


1 Introduction

The anomalous loss coefficient ' ="3.- 1075 of UCN in the Be bottle [1], which is 2 orders
of ‘magnitude higher than the theoretical one: = 3+ 10~7, requires an explanation. We tried
to explain this phenomenon by properties of the neutron itself, i.e., by properties of its wave-
function structure. Thus our goal is to present here the hypothesis and to show experimental
results aimed at its verification. However, before doing that, it is useful to briefly overview
all the possible inelastic scattering processes leading to UCN losses for to see, whether it is
necessary indeed to devise something extraordinary to explain the anomaly.

2 Review of all the inelastic loss processes

First of all we should remind the definition of the loss coefficient. Reflection of UCN of energy
k?, where k is a wave-number, from a wall with the potential u = 4w Nyb, where b is the coherent
sca.ttermg amplitude of the wall nuclei, and Np is the atomic density, is descrlbed by a reflection
amplitude R. For total reflections (k2 <u)in absence of losses |R|-= 1. Because of losses the
|R] < 1, and a loss coefficient is defined as p = 1 — |R|?. The coefficient p is proportional
to the reduced loss coefficient 5 =Imu/Reu, which is equal to the ratio .of ;the imaginary and
real parts of the coherent scattering amplitude b.: 7 =Imb./Reb,, where Imb. according ta
the optical theorem is: Imb. = koy/4w, and oy is the total loss cross section, which includes
absorption and many inelastic scattering cross sections. The particular inelastic process i gives
its partial contribution to the loss coefficient 7; = ko;/4nReb,. In the following we shall write
in the denominator b, instead of Reb,, because Imb. <« Reb..

In general, the cross sectxon of inélastic sca.ttermg, and the related loss coefﬁc1ent are repre—
sentable in the form:

o = 4mlbkess/ko = n = Py . = I8 |2b kau, B ¢Y

where ks is an effective wave—vector of the neutron heated via considered 1ne1a.stlc process,
and & denotes a coherent incoherent or magnetic scattermg amplitude.

In consideration of all the inelastic processes it is necessary to remember two experxmental
facts:

1. the recent experiments in ILL [2] have shown that with probability of the order 10-6 there
is some process of UCN stepwise small heating up to the energy which is approxrmately
twice of the primary one,

2. the experiments [3] had shown that there were no continuous broadening of the spectrum,
i.e. there were no heating by 2+ 10~ €V at a single collision with the walls.

Both facts have nothing to do with the UCN anomaly. Especially ‘the first one because it
has been observed in bottles with large losses, and because its magnitude is smaller than the
anomaly. However it is useful to take both facts into account in estimation of probabilities for
different inelastic processes.

With the relations (1) we can easily find the probability of stepwise small heating. Indeed, if
b = b, and kess = kiim = /1, the partial loss coefficient becomes i = b.kiim, which, in particular
for Cu walls, is approximately 7 - 10~7 in pretty good agreement with the observations.
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2.1 Phonons
2.1.1 The coherent phonon cross section

2 &3k
ouine = Ibl* T [ [—,’(; — ] ab(a — & = Ty T = ) o -
T q 0

where &£ = ko — k is 2 momentum transferred, T is a vector of the reciprocal lattice, w =
(k3 — k%)/2 = —K?/2 + kky is energy transferred, w, is the phonon energy, which for small ¢
can be represented, as cg with ¢ being sound velocity, n(z) = 1/(exp z — 1) is the Bose-Einstein
factor, T'is temperature, m is the neutron mass, and M is the mass of the wall nuclei. Here
and in the following we use the units A =m = 1. o

We can neglect small vectors ko and g in the first 8-function. Then, after: integration over
k, we obtain :

Poinet = 10 2 [ Moo T)O(r/2 = ) = oo 5 (27
Cane ¢ ~ M q T ] ko = Tr' c, ZM"(T. /2T):1—(,‘3_k—;

To estimate the magnitude we can replace the sum ovef all 7 by the integral:

' oo ‘{AT m T4 . °°2 k7 \/_d . ) .
Uc,;c=47rbc»2/—~ % A 52/Mﬂ z

. nel [be] (27r)3NoMn( / T)4(,3k0 7r| | J (277)3N0 Mn(z)4c‘3k0, (2)

where we integrated over angles, used the relation T’ = k2/2; and changed variables (v/kr)? =z

Integration over z.gives ' o a '

ac,inel=;1‘7r|bc.|2%:~F,‘ F‘= §1~(722)((7_/‘2)%"4_‘(”??)3(1)3,‘  (3")‘.
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where ['(n) and ((n) are Euler and Riemann functions: [(7/2) = 15/7/8 = 3.32, ((7/2)‘=
1.127, D(7/2)¢(7/2) ~ 3.75, and we used the relations, ky = 27/ Ay, kr[c=vr/c, where vr is
the speed of thermal neutrons. All the magnitudes in (3) can be now used with their natural
dimensionalities. ) : :

From (3) it follows that the coherent 1-phonon heating contributes to loss coefficient Neyinel =

“bekrF. For Beat T = 300 K we have vr = 1200 m/s, Ay = 1.8 &, bgokr = 2.7 - 104, and

F =~ 1.1.1073, where for ¢ we used the sound velocity of transverse vibrations: ¢ = 8.8 km/s.
Thus 7c3net = 31077, and it quickly decreases with temperature as T7/2. - o

The smallest wavelength of the nentron after inelastic coherent scattering is A ~ a —
interatomic distance.. Thus the coherent phonon process does not give small energy heating.

2.2 Incoherent phonon cross section
3wldw,
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We can approximate & = k, and after integration over k we obtain.

o Pmo o 3wlde \/227‘
inc,inel = 4 b.‘m; 2-/- i 9 9 9
Tincinel = 47 |bin| / Mn(wq/j) Wl ko

and after integration over wy we obtain

= anlbndP I F, P = 30/2)0(7/ 2/ M)(T/To Y,

where Tp is the Debye temperature.

For Be the incoherent amplitude by, is very small, however for estimation we can treat all
the inelastic scattering in the incoherent approximation and suppose that b;,. = b, then at
room temperature, if we take for Be Tp = 1200 K, we get F = 0.02, thus Tine,inel & 5.4+ 1078,

Heating to small energies wy = k2/2 is less by the factor (ko/kr)® = 10712, i.e., it is negligible.

Two phonon process has an additional factor'Fz, which for emission and absorption is equal
to F2 = (m/M)(Eo/wp)® < 1078, and for 2 absorptions is equal to F; = (m/M)(T/Tp)® ~
0.002 (for Be). .

2.8 Surface waves

The surface waves are important for solid and liquid, like fombline oil, walls. To find the heating
by surface waves we solve the Schrédinger equation

[i0: + A — u(r, )]e(r,t) =0, ‘ @)

with the potential u = uo¥(z > (o cos(gr) — t)), where we introduced the Heviside function
Y(z) which is equal to 1 or 0 when inequality in its argument is satisfied or not. For small
amplitude (o of vibrations we can use the linear expansion: u(r,t) & uof(z > 0)+uo(o cos(qr—
1t)é(z), and treat the second term as a perturbation for unperturbed potential uo?¥(z > 0).

The scheme for solving the equation is the following: we go to the reference frame moving
along the surface wave with the speed cgp = /g, which is the Raleigh speed. Then we find
the diffraction from a frozen wavy relief. After that we transform the result back to laboratory
frame and average it over the spectrum.

After transmission to the moving reference frame we solve the stationary equation

(E + A — uo¥(z > 0} — uglo cos(qry}d(z)]¥(r, E) = 0, (5)

where E = (ko + cp)?. The solution by perturbation theory is

b=vo+ [ Glr,r', E)sulr'po(r', E)é*r, : (6)
where G is the Green function of the unperturbed equation
[E+ A~ upd(z> 0)G(r,v', E) = §(r — 1'), (m
which is represented in the form
’ i .
G(r,7 ,E) = (ET.)_i./dZPH exp(i[r — r']pn)G(pJ_,z,z'). 8)
Here p, = ,/E — pﬁ and G(py,z,2") under the integral is the one dimensional Green function,
which is the solution of the Schrodinger equation
(P2 + d%/dz? — upd(z > 0)]G(pL, 2,2) = é(z — 2'), ‘ 9)

and is equal to



G152 = 519l > Walpa, s, #) + 9 > 2Ylos, #Walpa ),
where 9, 2(py, z) are the two linearly independent solutions
¥1(p, z) = 9(z < 0)[exp(ipz) + p(p) exp(—ipz)] + I(z > 0)7(p) exp(ipz) (10)
¥a(p, 2) = 9(z < 0) exp(—ipz) + I(z > 0)[exp(—ip'z) — p(p) exp(ipz)]/r(p)]  (11)
of the one-dimensional Schrodinger equation »
[p? + d*/d2* — ugd(z > 0)]4h12(p, 2) = 0. (12)

In the expressions (10,11) we used the notations p' = v/p% — uo, p(p) = (p — P')/(p + p), and
7(p) =2p/(p + F').
Substitution of the primary wave function

Yo(r, ) = Y1 (kos, z) exp(ilko + cpr)
into (6), gives the perturbed part of the wave function for diffraction

§1b(r,t) = exp(ikry) f(ko — k)[9(z < 0) exp(—ik, z) + 9(z > 0) exp(ik, 2)],

where k= —q + kojy + ¢, kL = \/(ko + ¢g)? = (~q + koj + c;)* = /Zcryg,

. koy ~ ki
F(ko — k) = uobo[l + p(kL)I[1 + plkor )}/ 2ks = —2ikoy Egmz—OL.
ki + Kk,
The probability of diffraction is
ky koL — kg kot
W(ko = k) = —|f(k k)? = ko |6—=2=— 0L 2 o, 2=
(ko ) KoL |f(ko — k)|* = 4k koy |€ Yy |* & uo|€| kL (13)

where ko, k1 are the normal to the reflecting surface components of primary and scattered

waves, and k; =~ v/2(1. Now we suppose, as in the phonon case, that [¢|? = 1/2M (), and the

spectrum of the surface waves is the 2-dimensional Debye spectrum. Then after averaging over
_ the spectrum we get

m TUO

m T 2040 uf?
M TE,

W = Msw N5 N2
TS ] T, k"
up /2

(T) ~ <1078, (14)

The main contribution to the integral comes from low {2, where n(§}/T) = T/ and integral
diverges. To avoid the divergence the integration was performed down to 20 = ug. For lower
{1 expression (13) should be approximated by 4kg k 1£% which provides the convergence for the
integral.

The last number in (14) is correct for Be at room temperature, if we take surface Debye
temperature T,p = 0.8Tp p. =~ 900 K.

2.4 Liquids

In liquids there are no pure elastic scattering. If we don’t take into account the optical potential
of the liquid and treat the quasi-elastic scattering in the same way as for thermal neutrons,
then the cross section is

_ 3 2 a KD
T = Il / L oy

The integration over the quasi-clastic pcak gives the magnitude of the order 4x|b.[>. We can
suppose that all this cross section means Josses. Then its contribution to loss coefficient is
Nge = kobc < 10_6. . )

The formula is correct not only for liquids, but also for surfaces contaminated with hydro-
gen [7], if the hydrogen atoins are freely diffusing along the surlace. In that case the magnitude
of the effect is ny4if = C(oj1/0.)bcko, where C and oy are the hydrogen concentration and
cross section. Thus there can be an enhancement factor ¥ = C(on/o.), which is important for
sufficiently high C. However diffusion processcs should broaden UCN spectrum in the bottles,
and in experiment the heating was seen to be a step wisc. : HETE

2.5 Spin waves

Spin waves can be important for ferromagnetic walls. The spin wave cross section in the
Heisenberg model is

2 - ’
Ouin = T8 [ €KL P ()P Sn(n/ KRk — @ = 7 = k)d(k = K} ~w),

where rg = yel/m.c?; T is the vector of the reciprocal lattice, S is the spin ol the atom,
and F(k) is form factor, which in our casc can be approximated by 1.- Spin waves in zero
external magnetic field are characterized by energy w, = Dx? with the constant D, which can
be represented as m/rmi; s, with m.;y = 0.01m of the.neutron mass.

For 7 =0 the integral is zero. For 7 # 0 we can neglect q and ko in thé first é-function.
Thus the integration.over k, q gives '

) 25 . Merr\3/? T
Gopin = ——12 E:/daqn(u.",/k:]'.)é(-r2 - Dg*) = 47128 (——N) Zn(rz/k%)f.
ko T m T lxo
Approximation of the sum over 7 by integral gives

- 2c(Mess 3/2 d*r 270287
Gupin = 4728 (—m ) / G =

2g (Mes P __2mkt 2k = —”2( °ff)3/2(a)3v
2 7 m
471'1'05( ) (27r)3k0NOC(2)F( ) 47rr0k0F, F =9 6 WA

where A7 is the wave length of thermal neutrons, a is the interatomic distance. The magnitudc
of F is near 10~ for room tempcratures, therefore n,,, is nearly the same as for phonons.
2.6 Gas scattering

There are some losses of UCN due to scattering on residual gas. The loss cocfficient due to
these losses can be estimated as 144, = 1o, L, where ng is the gas density, and

o B? \/XkT ‘
7 Ugaa—477(1+m/M)2 ﬁ ;Eo‘ (15)
We suppose that by,s = b, of the walls. Thus '

~ Tlgas = bekpF, I 2 2unoLhe %



For F =102, b, = 10~'2 cm, M = 25m, and L = 10 cm gas density should be

_ /M 1 " -3
no=F mecL,\o—5 10" em™,

which is equivalent to the gas pressure at ambient temperature =~ 102 Torr. Usually residual

gas pressure in UCN traps is considerably lower.

2.6.1 Gas model of the walls

We can imagine the wall to be composed of gas molecules with high density. Then from (15)
it follows 7gase = bckry/m/M. Since bkr =~ 3.5- 1074, then scattering by gas with mass
M =25m is near 7-107%.

2.7 Cluster model
2.7.1 The wall of clusters

If we consider the substance to be a collection of gas clusters, every one containing n atoms,
then the elastic scattering cross section of a cluster is proportional to (b.n)?, their density
is No/n, and inelastic scattering for a gas cluster contains the factor /m/nM as it follows
from (15). In that model the effective 1 is 7. = y/n7,qs. The clusters have thermal velocity
vra = vr1/+/n. Thus, for neutrons to acquire the velocity 5 m/s it is necessary to have clusters
of n > 10* nucleons. They have dimension less than the neutron wavelength, so the scattering
on them can be considered in s-wave approximation. The value of 1, can be sufficiently large
to explain any magnitude of observed . However this model seems not to be plausible.

2.7.2 Gas of clusters

The more reasonable is a suggestion-that the storage volume contains the dust consisting of
such clusters. The losses of neutrons in such a gas of clusters can be represented 5, = CoL,
where L is the bottle dimension. If clusters are made of n atoms with the same amplitude b

as the walls, then 7y = 47b?Cn®2L(kr[ko)y/m/M = Fbkr, where F = 2Cn3/2Lbg\/m[M.

Thus, for a given I" we should have the concentration of clusters in the volume:
C = Fko\/M/m/[4nbLn?"".
For F = 1072, M/m =~ 25, L = 10 cm, b = 10712 c¢m, and n = 10* we obtain C = 10°. The
pressure of such a gas is nearly 10~7 Torr.
2.7.3  Gas of large clusters

In the case of large clusters with dimensions d = 100 A UCN are totally reflected from them
and in average increase their energy by w? after every collision, where w is the thermal cluster
velocity. We can again use the relation 1, = CoyL with o4 = nd®. Thus the density of such a
gas should be C = /a4 L. For d =100 A, 54 = 1075, L = 10 c¢m, and we have C = 108/cm?.
Such clusters contain 10° atoms and their velocity is near 1 m/s.

2.7.4 Large clusters on wall’s surface

It is also possible to imagine the dust with dimensions d =2 100 A on the wall surfaces. In that
case neutron can be totally reflected from a dust particle, and probability of inelastic scattering

|
§

at every collision with the wall can be estimated as a probability of interaction with the dust
particle. Probability of inelastic scattering is qust = C,d?, where C, is two dimensional density
of the dust particles. If f4us: = 1073, then C = 107 particles per cm?. The thermal velocity of
such'particles is near 1 m/s, thus almost every collision with a dust particle heats the neutron
to limiting energy.

2.8 Acoustics

Acoustical vibrations have classical effect starting from frequencies 10° Hz, because at such
frequencies the most important is the relative motion of the wall’s surface with respect to the
neutron. ’

2.8.1 Ultrasound

Let us suppose that the wall is trembling with the amplitude A and frequency w. If T =
2nJw > 1/\/uv = 2107 s, where v is neutron velocity, then interaction with the wall can
be treated as classical, and the neutron energy after collision is in average equal to E =<
(v + 2w cos(wt))? >~ Eo + 2w?, where w = Aw. If w = 1 m/s, and w = wo = 10° rad/s, then
A should be & 10 A :

Let us suppose, that A(w) = Aqwo/w, and that neutron is heated at every collision with
probability 10=°. Suppose the spectrum to be g{w) = 3w? /w}. Then we should have

(wo/wy)® = 107% -3 wy 2 20wq.

The pressure of the sound is
puc = p [ 4wl g(w)dw = pA = INfem’,
0 .

where p — the density of substance was taken 10 g/cm®. This energy is 10~* of the density of
the thermal energy.

The intensity of the sound is measured in deciBells: I = 10log(P/F), where Py is the
reference pressure: po = 1071N/cm?®. Thus the intensity of our vibrations is 160 dB. However
the frequencies 10° are too high to be considered as acoustical. So to estimate how much
of acoustical energy is contained in pure acoustical vibrations we should limit ourselves to
frequencies w, =~ 10°. This range contains only (wz/w;) = 107'¢ of the full energy, thus the
fraction of total supersound energy in acoustical range is of the order 0 dB.

2.8.2 Acoustical sound

The real acoustical sound is limited in the range up to 10* Hz, and the motion of the interface
with such frequencies should be considered classically. If amplitude of the motion is A, the
velocity of the interface is w = Aw, and neutron acquires an energy o w? at every collision
with the walls. If neutron should survive 10~° collisions, it should be w? = 10~%u ~ 102
eV. In that case the UCN spectrum in the trap should continuously broaden, which was not
observed in experiment [3].

3 Quantum mechanics of the de Broglie wave packet

In previous section we considered all possible channels for UCN heating. The presence of
ultrasound seems unreasonable. The hypothesis of fine dust or cluster gas is not yet checked,



however it may be rejected too, so'we should be ready to seck for another explanaﬁon of the

UCN anomaly. - - . . o )
Orne hypotyhesis was formulated in [4]. We suggested there that the explanation: is:related

to structure of the wave function of the free neutron; which is described by the de Bréglie
wave-packet {5, 4]: e
¢(T t) - iexP(_slr vtl)ex’vr—iwt’ ’ (16)
’ Vor  |r — vt e

where s is the parameter, determining the width of the packet.in tbe, momentum szpa,cggand
the inverse width in the coordinate space, v is the central wave-vector, and w = (v -5 )/2
The wave-packet (16) is fundamentally differerit from the st'lperposmon of pla.ne waves_‘}xs?dﬁlp
conventional descriptions. The wave-packet (16) is normalizable, non-spreading, and satisfies
the Schrodinger equation everywhere except one point:

(10/0t + A[2)p(x,t) = — omseC (e —x(t)) )

which can bye considered as a source of the wave function, or neutron itself. -
The wave-number spectrum of the packet (16) :

’ 3 &Ppf2n? ipr—iQ(p)t ; . 18)
1/’(1',13):\/5/(1)_”)2‘_‘_526 ) o (

where Q(p) = [p* — (p — v)? — s?]/2, has a long tail extfzriding far away ‘frorp the centffxl yva.ve;

vector v, and the anomalous losses of UCN can be attributed to nontunneling transmission o

neutrons over the potential barrier. This transmission always takes place even if the height u

of the barrier is considerably higher than the kinetic energy v?/2 of the neutron. - ‘
The losses described by the over barrier penetration are given by

_ (47\'6)2 [1 - IR(pl)P”v pzl - u’l d3p’ (19)

T PL
= (27r)3. _[o 0(!1’_L| > Uﬁm)'l;l_l [(p v+ s72

w

‘where 0 is the function equal to unity when the inequality in its argument is satisfied, and to

zero in the opposite case, and ‘
lpal = lyPi —ul

R(p. = e
®) = T 1A =]

is the reflection amplitude from potential step u of the plane wave with the normal component
of the wave vector equal to p;. The calculation gives

s .
N 20
W~ o (20)
If we compare this value with the averaged loss coefficient

“p(v) = %Z—(arcsinz —2V1l =2~ %r)% for s@all z, ) (21)

where z = v/\/u, and 7 = 3 - 10~* [1]. Comparing (20) and (21) we get the information about

s =4qv/3~ 4v-107°., (22)

FIG. 1. The experimental layout: M - monochromator,
C - collimator, n - neutron beam, Cd1 - cadmium shield
at the entrance surface of the sample to prevent the part
Ch 670 of the direct beam splitted off at the edge a, Cd2 - second
cadmium shield to eliminate the part of the direct beam,

I which propagates without interaction with the sample
Ch 554 surface, Si - silicon mirror sample, P - position sensitive
detector (PSD), the numbers on the right side are related
*to channels on PSD at the glancing angle of 0.400 degree

" Ch 800

L] Ch 100

The wave packet description leads to consequences that are important not only for UCN.
For instance, the total reflection of thermal neutrons from plane mirrors should always be
accompanied with small fraction of incident neutrons being refracted. This prediction can be
and was verified experimentally.
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FIG. 3. Neutron counts by PSI) when the silicon

FIG. 2. Spect, f the incident neutrons R . .
pectrum of the incident neutrons mirror is at a subcritical angle of 0.381 degree

We performed the experiment [6], schetne of which is shown in fig. 1. The well monochro-
matized and collimated neutrons of wave length A = 12 A and AA/X ~0.01 (sce spectrum in
fig. 2) were reflected from a thick Si mirror under glancing angles @ below the limiting one
6; = 0.577 degree, and the intensity, transmitted through side surface (fig. 3) and registered in
channels 550-670 of position scusitive detector P (fig. 1) was measured. The spectrum of these
neutrons was analyzed by transmission through In foils.

Our results at present can be formulated as follows: We sce the transmitted neutrons that
have the same energy as in the incident beam. The fraction of them is near 10~7, which is in

good agreement with the predicted magnitude if parameter s in (16) does not depend on velocity
v of the neutron, as shown in (22), but is supposed to be a constant of the order -10~%v, with
some wave number v, = \/u and u closc to the Be potential ug,. The results arc checked again
and again with higher statistics and improved collimation and monocliromatization. Some new
experiments are planned at ILL reactor in Grenoble with dillerent glancing angles, and with
the incident neutron beam less contaminated by higher cnergy neutrons. The limits for the
possible false effects in them will be even more narrow, Il the observed effect with improved
experimental conditions decreases below 103, we shall decide that the de Broglic wave-packet
cannot explain the UCN anormaly.



4 Conclusion

The most important {eature of the recent experiments [2] in Grenoble is a discovery of a stepwise
heating of stored UCN slightly above the limiting energy. However this result. was obtained
for vessels with low storage time. The observed effect can have no relations to the anomaly
observed in clean and cold Be bottle. It can be explained, in particular, by the dust of little
clusters with dimensions up to several hundreds of angstroms. However, the small heating can '
also be explained by properties of the de Broglie wave-packet. Indeed, our theory permits us
to calculate the nontunneling overbarrier transmission, but it does not tell us how do neutron
behaves inside medium. Because its kinetic energy is lower than potential, the neutron may
be at rest at every point in the media, and it can be kicked out by the motion of surrounding
matter, which leads to the stepwise heating. = ~ o
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