


1. Introduction

The method for the measurement of the pionium (7*7~-atom) lifetime proposed in
ref. {1], is essentially based on the assumption that the n-dependence of probability w,
on creation of n*7~-atom in nS-state is well known or, at least, may be calculated with

a high degree accuracy.

The first consideration of this problem has been done in L. Nemenov’s paper [2], where’

the following relation
Wy ~ 173 (1)

has been derived from a more general result of the author 2]
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’

wo~ | [ M@ (2)

M) = sz [ MG 70, | ©)
where M(p) is the amplitude of production of free m*n-pairs with relative momentum
P in hadron — hadron or hadron — nucleus collisions and ¥, (r) is the wave function of
nS-state of pionium.

In line with accounting the short range nature of amplitude M(7) in his original deriva-
tion of (1) from (2) L. Nemenov also has rhade an assumption that the pure Coulomb
wave functions describe quite well a distribution of pions in the pionium not only at large
distances, but at small ones also. However, as it has been shown recently by E. Kuraev
[3], this assumption is unjustified due to some noticeable influence of strong a ntn~-
interaction on the behaviour of the pionium wave functions in the nearest of origin. Due
to this reason a more careful analysis of this problem is needed.

Below we shall represent some preliminary results of the analysis based on the local
potential model of the strong 7*7~-interaction. In this model the "reduced” pionium

wave functions
B, (r) = Vamrn(r), / [B,(r)Pdr = 1, (4)
obey the Shrédinger equation

B (r) + m{Uo(r) + Uy(r)|@n(r) = men®n(r), (5)

where m is the pion mass, €, — binding energy, U, = a/r, U, — Coulomb and strong

potentials, respectively.

2. The scheme and results of perturbative analysis

First of all, let us apply the methods of the perturbation theory to the Schrodinger
equation (5), treating the strong interaction potential U as perturbation, in order to

obtain some qualitative estimations. Putting

8, (r) = 0(r) + 20 (r), ©)
En=E$'?)+E$1l)’ ’ (7)
where . o0
0 =T = [UmE s ®
" 4n? 3 .
0" (r) + m{U(r) — 12D (r) =0, ®)
‘1’9)"(7“) + m[Uc(r)ESIO)]Qg)(r) = m[ESII) - US(T‘)]CI)SIO)(T‘) ) (10)

and applying the general methods of solving the linear inhomogeneous equations [4, 5]

one can obtain

P =3 [en — xalr)] 5 (1)
where N r I : 12)
ry O ) Pe + Uy(ra)ldrs
xulr) = | —mr——3 [ 125 (r)I"[—exn a\T2
ZWQmW!

and 0
cu= [ O xnlr) - | Wy

If we define the ratio " B,(r) _ nlr) (14)
) = 390) ~ 49r)

as a measure of the influence of strong interactions.on the values of the pionium wave

functions, then in the first order of the perturbation theory
R.(0)~1+cn. ‘ (15)

With explicit expressions for the pure Coulomb wave functions ®© we have proceeded in

the calculation of ¢, with n =1, 2, 3.
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The result looks like as follows:

o0 o0 ' £
Cp = /mU,(r)rdr+ Zd,(c")/mU,(r)r(rL) ln(%)dr, (16)
0 n=1 0 B
where d ~ 1, 7™ ~ 15 & 400 fm.
Taking into account the relation
/mU Yrdr = a ~0.15 fm , (17)

where a is the 777~ scattering length, it is easy to see that the n-dependent contributions -

to ¢, are numerically small (of order 1073) and may be neglected.
Putting U, = g/r exp(—br) with the values of parameters Blg=3,b=m,~38fm™,

that corresponds to applying the p-exchange model for a describtion of the strong w7~

interaction, one can obtain for n-independent part of ¢, (see also [6])

/ mU,(r)rdr = I% ~ 0.55. (18)
0 Mo

These estimations show that the strong 77~ -interaction can change noticeably the
value of the pionium wave functions at origin and this effect cannot be igﬁored at evaluat-
ing the probabilities wy, (2). On the other hand, the large correction to the values of the
wave functions, obtained in the first order of perturbation theory, means that the higher
order corrections are not small and must be taken into account. Their calculation does

not lock a simple problem.

3. Numerical investigation

Due to this reason we have applied numerical methods for an accurate investigation
of the pionium wave functions behaviour ‘at small distances, using the following equation

with boundary conditions and normalization:

&1 = TX 4 Ulpx(o) - ex) =0, (19)
&y = x(0) =0, ®3=x(c0)=0, (20)
By = /xz(p)dp -1=0, ‘ (21)
where . ' . )
p=_-SHAT, pS=oMa, &S gag. (22)

So we have an operator equation

d(z) =0, ) _ (23)
where
®1(2)
P(z) = ZZZ; ;
| 24(2)

In order to calculate the normalized pionium wave functions, we have used an improved
version of code [7], based on applying the continuous analogue of Newton’s method, devel-
oped in ref. [8]. In this way we change the primary equation by the following differential
equation with pafa.meter t . ‘

L4 (=(t) = 2 (=(1)) , | (24)

2(0) =2, 0<t<oo.

When ¢ — 00, the solution of this equation tends to the solution of primary equation (23)
2(t) — = _
For numerical calculations the grid on ¢ was used {t;, 1 =1,2,...; to; tisn—ti = T}

For every t; we obtained the solution dz(t = ;)/dt to equation (24)

dz(ti)_ / 1 g (4 :
() g () 2 () 25

where ¢' is Frechet derivative of function &, ¢/ ~! is an inverse operator.

For approximation of dz(t;}/dt we use a finite difference
dz(t; _ :

—d(t—l) ~ Az =77 [e(tin) — 2(8)] - (26)

Thus, .

Z(t,’+1) = T,‘AZ,' + Z(t,’) . (27)

If z(t;) is known, then as a result of this iterative procedure with parameter 7; we

obtained a sequence of the approximate values of the solution to equation (24) {z:} = =

As a starting approx1mat10n 2 we choose an analytical solution of the corresponding

Coulomb problem. The iterative procedure was continued until residual || @ (2(t)) lI<

1075.
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Fig. 1. A result of numerical calculation of Coulomb pionium eigenfunction xgc)(p).

The problem (25) was solved numerically in the interval (a, b), where a = 1078, b is
a sufficiently large number, depending on the principal quantum number n. The solution

at the point b was adjusted logarithmically to the appropriate Coulomb eigenfunction

X(b) _ X' (b)

FORECION
To calculate, we used a nonuniform grid on p as follows: in the interval (a, 0.02) — 301

nodes, in the interval (0.02, 2) — 301 nodes and in the interval (2, b) — 200 nodes.

(28)

The accuracy of the method was tested on Coulomb problem. Fig. 1 shows the nu-
merically obtained solution of Coulomb problem for n = 1 for potential U(p) = 2/ p.‘ Fig.
2a gives the corresponding value of the wave function 1,[19(/)). The same functions for
n =2, 3, 4 are given in Figs. 2b-2d. The difference between the numerical and analytical

values of function ¥{9(p), n = 1, 2, 3, 4, is represented in Figs. 3a-3d.
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Fig. 2. Results of numerical calculations of Coulomb pionium nS-state wave functions 1/~,(,")(p)

forn=1(a),n=2(b),n=3(c), n=4(d).
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Fig. 3. Difference between numerical and analytical values of functions ¢,(.C)(p)

forn=1(a),n=2(b),n=3 (c), n =4 (d).
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Fig. 4. Behaviour at small distances on the pionium wave function v1(p).

The input of parameters of the code has been chosen in this way to guarante an absolute
accuracy of the calculations higher than 10~4. To cﬁeck up this accuracy, we have com-
pared the numerical solution of Shrédinger equation with the pure Coulomb interaction
with the analytical one.

At the next sfep we solved our problem for the sum of strong and Coulomb potentials

as follows:
2
Ulp) = 2(1—e ) + 2, D)
p p
where : 9 : ’
b="2~15.10°, o= 8102, (30)
ap a :
)
=9 8
Comm = )

The results of the numerical calculations of the wave function ¥(p) for n = 1 are
represented in Fig. 4. At a long interval of p we cannot see a difference between it and the
corresponding wave function of Coulomb problem, but when p is compatible with Fermi
radius, then this difference is significant. This fact is shown for n = 1 in Fig. 5a. The

difference also takes place for n = 2, 3, 4 (see Figs. 5b-5d).
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Fig. 7. The accuracy of n-independence of strong renormalization factors for potentials

(a) U(p) and (b) U(p)-

The most important conclusion from our numerical calculations is as follows: the

functions

_ Bulo) (31)
w (p) :
are practically independent of n (n=1,2,3,4). Thisis illustrated by Fig. 6.
Fig. 7a shows the differences between functions R.(p) for the considered n. One can
see from the plots that the differences between functions R, for n = 1—4 are of the order

less or equal 1073, Thus, we can replace functions Rn(p), (n =1 —4) with accuracy 103

Ra(p)

Ra(p) = Ri(p) +0(107%). (32)

The same results were obtained for potential

O =20-emeact, @)
where 1
b="0 ~15.10°, a=-a-b=6-10°. - (34)
op 2
12

As one can see from Fig. 7b, the estimation (32) is valid for potential (33).

So, we can make the following conclusions from our calculations: for the considered
potentials (29) and (33) for the principal qﬁantum numbers n = 1, 2, 3, 4 the following
estimation is valid

Inle) _ (o) 4 07, (3)

W) ()

i.e. with accuracy 1073 function ¢,(p) can be yepresented as

"j}n(p) =~ a(P)"Py(f)(P) » (36)

where o(p) is independent of n, p is compatible with Bohr radius.

4. Conclusion

Thus, the results of the numerical solution to equation (5) with Yukawa-type strong
potential have confirmed the main conclusions of the perturbative consideration. namely:

the ratios

wn (I‘)
Pi(r)

being numerically large (see Fig. 6) in the region 7 < 7, ~ 1 fm and essential for the

R’l(r) =

= Ra(p) (37)

problem under consideration (n-dependence. of values wy,), are practically n-independent
(their n-independence is illustrated by Fig. 7).

This means that with a high degree accuracy one can substitute
Ya(r) = R(r)WO(r) » (38)
in eq. (2) and, replacing M(7) = M(F) = M(¥)R(r), obtain
[ #@war ~ ool | A

Therefore, we can conclude that strong interaction corrections to thie pionium wave

2 ”
~nTd (39)

Wy ~

functions at small distances, being sufficiently large, do not change the n=3-law (1) pri-

marily derived in paper [2] assuming that the pionium wave functions are pure Coulomb.
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Amupxanos H. u np. E4-98-386
Meron ncenenoBaHus MoBeqeHHS TMME30aTOMHbIX BOMTHOBBIX (PyHKUHIA
Ha MaIBIX PACCTOSHHSIX

' + - P
Hzyyeno ypaenenne Hlpenunrepa, omuceisaioniee CuibHOE 7T -B3aUMOLEH-

CTBME B JIOKalbHOM NMOTEHUMAILHOH MoAenH. Bausaue cnpHOro 't -B3aumoreii-
CTBMA Ha noOBegeHHE BOJIHOBBIX (PyHKUMH TMHOHMA Ha MajibIX pacCTOSHUAX
AN nS-COCTOSHUI UCCIENOBAHO aHATHTHUYeCKU (mepTypOaTiBHO) U uncnenHo. IHo-
Ka3aHo, 4TO 3(p¢eKT BIMAHUS CHILHOIO B3aUMOREHCTBHS HAa «KYIOHOBCKYIO» BOJI-
HOBYI0 (DYHKUMIO NHOHMS CBOAMTCA K YMHOXCEHHIO ee Ha (PyHKUMIO, NpaKTHYECKH
He 3aBUCSILYI0 OT [IaBHONO KBAaHTOBOIO 4Mcna n. B CBSI3M ¢ yeM n-3aBUCHMMOCTB

BEPOATHOCTU POXNEHHA Tt+TC—-aTOMOB B nS-COCTOSIHMM OKa3bIBAETCH TOH Xe, YTO
H B cJiydae YHUCTO KYJIOHOBCKOTO 7t+TC~-B3aPlMOIICI‘;lCTBHﬂ.

PaGora BeinondeHa B JlaGopaTopnM BBIYMC/IHTENBHOH TEXHMKH M aBTOMAarTH-
3auun OUSAU.
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Amirkhanov 1. et al. E4-98-386
A Method for Research on Behaviour
of Dimesoatomic Wave Functions at Small Distances

The Schrodinger equation describing the local potential model of a strong

n'n -interaction was studied. The influence of the strong n'a -interaction
of the behaviour of pionium nS-state wave functions at small distances is studied
both analytically (perturbatively) and numerically. It is shown that in the whole
the accounting of strong interaction results in multiplying pure Coulomb pionium
wave functions by some function which is practically independent of the value

of the principal quantum number n. Due to this reason, the n-dependence of n'n -
atom production probability in nS-state remains the same as in the case of a pure

Coulomb 7t 1 -interaction.
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