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1. Introduction 

The method for the measurement of the pionium (-rr+n--atom) lifetime proposed in 

ref. [1], is essentially based on the assumption that the n-dependence of probability Wn 

on creation of n+n--atom in nS-state is well known or, at least, may be calculated with 

a high degree accuracy. 

The fast consideration of this problem has been done in L. Nemenov's paper [2], where 

the following relation 

Wn ~ n-3 (1) 

has been derived from a more general result. of the author [2] 

"Wn ~ If M(f)i/Jn(f)d3
{ (2) 

M( . .:'I - 1 jM(;;'\ -iprd3 
r,-(2n)3 . Pie P, (3) 

where M(p) is the amplitude of production of free 1r+1r--pairs with relative moment.um 

fi in hadron - hadron or hadron - nucleus collisions and 1/Jn(r) is the wave function of 

nS-state of pionium. 

In line with accounting the short range nature of amplitude M{r) in his original deriva­

tion of (1) from (2) L. Nemenov also has made an assumption that the pure Coulomb 

wave functions describe quite well a distribution of pions in the pionium not only at large 

distances, but at small ones also. However, as it hru, been shown recently by E. I<uraev 

[3], this assumption is unjustified due to some noticeable influence of strong a 1r+n--

interaction on the behaviour of the pionium wave functions in the nearest of origin. Due 

to this reason a more careful analysis of this problem is needed. 

Below we shall represent some preliminary results of the analysis based on the local 

potential model of the strong n+n--interaction. In this model t.he "reduced'' pionium 

wave functions 

'Pn(r) = ~ri/Jn(r), jl<l>n(r)i2dr = I, 

obey the Shrodinger equation 

<l>~(r) + m[Uc(r) + U,(r)]<I>0 (r) = mEn<Pn(r), 

(4) 

(5) 

where m is the pion mass, En - binding energy, U0 = a/r, U, - Coulomb and strong 

potentials, respectively. 
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2. The scheme and results of perturbative analysis 

First of all, let us apply the methods of the perturbation theory to the Schrodinger 

equation (5), treating the strong interaction potential Us as perturbation, in order to 

obtain some qualitative estimations. Putting 

where 

'Pn(r) ~ cp~l(;) + cp~ll(r)' 

E(o) _ mo? 
n - . --

4n2' 

En = E(O) + E(l) n n , 

00 

E~1l = j U.(r)<l>~0l2 (r)dr; 
0 

cp~0l11
(~) + m[Uc(r) - E~l]cp~l(r) = 0, 

cp~1l"(r) + m[Uc(r)E~0l]cp~1l(r) = m[Er) - u.(r)Jcp~l(r); 

(6) 

(7) 

(8) 

(9) 

(10) 

and applying the general methods of solving the linear inhomogeneous equations [4, 5] 

one can obtain 
cp(l) = cp(O) [c,.. - Xn(r)] , 

n n 

where 

( ) J
r dr1 Jr,I (0) ( 2 (l) 

Xn T = (0) 2 cpn r1)I [-En + u.(ri)]dr2 
o J<l>n h)I o 

and 00 

Cn = J drl<l>~l(r1)12xn(r). 
0 

If we define the ratio 
'Pn(r) _ 1/!n(r) 

R,..(r) = cp~o)(r) = 1/J~c)(r) 

(11) 

(12) 

(13) 

(14) 

as a measure of the influence of strong interactions. on the values of the pionium wave 

functions, then in the first order of the perturbation theory 

R,..(O) ~ 1 + Cn . (15) 

With explicit expressions for the pure Coulomb wave functions cl>~
0
l we have proceeded in 

the calculation of Cn with n = 1, 2, 3. 
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The result looks like as follows: 
oo oo k (n) 

Cn = I mU.(r)rdr + fi din) I mU.(r)r(;s) Inc; )dr' 

where din) ~ 1, rt> ~ rs ~ 400 fm. 

Taking into account the relation 

00 

j mU.(r)r2dr ~a~ 0.15 fm , 
0 

(16) 

(17) 

where a is the 1r+1r- scattering length, it is easy to see that the n-dependent contributions 

to c,. are numerically small (of order 10-3 ) and may be neglected. 

Putting u. = g/rexp(-br) with the values of parameters [3] g ~ 3, b =mp~ 3.8Jm- 1
, 

that corresponds to· applying the p-exchange model for a describtion of the strong 1r+1r--

interaction, one can obtain for n-independent part of c,. (see also [6]) 

00 

J gm 
mU.(r)rdr = - ~ 0.55. 

o mp 
(18) 

These estimations show that the strong 7r+7r--interaction can change noticeably the 

value of the pionium wave functions at origin and this effect cannot be ignored at evaluat­

ing the probabilities Wn (2). On the other hand, the large correction to the values of the 

wave functions, obtained in the first order of perturbation theory, means that the higher 

order corrections are not small and must be taken into account. Their calculation does 

not look a simple problem. 

3. Numerical investigation 

Due to this reason we have applied numerical methods for an accurate investigation 

of the pionium wave functions behaviour· at small distances, using the following equation 

with boundary conditions and normalization: 

where 

d2x 
<I>1 = dp2 + U(p)x(p) - c:x(P) = o, 

<I>2 = x(0) = o, <l>3 = x(oo) = o, 
00 

<l>4 = j x2(p)dp - 1 = 0, 
0 ' 

r 1 1 
p= - =µar, 

rs µ = 2m,,. ' . a = 137 . 

4 

' ~ '..1 

(19) 

(20) 

(21) 

(22) 

So we have an operator equation 

where 

<I>(z) = 0, 

I 
<I>1(z) 

<I>(z) = <I>2(z) 
,<l>3(z) 

<l>4(z) 

z = (x(p), c:) . 

(23) 

In order to calculate the normalized pionium wave ·functions, we have used an improved 

version of code [7], based on applying the continuous analogue of Newton's method, devel­

oped in ref. [8]. In this way we ~hange the primary equation by the following differential 

equation with parameter t 
d 
dt <I> (z(t)) = -<I> (z(t)) , (24) 

z(0) = zo, 0 < t < oo. 

When t ---t oo, the solution of this equation tends to the solution of primary equation (23) 

z(t) ---t z. 

For numerical calculations the grid on t was used { t;, i = 1 , 2 , . . . ; t0 ; ti+ 1 - t; = T}. 

For every t; we obtained the solution dz(t = t;)/dt to equation (24) 

dz(t;) , ( ) _1 · 
~ = -</> z(t; ) <I> (z(t;)) , (25) 

where ¢>' is Frechet derivative of function <I>, </>'-1 is an inverse operator. 

For approximation of dz(t;)/dt we use a finite difference 

dz(t;) 1 [ ) ( )] ~~~z;=T;- z(t;+1 -zt;. (26) 

Thus, 

z(t;+1) ~ T;~z; + z(t;). (27) 

If z(t;) is known, then as a result of this iterative procedure with parameter T; we 

obtained a sequence of the approximate values of the solution to equation (24) {z;} ---t z. 

As a starting approximation z0 we choose an analytical solution of the corresponding 

Coulomb problem. The iterati".e proced:1re was continued until residual II <I> (z(t)) II< 
10-5. 
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Fig. 1. A result of numerical calculation of Coulomb pionium eigenfunction Xic\p). 

The problem (25) was solved numerically in the interval (a, b), where a= 10-8
, bis 

a sufficiently large number, depending on the principal quantum nutnber n. The solution 

at the point b was adjusted logarithmically to the appropriate Coulomb eigenfunction 

x'(b) 
x(b)· 

x<cl' (b) 
x<cl(b) . 

(28) 

To calculate, we used a nonuniform grid on pas follows: in the interval (a, 0.02) - 301 

nodes, in the interval (0.02, 2) - 301 nodes and in the interval (2, b) - 200 nodes. 

The accuracy of the method was tested on Coulomb problem. Fig. 1 shows the nu­

merically obtained solution of Coulomb problem for n = I for potential Uc(P) = 2/ p. Fig. 

2a gives the corresponding value of the wave function ¢ic)(p). The same functions for 

n = 2, 3, 4 are given in Figs. 2b-2d. The difference between the numerical and analytical 

values of function ¢tl(p), n = I, 2, 3, 4, is represented in Figs. 3a-3d. 
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Fig. 2. Results of numerical calculations of Coulomb pionium nS-st.atc wave fund.ions ,;,),cl (p) 

for n = I (a), n = 2 {b), n = 3 (c), n = 4 (d). 
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Fig. 3. Difference between numerical and analytical values of functions 1/J~c\p) 

for n = 1 (a), n = 2 (b), n = 3 (c), n = 4 (d). 
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Fig. 4. Behaviour at small distances on the pionium wave function 1/J1{p). 

The input of parameters of the code has been chosen in this way to guarante an absolute 

accuracy of the calculations higher than 10-4 • To check up this accuracy, we have com­

pared the numerical solution of Shrodinger equation with the pure Coulomb interaction 

with the analytical one. 

At the next step we solved our problem for the sum of strong and Coulomb potentials 

as follows: 

where 

2 b a U(p) = - (1 - e- P) + - e-bp 
p p ' 

mp 3 
b= - ,::; 1.5-10, 

aµ 
20'.p,r,r. ~ 8 . 102 ' a= -- ~ 

O'. 

. 2 

9p,r,r ~ 3 
O'.p,r,r = -- ~ . 

471" 

(29) 

(30) 

The results of the numerical calculations of the. wave function 'lj;(p) for n = l are 

represented in Fig. 4. At a long interval of p we cannot see a difference between it and the 

corresponding wave function of Coulomb problem, but when p is compatible with Fermi 

radius, then this difference is significant. This fact is shown for n = l in Fig. 5a. The 

difference also takes place for n = 2, 3, 4 (see Figs. 5b-5d). 
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Fig. 5. Influence of strong pion-pion interaction on the pionium nS-state wave functions "Pn(P) ,:. 

at small distances: n = I (a), n = 2 (b), n = 3 (c), n = 4 (d). 
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Fig. 7. The accuracy of n-independence of strong renormalization factors for potentials 

(a) U(p) and (b) U(p). 

The most important conclusion from our numerical calculations is as follows: the 

functions 
1/Jn(P) 

Rn(p) = 1/J~c)(p) . 

are practically independent of n (n = 1, 2, 3, 4). This is illustrated by Fig. 6. 

(31) 

Fig. 7a shows the differences between functions Rn(p) for the considered n. One can 

see from the plots that the differences between functions Rn for n = 1 -. 4 are of the order 

less or equal 10-3 . Thus, we can replace functions Rn(p), (n = 1 - 4) with accuracy 10-
3 

with R1(p) 
Rn(p) = Ri(P) + 0(10-3

). 

The same results were obtained for potential 

where 

- 2 · b b U(p) = -(1 - e- P) + ae- P, 
p 

mp 3 
b = - ~ 1.5 · 10 , 

aµ 

- 1 ' 
a = - a · b ~ 6 · 105 

2 . 
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(32) 

(33) 

(34) 

As one can see from Fig. 7b, the estimation (32) is valid for potential (33). 

So, we can make the following conclusions from our calculations: for the considered 

potentials (29) and (33) for the principal quantum numbers n = 1, 2, 3, 4 the following 

estimation is valid 
·i/Jn(P) = 1/Ji(p) + O (l0-3) 
1/Jic\p) 1/Jlc)(p) ,, , 

(35) 

i.e. with accuracy 10-3 function 1/Jn(P) can be ,represented as 

1/J,.(p) ~ a(p)if;!,c>(p)' (36) 

where a(p) is independent of n, pis compatible with Bohr radius. 

4. Conclusion 

Thus, the results of the numerical solution to equation (5) with Yukawa-type strong 

potential have confirmed the main conclusions of the perturbative consideration, namely: 

the ratios 
·,j;,,(r) = R.,.(p) 

R.,,(r) = 1/Jic)(r) (37) 

being numerically large (see Fig. 6) in the region r :S r. ~ 1 J m and essential for the 

problem under consideration ( n-dependence of values wn), are practically n-independent 

(their n-independence is illustrated by Fig. 7). 

This means that with a high degree accuracy one can substitute 

1/Jn(r) = R(r)1J;!,cl(r) (38) 

in eq. (2) and, replacing M(r) ⇒ M(r) = M(r)R(r), obtain 

. Wn ~ If M(r)1J;!,c)d{ ~ \v)~:>(o)j21j M(f)d1f ~ n-:l. (39) 

Therefore, we can conclude that strong interaction corrections to the pionimn wan• 

functions at small distances, being sufficiently large, do not change the n-:i_law (1) pri­

marily derived in paper [2] assuming that the pionium wave functions arc pure Coulomb. 
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AMHpxaHOB 11. H Lip. 

MeTOJ:1 HCCJie)lOBaHml ITOBe)leHIUI J:IHMe3OaTOMHhIX BOJIHOBhlX q>j'HKUHH 

Ha MaJihIX pacCTO51HH51X 

E4-98-386 

I,J3yqeHO ypaBHeHHe lllpeJ:IHHrepa, OITHCbIBaIOmee CHJihHOe 7t + 7t--B3aHMO)leH­

CTBHe B JIOKaJihHOH ITOTeHI._\HaJihHOH MO)leJIH.- BJIH51HHe CHJihHOro 7t + 7t--B3am.10)leH­

CTBH51 Ha ITOBe)leHHe BOJIHOBh!X cl>YHKUHH ITHOHH51 Ha MaJihIX paCCTO51HH51X 

J:IJI51 nS-cOCT051HHH HCCJie)lOBaHO aHaJIHTH'leCKH (nepTyp6aTHBHO) H lJHCJieHHO. Ilo­

Ka3aHO, '!TO ::icpcpeKT BJIH51HH51 CHJihHOro B3aHMOJ:leikTBmi Ha «KYJIOHOBCKyro» BOJI­

HOByro cl>YHKUHIO ITHOHH51 CBOJ:IHTC51 K YMHO)l(eHHIO ee Ha q>j'HKUHIO, npaKTHtJeCKH 

He 3aBHC51IUYIO OT rnaBHOro KBaHTOBoro lJHCJia n. B CB513H C tJeM n-3aBHCHMOCTh 

BepO51THOCTH po)l(J:leHH51 7t+7t--aTOMOB B nS-cocT051HHH OKa3bIBaeTC51 TOH )Ke, '!TO 
+ - V H B cnyqae lJHCTO KYJIOHOBCKOro 7t 7t -B3aHMO)leHCTBH51. 

Pa6orn BhlfIOJIHeHa B J1a6opaTOpHH BhllJHCJIHTeJihHOH TeXHHKH tt aBTOMaTH-

3aUHH Ol15Il1. 

ITpenpllHT Coo6me1111e 06-be)ll!HeHHOro IIHCTl!Tyra ll)lepHblX IICC/le)lOBaHIIH. Jly6tta, 1998 

Amirkhanov I. et al. E4-98-386 
A Method for Research on Behaviour 

of Dimesoatomic Wave Functions at Small Distances 

The Schrodinger equation describing the local potential model of a strong 

1t+1t--interaction was studied. The influence of the strong 1t+1t--interaction 

of the behaviour of pionium nS-state wave functions at small distances is studied 

both analytically (perturbatively) and numerically. It is shown that in the whole 

the accounting of strong interaction results in multiplying pure Coulomb pionium 

wave functions by some function which is practically independent of the value 

of the principal quantum number n. Due to this reason, then-dependence of 7t+7t-­

atom production probability in 11S-state remains the same as in the case of a pure 

Coulomb 7t + 7t--interaction. 
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