' =1— (1 +expz)~! and then using the relation

cle s oo
q(c—az)d / glc—az) ] glc — az) )
Tre =) et Tt 22

L 1+Bz d 0 1+8" Z ofa 1+cz 2y (‘Z ’)

one can write:

Ig = Is+1rns+j(_)1 (2°6)
Isp=L+ I+ J, (2.7}

where e -
I, = a/ glc—az)dz = ] Ofc — r)g{r)dr, (2.8)

o 0

I, = afw gletaz)-glc—az), 2.9)

o o 14 e
J=70-g", . (2.10)

and ©(x) is the unit sicp function:

' 1 for z>0
Ofz) = {
0 for z<l
The representation for the F- and SF-integrals (2.6) and (2.7) is .rath'er instructive. Indeed,
the first term I, contains the very simple sharp cutoff function in an integrand. The
second term /., includes an "antisymmetric” function g(z) = q(c:+- az)— q(c - a.z)'. The
property g(z) = —g(—=z) enables one to simplify considera:b]y its evalua.tlo?., Ftna‘lly,
the integrals J%®) and J are usually exponentially small since mer(fly the mtegrat!on
from a large number (z = ¢/a > 1) to co, where only the tai}l of the integrand function
(1+e*) ' ~e™” < 1 contributes to them, is involved. . .
Now, when calculating the I,.-integral we assume that g(c = az) can be expanded in

the series

haid - (")(G)
gt il Lt 2.11
gle az) = g{c) + Z;(:i:l) i A (2.11)
Inserting {2.11) into (2.9) and then changing the order of integration and summation
(which is assumed to be valid) we get:

oo
Lo=a)_ Daa"qd™(c), (2.12)

n=1

where the decomposition coefficients D, are related for the odd n-values te the Bernoulli

numbers (see, e.g., {20], p.53 and [21]):

i ) | for evenn
1—(=1)" f°,° P (2.13)
Dn = zdz = 2 gl " dd
n! o lte En+1(2 = 1){Bap1| for oddm.
Thus, for example, one can obtain, the first coefficients:
a? 7wt 31 =° ' 214
D,=—6-, Dg,—zﬁ, D5_16945' (2.14)
Further, accepting the relation
. o
") = (—1)“] 5 (r — Q)g(rydr,  (n=1,2,3...), (2.15)
0
3




as valid for some class of functions ¢(r) (see, e.g., [22]) one can write the final result for
Last
a o o

Ls=—¢ Z a"D...[ ") (r — &)g(r)dr. (2.16)

n=l,0dd ¢
Thus, we obtain the integrals Ir and Isy expanded in powers of the diffuseness parameter
a:
Isrir) =/; Ssrery(riglr)dr =/ O(c— r)g{r)dr—
0
o

Daat [ 800 = hatryir +.7 (7). (217)

n=1,0dd

To this approximation when one can ignore the last terms in (2.17), the expansions
for the SF- and F-functions coincide with each other, and therefore one can write:

sinh{c/a)

Jsr(r}y= cosh(r/a) + cosh(c/a) =0emn- ,,:z,;dd @™ D6 r - ) {(2.18)

The explicit form as a series with terms proportional to the odd derivatives of the
§-function may be useful for practical calculations. However, in all the cases onc needs
to keep in mind the conditions of its validity, viz., (i) existence of the expansion (2.11),
(ii) possibility of the tramsition from (2.11) to (2.12), (iii) determination of the class of
functions, on which the generalized §-function and its derivatives act. As to the disre-
gardness of integrals J (7)) their calculation is a separate task. For sufficiently smooth
{functions g(r) they are thought to be of the order e {/2), Indeed, when evaluating the
integrals J(*} it is often convenient to use the following presentation:

o S(r} "
by = 0L T s
/; e®lidr 70 Io +[¢,]3e

which can be obtained through integration by parts. Here we have the integrals

(-]

. Fo (2.19)

JE s fo g(xr) e 5dr (2.20)

with ¢(r) = Ing(£r) — . It follows from (2.19} that

J‘*’za-—% 1+a2—¢&2+... , {2.21)
1~ 210) [1 - a*;_'((g)l]

if the function ¢(Z£r)exp(—r/a) tends to zero as r — 4oo. In particular, one can sce
that for a frequently oscillating ¢(r) with a|¢'(0)/¢(0)] 3> 1 the additional small factor
;Fq(O)/qj(O) appears in the estimation (2.21). Moreover, for even functions ¢(r), the
correction” term J becomes zero. In general, this is not the case for each J1E) taken
scparately. In order to make the essential poinis more transparent let us consider as an
example the form factors:

L=
FSF(P)(p) = ‘[) fSF(F)(r) Sin(pr) rdr = —‘—f; fs;.'“:}(p), (2.22)
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where

Tsppaip) = / l Fsrpa(r) cos(pr) dr. (2.23)
Ju

First. 1 is easily seon from (2.8) that [, = sin pefp . Then. in caleulating Ls v means
of (2.12) we use d cosprfdr” = (=)t 02 s for no= edd and the relation from

[20] (p-66): )
11(;):%( " 1) =,l?. S0, (:) 2] < = (2.21)

$inz
n n=1l.odd

Thus. we oblai:

. n ; .
. {wpa i pe st pe .
J.s = ai sinpe E 1 i =g — - —. par < 1 {2.23)
= sinh 7 pa P
w=Twdd

v

Bearing in mind that for the even cos pr-function 7 = {I. one gets:

. d wasinpe
Fap(p) = - T

Then, applying ¢q.(2.21) to caiculate the integral of interest with ¢(r) = explipr) one can

show that

(2.26)

) F]; simhwpn

Fe(p) = —i ﬂn—ﬂﬁ('— '-—a_-—.t'_("",'”]. (2.27)
dp sinhzpa = 1 4 a?pt
One should stress an important poini. namely that the results {2.26) and (2.27) have
boeen oblained for the S1- and [-integrals with the oscillating funetion cas promxder the
condition pa < 1 which ensures the convergence of the series in (2.25). 11 means that
the method used may be applied if the "wave length™ p~' s greater than the thicvkness
a of a "surface layer” of the 8F- and - functions. Morcover, the guantity [, ix a small
correction 1o the "sharp - cdge” contribution Jg nuder the stronger condition pa < 1. In

fact, we have

2 : 2

Y sinpe 7, .

fos —?—pgaz—F— = —-E-pzuzr's (2.
] n ]

retaining only the term with » =1 in the series (2.25). 1n other words, as one shoulid
expect, the diffuseness effects which ave accnmlated i the terms with the derivatives ol
the decomposition (2.18) are nol considerable if the “wave length™ p~t i much greater
than @. On the other hand, if one evaluates the integral {2.4) by using, the resalt from
[21] (p. 505) we obtain
e ]00 cos[plc + az)] = cos[ple = az)] P .s'ln pe g (2:29)
o 14 ¢° sinh = po »

for any values of the cflective parameter po. The r.hos. of {2.26) may be expanded in 1he
series appearing in (2.25) only ander the condition pu < 1. This analysis shows that the
method based on the expansion (2.18) becomes impractical when we deal with lrequently
oscillating functions. Rather it s applicable for evalnations of the Fermi-type integrals
with stowly varying functions (for nstance, af the polynomial typeh,

Also, it is seen [rom {2.27) that the “carrection” terms of the vrder exp(-c/u) may
be comparable and in some cases larger than the osciflating contribution to the form
factor. In these cases of rapidly varying functions g(r) one needs to develop methods
which ealenlate these contributions in a satisfactory way. In secct o method wili be
deseribed i sehich the tesnlis are expressed threngl the Tiypergeomel rie finetions
1he corresponding series ave, in fact, the decompositions in e smasll parameter oexpf e/v ).
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3 A general method for the calculation of the Fermi
type integrals

3.1 Expansion of the "generalized” Fermi type integral using
a Taylor series

Here we extend our consideration by introducing the integration limits f; < ¢ and
Ry > ¢, so that the “standard Fermi integral” is a special case of the integral we calculate
(namely. for f; — 0 and Ry — oc). Such a generalization is not only of mathematical
interest but it is also relevant {pertaining to the upper Himit) to a problem of physical
interest (sce Sec.3). Henceforth in this Section we proceed in the same way as in certain
treatments made for more specialized cases [23]. Namely, let us split the second integral in
a form suitable for the the use of the well known formula for the geometrical progression.
Respectively, one can write

iy ¢ Ry —f{r—c)fa
gfr) gir) g{r)e
Ie( R, Ry) = N = f g KA L S
sr) = [ = [ e |1 e

o c R!
S [ / g(r)e™r=Mage 4 _/ q(r)e-tm“l“-cl/“dr]. (3.1)
m=0 R

<

Further, separating out the first term of the first sum in eq.(3.1} and shifting the
dumrmy index in the second sum (by setting m + 1 = m’ — m) we find

Ip(fi,-,R,):/ (r)a'r+Z(—]) U g(r)emrMegr lR!q(r)e'm("CJ/“dr].(3.2)

m=F}

We now assume that the function g{r) can be expanded in a Taylor series around r = ¢
N
(ry=>" (G (3.3)
n={0
Substituting (3.3} into (3.2} and making the replacement ez = r — ¢ we get:

(e By = [ alrirs

{e~Ri)fe (Ry—c)fa

((') a” 1 fo -z n, —m
E ¢ * E (=™ [ (-1)" e dzr — "™ dz ] (3.4)
~ u/‘ b/

n=0

or

r [~ (ﬂ)

q"c)
IR = L amtlintn
(R, Ry) L'q(r)dr+n§=o: —~a {n ot

i(—l)’" {( IP(n +1,mc_—a£)”(n+,hm31; C)}}, (3.5)

rpntl
m=1
where (e, ) is the incomplete I-function defined by ([24], p-138):
(e, y) =/ ALY (3 (3.6)
v
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When deriving eq.(3.5} we have used the relation:

o

i-n" —llz / e ™irdt = [1 — (—1)") A 1-t:et =n!D,, (3.7)

m=1

where [, is determined by {2.13). Then, using the decomposition
1,—% =~ z'
I'{1 4+ n,z) = nle f\:’_' (3.8)
=0

eq.{3.5) can be written as

IF(R,-,R;)=f dr+Zq‘“’ "*’{

n=0

_ %[(_l)ﬂ, (=R b5 - ,)_(R_fa—_c)‘p(_ﬁa,n“_n}}. 69

Here according to ([20], p-45) the function F(z,s) is determined by

F(z,0) = i% = 20(z,1,1), (3.10)

mz=1

where $(z,1,1) has the following integral representation:

tl—l -t

(,1,1) = T(f)f L, (3.11)

which is valid if either [z| <1, z# 1 and Rel>0 or z=1 and Rel>1 (seeeq.
(3) in {20], p-43). Here I'({} is the ordinary I-function. Note a compact form:

Ir(R:, Ry) = j (r)dr+2q("1(c)an+' {D +(—1)“D,.( R‘)w (R"—a_f)}

n=0

(3.12)
where T
D@= [t 620 (3.13)

Eq.{3.9) follows from (3.12) if one uses the geometnc progression expansion in powers e~

for the denominator [e! + 1] = e~*[1 + ¢™*|"! in the integrand of (3.13).




3.2 Integrals with the SF-function

it is convenient to use form (1.3) of the SF function. Thus we have only to calculate the
integral which corresponds o the second term in {1.3). In this case no separation of the
inierval of integration is needed and we obtain after some algebra

Ry ad n+1
(+) . - g{r} _ SR
g m R = [ e D WL CE o

n=0

{ZEIT [(R]a-F-c) F(_e_(RI+c)/n’n 1 5) _ (R,:—c) F (._.e_(ﬁ'.-l-c)/ﬂ’ n41— s)]} :

3=0

(3.14)
The above result, can be combined with the corresponding one of the previous section and
therefore we obtain immediately the expansion of the integral with the SF distribution.
However, it is more expedient to write the results obtained in a unified way, thal is to
write in a simple formula the expansion of both the F and SF-function, by introducing ¢,
which is equal to 1 in the case of the SF function and 0 in the case of the usual I one.
Thus, we write:

R
I(Ri, Ryye) = lelq(r)f(r)dr = Ip(Ri, Ry) — T (Ri, By), (3.15)

where
1 1

f(T) = T3 etr-ae —-él T eriare’

and the final expression for the integral is written in both cases:

(3.16)

o0

¢ n l
I(Re, By €) = -L_ g(r)dr + Zz Wa"ﬂqt")(c){n!])n&.g+

n=0{=0

a a

. [(R;;— c)‘F (—c'feﬁi,n+l—l) _ (Ri:- c)rF(_e_ﬁg_c,n_l_l_l)l } (3.17)

In the special case in which R, — 0 and R; — oo the above formula js simplified, as
follows:

(Rf_—_‘iy P (—e‘&;,nw{-l-l) — (-1 (C - R“)‘ F(=e 5 ng1-1) 4

1(0,00,¢) = j " ) [ )dr = ] “gr)r + 3 g™ e (D + Bulefall,  (318)

n=0
where D, are given by (2.13) and B.{c/a,c} is defined as follows:

n

Bulc/a,e) = 'Z [e(-1) = (=1)"] % (g)' F(=e=en+1—1). (3.19)

i=0

The preceding rosults have been obtained by expanding ¢(r) around the point r = «.

-t

In corlain cases. alternative expansions may be more appropriate. Yor example. if we

expand g(r) around the point r = 0

q(r) =Zq("](0):—]f. (3.20)

n=0

we obtain the following final result:

Ry R B gir)dr )
g(r)ds / 1 — / Nolr
. = N L —_—— = gir Yelr+
[{H,._]{j‘f) ﬁ?‘ 1+C(r«()/n i, 1 +((T+')J’" In,

= z ] eyttt
Z q{”)(O)anH {; _r-—{” T [D; (;;) + .

n=u

(i) [ (=¥ 1) = 0 (=) -

¢

(%’)”_r [(l" (—('_L':U‘.l'+ l) - F (—t‘_i{';‘.[ + l)]]} (320

This is again simplified in the case, when = 0 and 7y — o We ohtain, by

changing the free index from Lo m

000 = [ )= [ty e 3 ot
Q 4]

=0

{zm: (m—]_-ml)z (g')m_r +le- (=07 F (—('_"l". ur -+ l)} . (3.22)
i=0 :

*all the terms in the sum over e are zero. becanse

In the special case in which g(r) = .
) = n. since in this case gt(0) = nh

of the derivatives of g{r), exceptl the one with n
Therefore, we find:

{iﬁ-l—)!m (—2)"_‘I +{ - (-!-)"] I (—(‘_""”. m + l)l } 3.0

The following remarks can be made regarding this expression: .
Firstly, in the case of the Fermi distribution (¢ = 0 it reduces to the result which
follows from the gencral expression of the ™ Fermi integral™ Fl.(k). & = (¢/a) quoted by

Elon {sce Appendix of ref.[2]) sinee BT (e = AL (RY. We note that gener
heen discussed in

alizations 10 non-infegral values of 2 ete in moment caleulations have
lterature {[25]. [26], [27]). Secondly, in the case of the Svmmetrized Fermidist nlmfnm
(¢ == 1), there are no cxponeniial terms when s ever. I'hues, the use of e syt rized
Fermi distribution has the advantage that all its even moments are I.rw ol v_\;|umvul.ml
terms, which simplifies their treatment. [t s seen that this resndt is in agreement with
N o . . -

that found in Sec. 2, since when nis even g(r) = r" is symmetie while when o is odd

g(r) is antisymmetric.




4 Treatment on the basis of Fourier transforms and
the properties of the hypergeometric functions

4.1 The hypergeometric series for the typical Fermi integrals

The previous results have been based on the assumption thal the function ¢(r) may be
expznded in a power series at a vicinity of the radius r = ¢ In this section we shall velax
this assumption and consider the exponential Fourier transform :

a(r) = F{a(phir) = (1/27) ] " itmyedp. (1.1)

In calculating the Fermi type integrals with such functions ¢{r), for which the fourier
transform exists one can use the following representation for the Gauss hypergeometric
function f{e, b c; 2) ([21], p.319):

f (1= ¢™) 7M1 ~ Be™*)Pe™*%dz = Blu,v)Flp, v + p: ), (4.2)
0
where
Rep >0, Rev >0, farg(l - B) <=,
and f#(z,y) is the beta function:

_ T(=)T(y)
B(z,y)— F(I+y)

Let us set ¢{r) = ¢ and calculate the integral [0 g(r)fr(r)dr. Obvicusly, this is the
case when in the more general expression (4.2) one sets p=1=ipa,v =1,p=1 and
3 = —¢"*. Therefore, one can obtain [28], [29):

h eipr . a . - cfa
Arlp) = ./o‘ mdr = aB(1 —ipa, 1) F(1,1 — ipa; 2 — ipa; —e°), {4.3)

Furthermore, because for the applications in question exple/a) > 1 {or even e/ 3 1) it

is pertinent to transform (4.3) into

Ar(p) = T8 e +ip7 . F(1,ipa;1 + ipa; —-e"w“)) (4.4)

tsinh rpa

When deriving eq.(4.4) we have used one of the Kummer relatjons ([20], p.116, eq.(2)) for
the hypergeometric series

PLEb+ Ii—2) = Bz F(1,1 ~ ;2 — b -z 4 Byt (larg z| < =}, (4.5)

where
Po+1)Ib-1)
=t =T 1-4
B I7(8) , By =T{6+1)I( )
and the formula .

I(B)I(1 = b) = (4.6)

sinwb’

What follows is easily extended to the sine- and cosine Fourier transforms and the l.aplace one,

10
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Thus, the Fourier iransform of the Fermi distribution has been expressed in terms of
functions of well-known properties. One should emphasize that the exact result (4.4)
reflects explicitly the interplay between the physical parameters involved, viz., the radius
¢ . the diffuseness parameter o and the "incident frequency” p. In many applications the
latter plays the role of momentum transfer.

Formula (4.4) enables one to separate all at once the oscillating part of the form factor
Ap(p) (the first term in the r.h.s. of {4.4)) from a comparatively smooth p-dependence
which is determined by its second term. Note that the separation has been achieved
without those constraints inherent to the previous approaches {see Sect.2 and 3). We seé
that the corresponding oscillations at pc > 1 (the "edge” effect) have an exponential
lalloff generated by the factor [sinhwpa]™! ~ exp(—7pa) at pa > 1 (the *surface
diffuseness " effect). '

Further, by using the definition
abz ala+ 1)b(b+1)2*

Fla,bicz) =1+ —

e det1) 2 (£7)

of the Gauss series, the smooth contribution to Ar(p) can be splitted into the pole term
P! and an expansion in descending powers of an "effective” parameter exp(—£} < 1. The
formeris canceiled at p = 0 with the same term which stems from —ira[sinh wpa]~? exp(ipe),
while the latter may not be disregarded even for the values of ¢/a > 1. In fact, at high
frequences with map ~ 2 all these exponentially small contributions get comparable to
one another and the formula gives a systematic way to calculate each of them.

Now, we apply this result to evaluate the integral considered in Sec.3:

Br g(r)
Ir(Ri R)) = fR T e = Ir{Re o0) — Ir(Ry, c0) (4.8)
with finite lower R; and upper R limits which satisfy the condition R; < ¢ < Ry. Here

Ix(R,00) = ./:o —-q(—r—)-—d

1 f=
T+ etr-aria®™ = 57 /_ N dpg(p)Ar(p, R) (4.9)

with the function ¢(r) being replaced by its exponential Fourier transform. Again the
problem reduces to the following:

o e d wr [ e d 410
Aen R = [t = ¢ | e (4.10)

By using (4.3) one gets
Ar(p, R) = aB(1 - ipa, 1)l R/ R(1 1 — ipa;2 — ipa: —ele=RMay, (4.11)

Two cases should be considered, namely: R<cand R > e,

11




Case 1) R<

In this case it is convenient to convert the hypergeometric function of {4.11) into the
corresponding hypergeometric series (cf., the transition from (4.3) to (4.4)). Thus we have

Arip, R) = €77 {m—”—e"’(“"’ + %F(l,ipa; 1+ ipa; —e'("’”’“)} =

{wipa)
N BRI B e L (c—zfc-f‘)/ﬂ)} : {4.12)
sin{wipa) ip l+ipa

or omitting the terms of higher order in e~ (e~ fY3 we ohtain
&
_ : ipe ipr ipR a —{e=R)fa 4.13
Ap(p, R) = naH(nipa)e™ + /R ¢Pdr 4 e TS ipae ) {(4.13)

where the function H{z) = sin™! z — z7" is the function considered in Sec.2. Substituting
(4.13) into (4.8) and preserving the exponential Fourier transform in r-space we arnve al
the expression

Ir(R, ) = maF{§(p)H(mipa); c} + j; gfr)dr + a}'{%—;ﬁ.} e~(e=Ria (4.14)

Case i) R>a

In this case eq.(4.11) includes the hypergeometric series directly from the beginning
and therefore

Ar(p, R) = PR (R=A/e (1,1 — ipa; 2 ~ ipa; —e~(Raley, (4.15)

1 —ipa
If the parameters involved meet the inequality e~ (B¢ ] we find

a ipa _~{R-c¢)fe .
Ar(p B = T e e Y (4.16)

and finally making the same substitutions as in the case i) we gel for Ip( R, 00):

—- é(p) . —(R-c}/a 4]7)
Ip(R,oo)—af{"-—l_z.pa,R}e . (
Combining eq.{4.14) and eq.{4.17) we get

<

IR, By) = waF{alphic) + ] o{r)dr+

i

Ip) . py e-te-RMs _ oF _lp) gy gt L {408)
af{1+?-pa»R-}6 {1_im, 7}
As an illustration of this method we evaluate the generalized n-th moment for the 1%
distribution: R, 5 - |
<rt>| = ———dr. (1-19
R j;i I elr=elfe
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To this point note that

iy
<> o= (—z‘)"[,x},’."m. 7Y ~ A0, 7). (4.20)
R
where AP0, R) denotes the n-order derivative of the integral (1.10) at the point p = 0.

Finally the following result is obtained:

R A
,n _ i AP N plle= R e sl —(Ry=e)f
< > H.— ~3 +a§”a {c]),,_r+( 1) e ij }
' (4.21)
with (n — 1) odd. .

We point out that the formulae hold if one neglects the exponentially small contribu-
tions 1o the series (4.12) and (4.13). IT only one of the limits f, 5 is close 1o ¢ then one
needs to employ the general expressions for these series,

In the case when My~ 0 and ly — o0 eq.(1.21) vields the ordinary n-th moment:

n ! SIE o
n = 1 (_ n-{ ¢ {0+l —vfa
<" >p=an! g 7l Do+ o doplg" e, {4.22)
It follows [rom {4.22) that:
<12 se= Y34 20kl + 20t (4.23)
. 2
<t sp= c5/5 +1a°c’ [D, + 2 (;) H;,] 4 2qatema, (4.24)

4.2 A ”closed form” expression for the generalized symmetrized
Fermi integral

According o the decomposition (1.3) the integral of interest

ny

]_(;l.'(]l),", h’f) = [ (](T').ﬂ\‘].'(?')df' (4.25)
can be writlen as

Tsp(fi, Ry) = Te{is, By) = TG Ry {£.26)
where i
I .
g ) = ) ‘
TR Ry = /”I ) (4.21)

Similatly as in subsection 4.1 the evaluation of the generalized form Gactors (1.23) can he
reduced {o the integrals Ap(p, 1) and

- ipr
A ,R:] e, 4.
.10 n 14+ AT (4.28)
Using ¢q.(4.2) we find:
ac™h e :
AN ) = —T—.t'"{ﬂ' Va1 — ipns 2 = jpas —e "0 {4.29}
—ipa
13




or if the higher order terms (L., O(ﬁ'ﬂ"”f”"}) are omitied then we have

eletRifa (4.30}

A‘*’(p, R) = nrps T

Combining eq.(4.12) with ¢q.(4.29) onc gets:
Asr(p R) = Ar(p, R) = A% (p, R) =

wR[ T e B @ Ry a2 inas — =l
€ {isinhrpae +p+1+ipa F(1,1 +ipa;2 + ipa; —¢ )

a . .
~ T e R ] —ipa: 2 — ipa; —e'(c"n”“)}. (1.31)

In deriving this formula we have used the relation:

FlLbib+1;z) =1+ 2F(1,64 1,64 2;2). (4.32)

b+ 1
Putting in (4.31) R = 0 we find for the "standard” form factor the following expression:

sin pc
sinhmpa’

Isr(p) = ReAsr(p;0) = 7a {4.33)

The approach described in this section is an alternative way to evaluate the integrals in
question.The following comments can be made: (a) It is relied on the well known results
of the theory of special functions and can be presented in a mathematically compact form.
(b) We have managed to bypass the too sirong assumption (2.12}). (¢) The corrections
of any order in exp(—c/a) may be evaluated in a systematic manncr.

5 Applications and discussion

In this section we consider certain specific cases and we also give the results of numerical

calculalions related to nuclear physics problems.

First, let us estimate the effect of the exponentially small contributions to the relation
hetween the parameters ¢ and e, which follows from the normalization of the nucleon
density p(r) = pof(r}, where f(r) is given by (3.18) for nucleus of A nucleons (2], [31]:

o
47rp0/ f(r)rtdr = A. (5.1)
1]
Using formula (3.23) we obtain
&+ (za)’c+ 6(c = 1)a®F (—e™/*,8) = rjA (5.2)
or negleeting the corrections of the exp(—2¢/a)-order and higher
&+ (ma)? +6(1 — Jae " = ri A, (5.3)

where rg = 3/{47po}. Eq.(5.3) with ¢ = 0 follows also from (4.23). K is clear again that
for 1he SF function there are no exponential terms. In such a case, or if they are negligible
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in the case of F function the above third order equation, which is of the same form as in
the case of the trapezoidal distribution [32] can be solved for ¢, which is then expressed
in terms of a and ry (that is po):

e (%)USTOA”@ [(1 + 5)1/3_'_ (1— b)1/3} , (5.4)

o |ip e\
- 27 \ rpAl/3

In the case of the Fermi distribution (¢ = () an improved expression for ¢ may be obtained,
if the exponential terms (which are assumed to be small) are not tompletely neglected
but are estimated using an approximate expession for ¢: ¢ = Cap, such as ¢ = rgAY? or
expression (5.4). Then the improved expression for ¢ is given again by {5.4), but instead
of ro the quantity

where
1/2

ry =g [1 — (6/A)(e = 1)a*F (==l 3)}'/° (5.5)

appears. It is easily shown that the normalized Fermi distribution corrected by the small
terms of the exp(~c¢/a)-order looks like

.

P
pr(r) = —o—=,  pi=p5 1+4], (5.6)
1+ exp—
a
where .
Fo_ 3:‘1 7r2a2 - _ a3 —cfa
o=ttt o d=bge (.7

We also note that the central density p{0) of the nucleus may be expressed in terms of
the half-density radius ¢ and of the diffuseness parameter a, as follows, by using (3.16):

3 1 €
P0) = 4mrod [1 Fels 1+ e‘f“} ’ | 8
where ' |
o= ;; (1 + (za/c)® +6(c — 1)(afc}*F (—e/*,3)]. (5.9)

Finally, the m.s. radius of the nuclear density

_ [ rp(r)d7 3 S f(rydr

<risp= — = .
r F fﬁ(f’)d"‘ fow Tzf(r)df' (5 10)
is expressed in terms of ¢ and « as follows:
<r?>pm 3+ W0(ra/c)® + 7(wa/c)' + 3 5!(e — 1)(a/c)°F (~e~/°,5) L)

5 1+ (rafc)? + 3 — 1)(a/cf*F (—e~</5, 3)

It is observed that in the imit a — 0 the above expression reduces to the well-known
expression of the m.s. radius of the uniform distribution < r? >,= (3/5)¢®. Furthermore,
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in case of the symmetrized Fermi distribution (¢ = 1) we obtain the following exact

expression (see, e.g., [33]):
(5.12)

croteli 1]

For the Fermi distribution such an expression holds approximately, as long as the expo-
nential terms are small, which is the case even for light nuclei. A carefull calculation
for %°Ce, 12C (with the parameters ¢ and a from [2]) and for °Li, *Jie (with pa-
rameters ¢ end a from [34]) has shown that the corresponding corrections to the ran.s.
radii of the nuclear densities are: “9Ce: 3.3107%; 2C: 8.1107% “Li: 6.9107% and
1He:1.2107%, ie., do not exceed 0.05 %.

Finally we consider, for the above nuclei the influence of the cxponential terms in the
values of r3. These values are given in Table 1.

Table 1
Nucleus | r3 r
With exp. terms | Without exp. terms
0Ca 1.496 1.496
12c 1.379 1.379
& Li 1.312 1.285
iHe 0.919 0.913

It is seen that the effect of the exponeniial terms in the value of ry depends on the
nucleus, but is still very small, although somewhat larger in comparison with that in the
r.m.s. radii.

We consider now the generalized Fermi-type integral foﬁ’ f(r)r2dr. The physical in-
terest in integrals of this or other similar forms, such as fOR" Sf(r)ridr, originates from the
equation which determines the value Ro: Ras [35] of an harmonic oscillator (HO) potential

2
r "
VHo(T) =-D+ D~—2, (:).]3)
Ry
which approximates a given Woods-Saxon (or symmetrized Wood-Saxon) nucleon-nucleus
or A-nucleus potential; Vwg(r) = —Df(r) (that is with f(r) given by (3.16) in a sorl
of "best approximation in the mean” (in the nuclear interior and Lo some extent in the
region of nuclear surface)):
Ry

|2+ 37| 8= [ swen (5.14)

More precisely, the value By = iy, determined by the above equation minimizes the
integral {33]:

R
JO(RO) = / |VWS(T) - VHO(T)'ZO’TB (5. |5)
0
provided thal ) 3 R 4 ()
2 M 516
(7o) < [5 + §f (RM)] + 4 dity lne=ny (5.16)
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The above procedure may be used in determining 1he variation with the mass number

of the core nucleus A, = A of the harmonic oscillator encrgy level spacing for a nucleon:
hwy or for a A-particle: hwa, since the spring constant is given by & = pe? = (203/ BE)
and therefore
[h* R I
ho = | =20 —. (3.17)
H ] s
where g is the reduced mass of the nucleon (or A-particle)-core system. Such a treatment
has also boen considered recently for atomice clusters [36], [37).

In order 1o find the value of fy, which is needed. one has 1o solve eq.(3.14) and
therefore to caleulate the integral j;)R’ S(r)etdr for various values of, #2; and choose that
one for which eq. (5.11) is satisfied. This can be done either by means of a subrowtine for
the compntation of integrals or by means of the relevant formula of section 3. The latter
procedure is in a way preferable sinee it can lead 1o an approximate analvtic solution
of eq.(5.14) and therefore to a formula for the variation of he with the mass number,
in terms of the particle mass and the parameters of the Woods-Saxon (ov svmmnietrized
Woods-Saxon} potential. In such a procedure it is of imterest to know the magnitute of
the exponential terms, in order to be sure that their omission or approsimate evaluation is
Justified. This is expected to be the case from the results of rof [35]. We further claborate
on this poind here. According to eq.(1.21) the integral in question is equal to:

Iy . ]
(0, Ry) =/ P I} = (Ff 1+ (afe) + ). {318
0
at i 12
o —cfa _ ,—{Ry=c)fn ar f -
C=6 3 {c / Pt [] + » e _:)—-—02] } . (5.19)

Substitution of (5.18) with #; = Ry into (5.11) leads 1o the following equation for
the determination of Ry

[(2/5) + 3/ 2 (Ba0)) (Barfe)* = 1 4 (rafe) + (. (5.20)

We consider as an example the hypernucleus 3¢ and we use a Woods-Saxon A-nnclens
potential with parameters [35] 1) = 28.3 MceV, vy = 1205 fin and ¢ = 035 fin which
have been determined by fitting to ground-state encrgies of the A-particle in hyperield
using as hall-depth radius ¢ the expression (5.4) (see relf33] for more details} We note
that for *C the valuc of ¢ is 2.613 fm.

In Table 2 the values of the integral 1,{0, Ky) are given for vatious values of 7y = ¢
along with the contribution of the non exponential and exponential terms. as well ax the
percentage contribution of the latter. 1t s seen that as Ry decreases the exponential
terms become more important. Fortunately for Ry = fa their contribution i small. The
magnitude of these terms depends also on the hypernacleus considered, heing larger for
Lthe lighter nuclel, and also on the potential paramcters.
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Tahle 2

Values of | Values of | Values of non- | Contribution | Percentage

y>e¢ 12(0, Ry} | exponential of exponential | contribution
terms ferms

3.0 6.988 6.999 -0.011 0.16

4.0 6.873 6.999 -0.126 1.83

Rr=3.693 | 6.711 6.999 -0.258 3.80

3.0 5.846 6.999 -1.15% 19.71

2.7 5.027 6.994 -1.972 | 39,22

2,613 4.740 6.999 -2.248 17.44

If the potential parameters of ref. [38] arc used, that is D = 28.0 McV, rg = 1,128 fin,
c= AYI128(1 + %A'zl"’) Jm, ¢ = 0.6 fm, we oblain somewhat larger exponential
terms {sce table 3). In this case, for }*C, ¢ = 2,774 fm.

Table 3
Values of | Values of | Values of non- | Contribution | Percentage
iy >e 12(0. fiy} | exponentjal of exponential { Contribution
terms terms
5.0 9.946 10.403 -0.457 4.59
Ru=4.273 | 9.258 10.403 -1.145 12.72
4.0 8.820 10,403 -1.583 17.94
3.0 6.0254 10.403 -4.378 72.66
2.9 5.653 10.403 -4.749 84.01
2.775 5177 10.403 -5.206 100.55

The fact that the exponential terms and also (1/4)f(R;) are usually small for R, =
fia; makes it possible to obtain to a good approximation an a,nab tic solution (35] of the
equalion (5.14), by omitting these terms:

5 1/3 a2 1/3 i
Ro= R = (5) c[] + (T) ] . (5.21) |

Furthermore, improved analytic expressions can be derived, if instead of omitting these

terms we estimate them by using an approximate expression for Ry (Rar 2 Rpm(0))., eg.

![]) [ 1 +(1ra/c)2+c }1/3
Gy =C .
(2/5) + (3/0) f(RD)

This procedure may be iterated unti) self-cosisiency is achieved to a desirable accuracy,
It should be noted that exponential ternis exist in this ca,se even for a symmetrized Woods-
Saxon potential (¢ = 1). In Table 4 the various values of R which are obtained by mcans
of 1he ahove mentioned iteration procedure with the corresponding values of hw are shown
in the case of *C using the potential parameters of ¢ = 2.7 fm, ro = 1.423 fm of ref.|35)
lor the Woods-Saxon poteniial.
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(5.22)

Table 4

By fmihe, MV
1.2730
1.0954 11.316
1.0017 11158
4.0277 11.500
4.0216 11:521
4.0194 11.529
G | 4.0186 11.532
714.0133 11.533
3 (10182 11.533
Y | 1.0082 10533

Wby — O3

[T

From the analysis of this section and from the remarks made in the previous ones. it
is clear that the exponential terms are not neglibigh in certain cases.
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