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1 Introduction 

The anomalous loss coefficient TJ = 3 • 10-5 of UCN in the Be bottle [1], which is 2 orders 
of magnitude higher than the theoretical one: RJ· 3 • 10-7 , requires an explanation. We tried 
to explain this phenomenon by properties of the neutron itself, i.e., by properties of its wave
function structure. Thus our goal is to present here the hypothesis and to show experimental 
results aimed at its verification. However, before doing that, it is useful to briefly overview 
all the possible inelastic scattering processes leading to UCN losses for to see, whether it is 
necessary indeed to devise something extraordinary to explain the anomaly. 

2 Review of all the inelastic loss processes 

First of all we should remind the definition of the loss coefficient. Reflection of UCN of energy 
k2, where k is a wave-number, from a wall with the potential u = 41r N0 b, where bis the coherent 
scattering amplitude of the wall.nuclei, and No is the atomic density, is described by a reflection 
amplitude R. For total reflections (k2 < u) in absence of losses IRI .= 1'. Because of losses the 
IRI < 1, and a loss coefficient is defined as µ = I - jRj 2

• The coefficient µ is proportional 
to the reduced loss coefficient TJ =Imu/Reu, which is equal to the ratio .of:the imaginary and 
real parts of the coherent scattering amplitude be: TJ =Imbe/Rebe, where Imbe according, to 
the optical theorem is: Imbe = ku,/ 41r, and u1 is the total loss cross section, which includes 
absorption and many inelastic scattering cross sections. The particular inelastic· process i gives 
its partial contribution to the loss coefficient T]; = ku;/41rRebe; In the following we shall write 
in the denominator be instead of Rebe, because Imbe «Rebe. 

In general, the cross section· of inelastic scattering, .and the related I~ss coefficient ar~ repre-
sentable in the form: · · · · 

(1) 

where k011 is an effective wave-vector of the neutron heated via considered inelastic process, 
and b' denotes a coherent, incoherent or magnetic scattering amplitude. 

In consideration of all the inelastic processes it is necessary to remember two experimental 
facts: 

1. the recent experiments in ILL [2] have shown that with probability of the order 10-6 there 
is some process of UCN stepwise small heating up to the energy which is approximately 
twice of the primary one, · 

2. the experiments [3] had shown that there were no continuous broadening of the spectrum, 
i.e. there were no heating by 2 • 10-12 eV at a single collision with the walls. 

Both facts have nothing to do with the UCN anomaly. Especially the first one because it 
has been observed in bottles with large losses, and because its magnitude is smaller than the 
anomaly. However it is useful to take both facts into account in estimation of probabilities for 
different inelastic processes. · 

With the relations (1) we can easily find the probability of stepwise small heating. Indeed, if 
b' RJ be and k.J J RJ k1;m = ,/ii, the partial loss coefficient becomes TJ = bcklim, which, in particular 
for Cu walls, is approximately 7 · 10-7 in pretty good agreement with the observations . 
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2.1 Phonons 

2.1.1 The coherent phonon cross section 

I [m 1,,
2

] d3k 
Uc,inel = lbcl

2 L Af 2w d3qo(q - K, - r)n(wq/T)o(w - Wq)T, 
T q 0 

where ,;, = ko - k is a momentum transferred, r is a vector of the reciprocal lattice, w = 
(k5 - k2)/2 = -1,,

2 /-2 + ,;,k0 is energy transferred, w9 is the phonon energy, which for small q 

can be represented, as cq with c being sound velocity, n(x) = 1/(exp x - l) is the Bose-Einstein 
factor, T is temperature, m is the neutron mass, and M is the mass of the wall nuclei. Here 
and in the following we use the units n = m = l. 

We can neglect small vectors k0 and q in the first a-function. Then, after· integration over 
k, we obtain 

d3 4 

Uc,inel = lbcl
2 LI Mm n(wq/T)o(r2 /2-:- Wq),!- = 41rlbcl 2 L ;n(r2/2T) ;k . 

T , 0 T 4 0 

To estimate the magnitude we can replace the sum over all T by the integral: 
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21r k}./xdx m x2 

Uc,in:1,= 41rlbcl (21r)3No Mn(r fkT) 4c3ko = 41rJbcl (21r)3No Mn(x) 4c3ko, 
0 

(2) 

where we integrated over angles, used the relation T = k}/2, and changed variables (r /kT )2 = x. 
Integration over x gives 

' · 2kT 
Uc,inel = 41rjbcl ko F, 1r m (vr) 3 

( a )
3 

F = -r(7 /2)((7 /2)- - - , 
2 · · · M. c ),,T 

(3) 

where r(n) and C(n) are Euler and Riemann functions: r(7/2) = 15...;:ir/8 = 3.32, C(7/2) = 
1.127, r(7/2)C(7/2) R:J 3.75, and we used the relations, k~ = 21r/)..T, kT/c=vT/c, where VT is 
the speed of thermal neutrons. All the magnitudes in (3) can be now used with their natural 
dimensionalities. 

From (3) it follows that the coherent I-phonon heating contributes to loss· coefficient 7/c,inel = 
bckTF. For Be at T = 300 K we have VT= 1200 m/s, ),,T = 1.8 A, ba~kT = 2.7 • 10-4 , and 
FR:! 1.1 · 10-3, where for c We used the sound velocity of transverse vibrations: c = 8.8 km/s·. 
Thus T/c,inel = 3 · 10-7

, and it quickly decreases with temperature as T 712• · 

The smallest wavelength of the neutron after inelastic coherent scattering is ),, R:J a -
interatomic distance. Thus the coherent phonon process does not give small energy heating. 

2.2 Incoherent phonon cross section 

2 / m 1,,
2 3w;dw9 d3k 

O"inc,inel = lbincl M-2 n(wq/T)--3-o(wq - w)-k. 
: Wq WD · 0 

We can, ;i,pproximate ,;, R:J k, and after integration over k we obtain-

. 2 /
00 

m .· 3w;dw9 ..f1.w; 
O"inc,inel == 41rjbincl Mn(wq/T)--3--k-'· 

0 WD O •. 

and after ,integr~tion over Wq we obtain 

2-

;, 

.c, 

,f 

= 41rjb,ncl21: F, F = 3r(7/2)((7/2)(m/M)(T/Tv)3, 

where Tv is the Debye temperature. 
For Be the incoherent amplitude b;nc is very small, however for estimation we can treat all 

the inelastic scattering in the incoherent approximation and suppose that binc = be, then at 
room temperature, if we take for Be Tv = 1200 K, we get FR:! 0.02, thus 7/inc,inel R:J 5.4 · 10-6 • 

Heating to small energies w1 R:J k5f2 is less by the factor (k0 /kT )5 R:J 10-12 , i.e., it is negligible. 
Two phonon process has an additional factor'F2 , which for emission and absorption is equal 

to F2 = (m/M)(E0 /wv)3 < 10-16
, and for 2 absorptions is equal to F2 = (m/M)(T/Tv)3 R:J 

0.002 (for Be). 

2.3 Surface waves 

The surface waves are important for solid and liquid, like fombline oil, walls. To find the heating 
by surface waves we solve the Schriidinger equation 

[ia, + A - u(r, t)]ip(r, t) = 0, (4) 

with the potential u = u0t1(z > Co cos(qr 11 - !1t)), where we introduced the Heviside function 
t?(x) which is equal to 1 or 0 when inequality in its argument is satisfied or not. For small 
amplitude Co of vibrations we can use the linear expansion: u(r, t) R:J u00(z > 0)+uoCo cos(qr

11
-

!1t)o(z), and treat the second term as a perturbation for unperturbed potential u0t?(z > 0). 
The scheme for solving the equation is the following: we go to the reference frame moving 

along the surface wave with the speed CR = n/ q, which is the Raleigh speed. Then we find 
the diffraction from a frozen wavy relief. After that we transform the result back to laboratory 
frame and average it over the spectrum. 

After transmission to the moving reference frame we solve the stationary equation 

[E + A - uot?(z > 0) - uoCo cos(qr11 )o(z)]i/J(r, E) = 0, 

where E = (ko + cR) 2. The solution by perturbation theory is 

ip = i/Jo + / G(r, r', E)ou(r')ip0(r', E)d3r', 

where G is the Green function of the unperturbed equation 

[E + A - u0t?(z > 0)]G(r, r', E) = o(r - r'), 

which is represented in the form 

G(r,r',E) = (
2
:)2 / d2p11exp(i(r - r']P11)G(p1.,z,z1

). 

(5) 

(6) 

(7) 

(8) 

Here PL= JE- p~ and G(p1.,z,z') under the integral is the one dimensional Green function, 
which is the solution of the Schriidinger equation 

(pi+ d2 /dz2 
- u0t1(z > 0)]G(p1., z, z') = o(z - z'), (9) 

and is equal to 
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G(pl.,z, z') = -
2

.
1 

(t?(z > z1)if,1(Pl., z)1P2(pl., z') + t?(z' > z)if,1(Pl., z')if,2(Pl., z)], 
'Pl. 

where 1P1,2(Pl., z) are the two linearly independent solutions 

1P1(p, z) = t?(z < O)[exp(ipz) + p(p) exp(-ipz )] + t?(z > O)r(p) exp(ip' z) (10) 

1P2(p,z) = t?(z < O)exp(-ipz) + t?(z > O)(exp(-ip'z)-p(p)exp(ipz)]/r(p')] (11) 

of the one-dimensional Schrodinger equation 

(p2 + d2 /dz2 - uot?(z > O)]1P1,2(p,z) = 0. (12) 

In the expressions (10,11) we used the notations p' = ✓p2 - u0 , p(p) = (p - p')/(p + p'), and 
r(p) = 2p/(p + p'). 

Substitution of the primary wave function 

t/Jo(r,t) = t/J1(kol.,z)exp(i(ko + cn]r11) 

into (6), gives the perturbed part of the wave function for diffraction 

otjJ(r, t) = exp(ikru)f(ko ➔ k)[t?(z < 0) exp(-ikl.z) + t?(z > 0) exp(ik~ z)], 

where k11 = -q + kou + en, kl.= ✓(ko + cn)2 - (-q + k0u + cn)2 ~ ✓'Icnii., 

. kol. - kb.1. 
f(ko ➔ k) = uofo(l + p(kl.)][1 + p(koL)]/2kl. = -2ikol.fo k k' . 

l.+ l. 

The probability of diffraction is 

) kl. I 2 kol. - kbl. 2 2 kol. 
W(ko ➔ k = -k f(ko ➔ k)I = 4kl.kol.le k k' I ~ uolel -k, 

0l. l. + l. l. 
(13) 

where kol., kl. are the normal to the reflecting surface components of primary and scattered 
waves, and kl. ~ ✓ui. Now we suppose, as in the phonon case, that 1e1 2 = 1/2Mf!, and the 
spectrum of the surface waves is the 2-dimensional Debye spectrum. Then after averaging over 
the spectrum we get 

m /
00 

2f!df! u~12 
m Tuo _6 

W = T/sw ~ M ~ 2k f!n(f!/T) ~ MT2 < 10 . 
-~ ill l. ill 

(14) 

The main contribution to the integral comes from low f!, where n(f!/T) ~ T/f! and integral 
diverges. To a.void the divergence the integration was performed down to 2f! = u0 . For lower 
f! expression (13) should be approximated by 4kol.kl.e5 which provides the convergence for the 
integral. 

The last number in (14) is correct for Be at room temperature, if we take surface Debye 
temperature T,v = 0.8Tv,Be ~ 900 K. 

2.4 Liquids 

In liquids there are no pure elastic scattering. If we don't take into account the optical potential 
of the liquid and treat the quasi-elastic scattering in the same way as for thermal neutrons, 
then the cross section is 

2 I 2 / 3 K,2 D 
Uqe = ko bcl d k (k2 - k5)2 + (K-2 D)2. 

4 

,, 
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The integration over the quasi~elastic peak gives the magnitude of the order 4rrlbcl 2
- We can 

suppose that all thi~ cross section means losses. Then its contribution to loss coefficient is 
T/qe ~ kobc < 10-6

• 

The formula is correct not only for liquids, but also for· surfaces contaminated with hydro
gen (7], if the hydrogen atoms arc freely diffusing along the surface. In that case the magnitude 
of the effect is 1/H,dif = C(uu/ac)bcko, where C and UH are the hydrogen concentration arid 
cross section. Thus there can be an enh,rncementJactor F = C(aH/uc), which is important for 
sufficiently high C. However diffusion processes should broaden UCN spectrum in the bottles, 
and in experiment the heating w1ts seen to be a. step wise. 

2.5 Spin waves 

Spin waves can be important for ferromagnetic walls. The spin wave cross section in the 
Heisenberg model is 

2 2 "/ 3 3 12 2 ) ( 2 2 a,pin = k/o ~ d kd qjF(K-) Sn(w0 / kr)8(k - q - r - k 0 ,5 k - k0 -:-w~), 

where r 0 = 1e2 /m,c2 ,. r is the vector of the reciprocal lattice, S is the spin of_ the atom'/ 
and F(K-) is form factor, \Vhich in our case can be approximated by 1. Spin waves in zero 
external magnetic·field are characterized by energy w~ = Dli2 with the constant D. which can 
be represented as m/m,11, with m,11 ~ O.Olm of the neutron mass. 

For T = 0 the integral is zero. For r # 0 we can neglect q and k0 in the first a-function. 
Thus the integration over k, q gives · · 

· _ 2S 2'°'/d3 ( /k2),S( 2 2) 2 (m•//) 312
'°' 2 2 T a,pin - kroL., qn "-'• T T - Dq = 4rrr0 S -- L.,n(r /kr)-::--

o , m , k0 

Approximation of the sum over T by integral gives 

2 (m•//)3/2/ d3r T a,pin = 4rrr0 S -- ----n(r2/k})- = 
m (2rr)3 N0 k0 

2 (m•//)
3

/
2 

2rrk} 2 k1 
4rrr0 S -;;- (2rr)3koNo ((2)f(2) = 4rrr0 ko F, F-2rr- -- -, _ "2 (m•f/)J/2 ( a )3· 

6 m ,\t ' 

where ,\T is the wave length of thermal neutrons, a is the intcratomic distance. The magnitude 
of F is near 10-2 for room temperatures, therefore T/,w is nearly the same as for phonons. 

2.6 Gas scattering 

There are some losses of UCN due to scattering on residual gas. The loss coefficient due to 
these losses can be estimated as T/ga• = n0 a9 L, where n0 is the gas density, and 

IW [m f4kr 
aga, = 4" (I+ m/M)2VMV; ko · (15) 

We suppose that b9., = be of the walls. Thtls 

- T/gas = bckTF, F ~ 2bcnoL,\oj;;, 
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For F = 10-2 , be= 10-12 cm, M = 25m, and L = 10 cm gas density should be 

(M 1 14 -3 
no= Fy ;:;- 2bcL>.o = 5 · 10 cm , 

which is equivalent to the gas pressure at ambient temperature ~ 10-2 Torr. Usually residual 
gas pressure in UCN traps is considerably lower. 

2.6.1 Gas model of the walls 

We can imagine the wall to be composed of gas molecules with high density. Then from (15) 

it follows Tfu••·"' ~ bckrJm/M. Since bckr ~ 3.5 · 10-4, then scattering by gas with inass 
M = 25m is near 7 • 10-5

_ 

2. 7 Cluster model 

2.7.1 The wall of clusters 

If we consider the substance to be a collection of gas clusters, every one containing n atoms, 
then the elastic scattering cross section of a cluster is proportional to (bcn )2, their density 

is No/n, and inelastic scattering for a gas cluster contains the factor Jm/nM as it follows 
from (15). In that model the effective T/ct is T/n = vnTJu••· The clusters have thermal velocity 
vr,n = vr,i/-,/n. Thus, for neutrons to acquire the velocity 5 m/s it is necessary to have clusters 
of n ~ 104 nucleons. They have dimension less than the neutron wavelength, so the scattering 
on them can be considered in s-wave approximation. The value of T/n can be sufficiently large 
to explain any magnitude of observed T/· However this model seems not to be plausible. 

2.7.2 Gas of clusters 

The more reasonable is a suggestion that the storage volume contains the dust consisting of 
such clusters. The losses of neutrons in such a gas of clusters can be represented T/ct = Cac1L, 
where L is the bottle dimension. If clusters are made of n atoms with the same amplitude b 
as the walls, then TJct = 4rrb2Cn3l2 L(kr/ko)Jm/M = Fbkr, where F = 2Cn3l2Lb>.0 Jm/M. 
Thus, for a given F we should have the concentration of clusters in the volume: 

C = FkoJM/m/4rrbLn312
• 

For F = 10-2
, M/m ~ 25, L = 10 cm, b = 10-12 cm, and n = 104 we obtain C ~ 109 • The 

pressure of such a gas is nearly 10-7 Torr. 

2. 7 .3 Gas of large clusters 

In the case of large clusters with dimensions d = 100 A UCN are totally reflected from them 
and in average increase their energy by w2 after every collision, where w is the thermal cluster 
velocity. We can again use the relation T/ct = Cac1L with ac1 = rrd2. Thus the density of such a 
gas should be C = TJc1/ac1L. Ford= 100 A, T/ct = 10-5

, L = 10 cm, and we have C = 106 /cm3
• 

Such clusters contain 105 atoms and their velocity is near 1 m/s. 

2.7.4 Large clusters on wall's surface 

It is also possible to imagine the dust with dimensions d ~ 100 A on the wall surfaces. In that 
case neutron can be totally reflected from a dust particle, and probability of inelastic scattering 

6 
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at every collision with the wall can be estimated as a probability of interaction with the dust 
particle. Probability of inelastic scattering is T/du,t = C,d2, where C, is two dimensional density 
of the dust particles. If T/du,t = 10-5 , then C = 107 particles per cm2

• The thermal velocity of 
such particles is near 1 m/s, thus almost every collision with a dust particle heats the neutron 
to limiting energy. 

2.8 Acoustics 

Acoustical vibrations have classical effect starting from frequencies 109 Hz, because at such 
frequencies the most important is the relative motion of the wall's surface with respect to the 
neutron. 

2.8.1 Ultrasound 

Let us suppose that the wall is trembling with the amplitude A and frequency w. If T = 
2rr /w > 1/ .,fii,v ~ 2 • 10-9 s, where v is neutron velocity, then interaction with the wall can 
be treated as classical, and the neutron energy after collision is in average equal to E =< 
(v + 2wcos(wt))2 >~ E0 + 2w2, where w = Aw. If w = 1 m/s, and w = w0 ~ 109 rad/s, then 
A should be ~ 10 A. · 

Let us suppose, that A(w) = A0w0 /w, and that neutron is heated at every collision with 
probability 10-5 • Suppose the spectrum to be g(w) = 3w2 /wr. Then we should have 

(wo/wi)3 = 10-5 ➔ W1 ~ 20wo. 

The pressure of the sound is 

Pac= pl A2 (w)w2g(w)dw = pA~w~ = 1N/cm2, 
0 

where p - the density of substance was taken 10 g/cm3
• This energy is 10-4 of the density of 

the thermal energy. 

The intensity of the sound is measured in deciBells: / = 10 log(P/ P0 ), where P0 is the 
reference pressure: p0 = 10-16N/cm2

• Thus the intensity of our vibrations is 160 dB. However 
the frequencies 109 are too high to be considered as acoustical. So to estimate how much 
of acoustical energy is contained in pure acoustical vibrations we should limit ourselves to 
frequencies w2 ~ 105• This range contains only (wifwi) ~ 10-15 of the full energy, thus the 
fraction of total supersound energy in acoustical range is of the order 0 dB. 

2.8.2 Acoustical sound 

The real acoustical sound is limited in the range up to 104 Hz, and the motion of the interface 
with such frequencies should be considered classically. If amplitude of the motion is A, the 
velocity of the interface is w = Aw, and neutron acquires an energy ex: w2 at every collision 
with the walls. If neutron should survive 10-5 collisions, it should be w2 = 10-su ~ 10-12 

eV. In that case the UCN spectrum in the trap should continuously broaden, which was not 
observed in experiment [3]. 

3 Quantum mechanics of the de Broglie wave packet 

In previous section we considered all -possible channels for UCN heating. The presence of 
ultrasound seems unreasonable. The hypothesis of fine dust or cluster gas is not yet checked, 
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however it may be rejected too, so ·we should be ready to s·eek for another explanation of the 
UCN anomaly. 

One hypothesis was formulated in [4). We suggested there that the explanation is,related 
to structure of the wave function of the free neutron, which is described by the de Broglie 
wave-packet [5, 4): 

·'·( ) _ [;;exp(-slr - vtl) ivr-iwt 
'I' r,t - I I e , 2ir r - vt 

(16) 

where s is the parameter, determining the width of the packet in the momentum space and 
the inverse width in the coordinate space, V is the central wave-vector, and c.J =· (v2 

- s2)/2. 
The wave-packet (16) is fundamentally differerit from the superposition of plane waves used in 
conventional descriptions. The wave-packet (16) is normalizable, non-spreading, and satisfies 
the Schrodinger equation everywhere except one point: 

(i8/8t + !::,./2)1/;(r, t) = -~ei(•
2
+•

2
l1l 2o(r - r(t)) 

which can be considered as a source of the wave function, .or neutron itself. 
The wave-number spectrum of the packet (16) 

1/;(r,t) = fsJ d3p/2rr2 eipr-m(p)', 
V z_:; (p - v)2 + s2 

(17) 

(18) 

where f!(p) = [p2 - (p - V ) 2 - s2)/2, has a long tail extending far away from the central wave
vector v, and the anomalous losses of UCN can be attributed to nontunneling transmission of 
neutrons over the potential barrier. This transmission always takes place even if the height u 
of the barrier is considerably higher than the kinetic energy v2 /2 of the neutron. 

The losses described by the over barrier penetration are given by 

W = (4irc)
2 

/
00 

0(I I . ) Pl. [l - IR(p1.)12Jl~I d3 

(2ir)3_ P1. > V1,m IP1.I [(p - v)2 + s2)2 P, 
-oo 

(19) 

where 0 is the function equal to unity when the inequality in its argument is satisfied, and to 
zero in the opposite case, and 

R(p1.) = IP1.I - l~I 
IP1.I + IJPi - ul 

is the reflection amplitude from potential step u of the plane wave with the normal component 
of the wave vector equal to Pl.· The calculation gives 

s 
w ~ vu· (20) 

If we compare this value with the averaged loss coefficient 

µ(v) = 2; (arcsinz - zVl - z2 ) ~ ~I] ~ for small z, 
Z 3 yU 

(21) 

where z = v/vu, and 77 ~ 3 · 10-5 [l). Comparing (20) and (21) we get th_e information about 
s: 

s = 4ryv/3 ~ 4v • 10-5 
•. (22) 
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Ch 800 

Ch 670 

Cdl Si Ch 554 

Ch 100 

FIG. 1. The experimental layout: M - monochromator, 
C - collimator, n - neutron beam, Cdl - cadmium shield 
at the entrance surface of the sample to prevent the part 
of the direct beam splitted off at the edge a, Cd2. second 
cadmium shield to eliminate the part of the direct beam, 
which propagates without interaction with the sample 
surface, Si - silicon mirror sample, P - position sensitive 
detector (PSD), the numbers on the right side are related 

• to channels on PSD at the glancing angle of 0.400 degree 

The wave packet description leads to consequences that are important not only for UCN. 
For instance, the total reflection of thermal neutrons from plane mirrors should always be 
accompanied with small fraction of incident neutrons being refracted. This prediction can be 
and was verified experimentally. 

400r' ;_, 

i - f \ ~1 i \ ~ ~ : 
i / \. 
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11 12 13 1,.
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FIG. 2. Spectrum oft.he incident neut.rans 
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::, 
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10·• 500 

U1J.l-

600~ 
Channel 

800 

FIG. 3. Neutron counts by PSD when the silicon 
mirror is at a suhcritical angle of 0.381 degree 

We performed the experiment. [6), scheme of which is shown in fig. 1. The well monochro
matized and collimated neutrons of wave length A = 12 A and /::,.A/ A ~ 0.01 (sec spectrum in 
fig. 2) were reflected from a thick Si mirror under glancing angles 0 below the limiting one 
01 = 0.577 degree, and the intensity, transmitted through side surface (fig. 3) and registered in 
channels 550-670 of position sensitive detector P (fig. 1) was measured. The spectrum of these 
neutrons was analyzed by transmission through In foils. 

Our results at present can be formulated as follows: We s,·e the transmitted neutrons that. 
have the same energy as in the incident. beam. The fraction of them is near J 0- 1• which is in 

good agreement with the predicted magnitude if parameters in ( 16) does not depend on velocity 
v of the neutron, as shown in (22), but is supposed to be a constant of the order • I o-4uc with 
some wave number Ve = VU and u close to the Be potential ua,, The results are checked again 
and again with higher statistics and improved collimation and monochromatizat.ion. Some new 
experiments are planned at ILL reactor in Grenoble with different glancing angles, and with 
the incident neutron beam less contaminated by higher energy neutrons. The limits for the 
possible false effects in them will be even more narrow. If the observed effect with improved 
experimental conditions decreases below 10-5

, we shall decide that the de Broglie wave-packet 
cannot explain the UCN anomaly. 
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4 Conclusion 

The most important feature of the recent experiments [2] in Grenoble is a discovery of a stepwise 
heating of stored UCN slightly above the limiting energy. Ilowe1er this result. \Yas obtained 
for vessels. with low storage time .. The observed effect can have no relations to the anomaly 
observed in cl~an and cold Be bottle. It can be explained, in particular, by the dust of little 
clusters with dimensions up to several hundreds of angstroms. However, the small heating can 
also be explained by properties of the de Broglie wave-packet. Indeed, our theory permits us 
to calculate the nontunneling overbarrier transmission, but it. does not tell us how do neutron 
behaves inside medium. Because its kinetic energy is lower than potential, the neutron may 
be at rest at every point in the media, and it can be kicked out by the motion of surrounding 
matter, which leads to the stepwise heating. · 
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