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There is no paradox if we separate a finite range space area 
by an unpenetrable potential barrier and get (parallel) spectral 
branches: a discrete one for bound states inside the trap and a 
continuum spectrum of scattering states outside the barrier. 

Here the regions of bound and scattering states have no overlap 
and the trapped and propagating waves reside in different regions 
influenced by different parts of the external field. 

But we shall show that some interactions can admit both con
finement and scattering at the same energy value even without a 
strict space separation of propagating and bound waves. 

In recent time the qualitative theory of constructing quantum 
systems with given properties has been developed (see [1, 3] and 
references therein) for the one-dimensional Schrodinger equation. 
The exactly solvable models of the inverse problem and super
symmetry (SUSY), see e.g.[4,7-11], provide us with algorithms of 
constructing quantum systems having any given spectral, scat
tering and decay characteristics. This gives one the possibility 
to convert quantum systems of a different nature into one an
other making our understanding of basic aspects of the quantum 
theory deeper. Physically clear rules of a complete set of poten
tial transformations and their elementary constituents have been 
revealed by the computer visualization. This allows one to antic
ipate without calculations the main shape details of the potential 
having the prescribed features [1, 3]. We have found some curious 
unexpected effects among which are the _ones described below. 

The real objects have mainly a complex structure. In this case 
the multichannel wave equations are a powerful and universal tool 
of their description. This approach is a core of the unified theory 
of quantum reactions [12] and its generalization to processes with 
rearrangement of particles (see [5, 3] and references therein). 

This method reduces the multi-dimensional Schrodinger equa
tion in partial derivatives to the comparatively simple system of 
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coupled one-dimensional Schrodinger equations 

-'t/J?(x) + L-j ½j(x)'t/Jj(x) = Ei't/Ji(x) (1) 

where ½j ( x) are the elements of the interaction matrix, 1/Ji ( x) 
are the partial channel components of the wave function in the 
vector representation, Ei = E - Ei are the partial channel energy 
values with the threshold energies Ei above which the correspond
ing channels become open. 

We shall also use matrix s.olutions of (1) where the first index 
means the channel number (i.e. partial equation number in (1)), 
the second one stands for the vector-column number in the matrix 
'11' and designates the type of a boundary condition at x = 0. In 
what follows the hat stands for the matrix (including the vector
column) or operator. 

The qualitative arguments to resolve the "paradox" of coex
istence of bound and scattering states may be the following. In 
the M-channel case there exist M linearly independent solutions 
of (1) for the same energy point vanishing at the origin. Above 
all thresholds these solutions are scattering states. The inverse 
problem and SUSY approach allow one to transform some of the 
scattering states into bound ones .. If we transform one scatter
ing state into a bound state embedded into the continuum at 
E = Eb > Ei; i = 1, 2, ... M ), there will remain M - l scattering 
state solutions. As corresponding mathematical support we shall 
use the matrix generalization of the double SUSY transforma
tion instead of the equi_valent single one in the inverse problem 
app.roach. But by the SUSY-way we shall reveal another unex
pected multichannel peculiarity, the absolutely transparent inter
action matrix without bound states which has no analogues in 
the one-channel case. 

Let fL be an initial matrix Hamiltonian of the multichannel 
system on the whole line which is described by the Schrodinger 
equation (1). Namely, (1) can be represented in a symbolical form 

2 

fL,(/; = E,(/; (the threshold energies Ei can be included in fL). We 
shall consider the case of two channels. Let the threshold ener
gies Ei be different. We present this Hamiltonian, a second order 
differential operator, in the factorized form through differential 

first order operators [2]1997 

iL=A+Ji-+£, 

where £ is the factorization energy, 

A d A 

A- = - dx + W ( x) 

(2) 

(3) 

and A+ = fx + {W(xn°t is Hermitian conjugation of Ji-. Here 
W ( x) must be self-adjoint otherwise the Hamiltonian will include 
the undesired operator of the first derivative 

fL = Ji+ Ji-+£= (lx + {W(x)}t)(- d: + W(x)) + £ = 
d2 A A d A t d A t A 

- dx2 + W'(x) + W(x) dx - {W(x)} dx + {W(x)} W(x) + £. 

Let \lJ'_(x) be real matrix-valued solution of the equation (1) 
corresponding to the initial Hamiltonian fL at the energy E = £ 

(i.e. ff_\ll'_ = £\ll'_). 
We can readily obtain W(x) from the equation 

Ji-'11'-(x) = 0 (4) 

which becomes an identity if we act on it by operator Ji+. From 

( 4) and (3) follows 

W ( X) . \ll''._ ( X) '1J' - ( X )-l. ( 5) 

In SUSY approach we get by permutting operators ;i± in (2) 
the transformed Hamiltonian fl+= Ji-A++£ with the following 
expression for the transformed potential 

V+(x) = Vc..(x) - 2W'(x). 
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The expression of the solutions for the transformed potential (6) 
at any energy value E =fa t: is 

A d A A 

\J!+(x,E) = (- dx + W(x))\J!-(x,E) (7) 

where \ll"_(x,E) is the solution for the initial potential. At the en
ergy£ solutions of (1) with transformed potential V+ can be found 
in the following way. Differential matrix Schrodinger equation of 
the second order at energy £ with the transformed potential (6) 
has two linearly independent matrix solutions (four vector solu
tions). We shall find them by solving two more simple first order 
differential equations: 

A.+'1J"+(x, t:) = 0, 

A.+'1f+(x,t:) = \ll"_(x). 

(8) 

(9) 

Indeed, designating by Y solutions of (8) and (9) and acting on 
both sides of these equations by the operator A- we get A.-A+ Y = 
(H+ - t:)Y = 0, which means that the Schrodinger equation is 
satisfied. These equations give two matrix linearly independent 
solutions 

'11"+(x,t:) = {'11"-(x)-l}T; (10) 

X 

'll+(x,t:) = {'11"-(x)-l}T j{'11"-(y)}T\ll"_(y)dy. (11) 

Double SUSY formulae for '11" and V can be obtained using the 
same procedure as in the· first step. The results coincide with the 
inverse problem ones. At the second step as an initial solution 
we take a combination of the first step matrix solutions '11" ++ ( x) 
which are the solutions of the Schrodinger equation with potential 
V+(x): 

\lJ" ++( X) 
X 

{'11"-(x)-l}T +c{\ll"-(x)-l}T j{'11"-(y)}T\ll"_(y)dy(12) 
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where c is an arbitrary constant. As a result we have the following 
expression for second step potential 

A A d ~ 

V(x) = V+(x) - 2 dx lrV(x) = 
A d A A A, A 

= V_(x) - 2 dx (w'....(x){\J!_(x).}- 1 + \JI ++(x){W++(x)}-1
) = 

= lf_(x) - 2 d: (c \ll"_(x){l + c ]['11"-(y)JT'11"-(y)dy}-1'11"-(xf)(13) 

One can be convinced of the correctness of the above formulae by 
the direct substitution of solutions and interaction matrices into 
the multichannel Schrodinger equation (1). 

Let tis use the following initial solution '11" _ ( x) referred to zero 
intraction v_ ( x) = 0 on the half-exis to create a bound state 

- embedded into the continuum at E =Eb= t: > Ei: 

\lJ"_(x) = ( /ck 1 sin(k1x) 0) 
}c\2 sin( k2x) o 

where ki = /Eb - Ej. 

(14) 

This gives according to (13) the following expression for l ij 
(the indeces of the matrix V(x) are written explicitly): 

½-(x) = _2j__ 1 cicjsin(kix)sin(kjx) . (lS) 
ZJ dx kikj 1 + !l(x _ sin~2k1x)) + .d.(x _ sin(2k~i-)) 

kr 2" k1 k~ 2" 4ki 

Let us now write expression for the regular solutions <I>ij(x) at the 
energy E = Eb (<I>ij(x)lx=O = O; fx<I>ij(x)lx=O = D{j): 

<I>ij(x) = I. sin(kix)8ij -
I 

1 c·c· sin(k-x)(x - sin(2k;x)) 
1 J J 2" 4k; 

kiH l + i½(x _ sin(2k1x)) + ~(x _ sin~2k2x)) · 
) k I 2" 4k1 k2 2" k2 

(16) 

The meaning of parameters ci will be clarified further. 
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As x ----+ oo matrix of regular solutions (16) has the following 
.asymptotic behavior 

;r,. ( ) 1 c·c·sin(k-x) 1 
'l'ijX ----+-sin(kix)bij- 11 

2 
1

2 +O(-). 
ki k-H(S.+!::l..) X 

I J kf k~ 

(17) 

It can be seen from this expression that the vector-columns mak
ing up the matrix <I>ij(x) become linearly dependent asymptot
ically. In other words there exists a proper linear combination 
of the columns of <I>ij(x) which decreases as~½ when x----+ oo at 
E = Eb. The coefficients C( of such a combination wi bounix) = 
Lj cj<I>ij(x) are just the components of spectral wei°ght vector [5] 
(wibounix)lx=O = 0, [wibound]'(x)lx=O = Cj) of the normalizable 
bound state \JI i bound( x) embedded into the continuum: 

fo00 

~[\J!i bound(y)j2dy = l 
l 

Other linearly independent solution behaves asymptotically as 
~ sin(kix) according to (17), e.g. as an eigenphase scattering 

· state at E = Eb (.with zero eigenphaseshift). This means effec
tive transparency of the interaction matrix. It is also possible to 
continue symmetrically the interaction matrix from the half axis 
to the whole axis with corresponding smooth continuation of the 
bound and scattering wave functions. 

Now we shall use the first SUSY transformation to construct 
a transparent system without bound states. For the whole axis 
and initial l/_ ( x) . 0 ( free motion) we can choose 

\ll_(x) = ( m 1e-K1x eK1x ) 
m2e-K2X - m1 K1 eK2X m2K2 

whereKi=~-
Such a choice gives Hermitian W: 

Wu(x) _ m~K1K2exp[(K1 - K2)x] - myKyexp[(K2 - K1)x] 
- myK1exp[(K2 - K1)x] +m~K2exp[(K1 - K2)x] ' 
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(18) 

] 
I 

\ 

i) 
I 
I 
i 

A A 2K1m1K2m2 , 
W12(x) = W21(x) = myKiexp[(K2 _ Ki)x] + m~K2exp[(K1 - K2)x] 

W. ( ) _ myK1K2exp[(K2 - K1)x] - m~K~exp[(K1 - K2)x] (lg) 
22 

x - myK1exp[(K2 - K1)~] + m~K2exp[(K1 - K2)x] 

With this expression we get via formula (6) the absolutely trans
parent interaction matrix shown in Fig.l. 

.V22(X)+E2 
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Fig. I. The two-channel absolutely transparent potential matrix with £ = 
-0.5, m 1 = 1, m2 = .001 without a bound state. The thresholds are E1 = 
0, E2 = 1. 

The solutions '11+(x,t:) and '11+(x,t:) have the following asymp
totic behavior 

A ( e(2K2-Ki)x e-K1X ) Z ( e-K1Xx eK1X ) 
W+(x,t:) ~ eK2x e(-2K1+K2)x 'W+(x,t:) ~ e-K2x eK2xx 
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when x ----t -oo, 

~ ( e"ix e("1-2K2)x ) ~ ( e-K1x e"ixx ) 
'11+(x,£) ~ e(2,c1-K2)x e-"2x ''11+(x,£) ~ e-K2xx e"2x 

when x ----too. 

One can see from these expressions . that it is~ impossible to 

construct any linear combination of '11+(x,£) and '11+(x,£) which 
would decrease as x ----t ±oo and hence be normalizable. Thus 
SUSY transformation with the choice of '11(x) (18) (and Win the 
form (19) does not create a bound state at factorization energy 
£ but leads to a non-trivial reflectionless potential matrix V+ ( x) 
(6) having no bound states, see Fig.l. 

This exact result can also be explained qualitatively as follows. 
· In the one-channel case there are necessary bound states in the 
reflectionless ( soliton-type) potentials. There cannot be repulsion 
to avoid reflection. But any purely attractive potential on the 
whole axis has a bound state (a widely known fact). And in the 
two-channel case there are more degrees of freedom. There is a 
potential barrier in the element of the matrix V11 (x) in Fig.1 which 
compensates attraction in another channel to exclude the bound 
state. It is curious that the reflection from the barrier in the first 
channel is also necessary for the complete transparency. There is 
mutual cancellation of the waves reflected from the barrier with 
the backward waves coming from the second channel as a result of 
the channel coupling V12(x) and having the opposite phase as was 
discovered in [l]. It is in~eresting that the transparent interaction 
matrix in [1] differs from the one in Fig.3 only by an additional · 
soliton-like well which bears the bound state. 

In summary, we have found that in special cases the interchan
nel exchange of waves for spectral rate of partial channel compo
nents can be destructive at asymptotics which gives decreasing 
bound state tails of the wave functions. And for another rate 
of partial channel components the exact asymptotic cancellation 
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of wave functions is violated and there can remain allowed wave 
propagation to infinity (scattering). There are also multichan
nel reflecionless interactions ( on the whole axis) without bound 
states which have no one-channel analogues. Both the cases are 
instructive demonstration of multichannel peculiarities enriching 
our quantum intuition. 

The authors are grateful to Soros (B.Z.) and RFBR Founda
tions and (V.Ch.) for INTAS Grant (within the research program 
of the International Center for Fundamental Physics in Moscow) 
for support. 

JlHTepa Typa 

[1] V.M.Chabanov and B.N.Zakhariev, Inverse Problems, (top
ical review), 13, R47-R79 (1997). 

[2] V.M.Chabanov and B.N.Zakhariev, in Inverse and Algebraic 
Quantum Scattering, edited by B. Apagyi, G. Endrcdi, P. 
Levay, Lecture Notes in Physics (Springer-Verlag, Heidel
berg, 1997), Vol. 488, p.30; Phys.Lett. B 319, 13, (1993): 
Phys.Rev. A49, 3159 (1994); Phys.Rev A50, 3948 (1994). 

[3] B.N.Zakhariev, Lessons on Quantum Intuition (JINR. 
Dubna, 1996); New ABC of Quantum Mechanics (USP. 
Izhevsk, 1998); Few-Body Systems 4, 25 (1988). 

[4] Chadan K., Sabatier P. "Inverse Problems in Quantum Scat
tering Theory" (Springer, Heidelberg 1989). 

[5] Zakhariev B.N., Suzko A.A., Direct and Inverse Problems. 
(Heidelberg, Springer, 1990). 

[6] R.D. Amado, F. Cannata, and .J.-P. Dedonder, Phys. Rev. 
Lett. 61, 2901 (1988); Phys. Rev. A38, 3797 (1988). 

9 



[7] V.P.Berezovoj, A.I.Pashnev, Sov.J.Math.Phys.70 146 
(1987); Z.Phys.C 51, 525 (1991). 

[8] F.Cooper, A.Khare, U.Sukhatme, Phys.Rep.251, N5, 267 
(1995). 

[9] J .-M. Sparenberg, B.Baye, Phys. Rev. Lett. 79, 3802 (1997). 

[10] A.A.Andrianov, F.Cannata, M.V.loffe, D.N.Nishnianidze, 
J.Phys.A30, N 14, 5037 (1997). 

[11] Cannata F., loffe ·M.V.; Phys.Lett.B278, 399 (1992). 

[12] H.Feshbach, Ann.Phys. 19, 287 (1962). 

[13] V.M.Chabanov, B.N.Zakhariev, S.Brandt, H.D.Dahmen, 
T.Stroh, Phys.Rev. A 52, N5, 1, (1995). 

Received by Publishing Department 
on October 20, 1998. 

10 



tia6a11oa B.M., 3axapbeB E.H. 

CocymecTBOBa1rne CB»3aHHOro COCTO»HlIB H pacce»HH» 

npH OLIHOH 3Hepnm: KBaHTOBhlH «napa):IOKC» 

E4-98-298 

.[{eMOHCTp11pyeTC» npHMep MHOfOKaHclJibHOH CHCTeMhl, HMeIOmeH KaK CB»3aHHOe 

(He KBa3HCB»3aIIHOe!) COCTO»HHe, TaK H pacce»HHe npH TOM )Ke 3Ha'leHHH 3Hepnm 

E. CneumUihHblH BHLI B3aHMOL{eHCTBH» cnoco6eH 3an11paTb BOflHbl a6nH3H Ha'lana 

KOOPLIHHaT H OLIHOBpeMeHHO L{onycKaTb pacce»1rne (H L{a)Ke npo3pa'IHOCTb) 

B qmKCHpOBaHHOH cneKTpanbHOH TO'lKe. TaKHe MaTpHUhl B3aHMOL{eHCTBH» H BOflHO

Bbie qJYfIKUHH Moryr 6hITb npOLIOfl)KeHbl Ha BCIO OCb. 

Jlpyrott MHOroKaHanhHOH oco6eHHOCTbIO, He HMeIOll{eH OLIHOKaHanbHOro aHano

ra, »BmieTC» Knacc a6conIOTHO np03pa'lHbIX MaTPHU B3aHMOLleHCTBH» 6e3 CB»3aHHbIX 

COCTO»HHH. 

Pa6orn BhmonHeHa B Jla6oparnp11H TeopernqecKOH <pH3HKH HM. H.H.Eoron10-

6oaa Ol15H1. 

Coo6mem1e O61,eJUIHeHHOfO HHCTHlyra ll/lepHl,IX HCCJJe)lOBaH11ii. ,!ly6Ha, 1998 
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The example of a multi-cha_nnel system which possesses both bound (not quasi

bound!) and scattering states at the same energy value Eis de~onstrated. A special 

interaction ha<; ability to confine waves near the origin and simultaneously admit 

scattering (even with transparency) at the fixed spectral point. These interaction 

matrices and wave functions can be continued to the whole axis. 

As another multi-channel peculiarity having no one-channel analogues was 

found a class of absolutely transparent interaction matrices without bound states. 
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