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1 Introduction 

Dissipation of a large amount of the kinetic energy in deep inelastic heavy 
ion collisions (DIC) is a fundamental time-dependent process [1,2] that has 
attracted theoretical interest since the discovery of this class of reactions. 
At an earlier stage of investigations it was assumed that the excitation en­
ergy is distributed between reaction partners in proportion to their masses. 
However, after a series of experiments, it became clear that a large part of 
the excitation energy is concentrated in the light fragments for a wide range 
of total kinetic energy losses (TKEL). Various models have been proposed 
to explain this phenomena, taking into account a coupling of the relative 
motion to the intrinsic degrees of freedom. The simple macroscopic models 
with phenomenological friction forces can not be used to treat this problem. 
In microscopic models, friction forces are derived considP,ring a coupling of 
the relative motion to the specific intrinsic degrees of freedom. However, not 
all of these models can consider a division of the excitation energy between 
the reaction partners. 

To microscopic models, which can make predictions for the excitation en­
ergy partitioning between the reaction partners, belong the model developed 
in [3]. In this model, all transport phenomena are assumed to be mediated by 
the exchange of independent nucleons between interacting nuclei. S'ufficient 
amounts of the kinetic energy is dissipated when large numbers of nucleons 
are transferred in alternating directions. Usually, in deep inelastic heavy ion 
collisions, a shift of the centroid of the mass distributions is small in compar­
ison with the width. Therefore, it is expected that both nuclei receive, on the 
average, comparable amounts of excitation energy. In the model [3], which 
is based on the Fermi-gas model for the intrinsic motion, the kinetic energy 
losses are explained by the fact that the intrinsic momentum of a transferred 
nucleon is summed with the momentum of the relative motion. As a result, 
this momentum can be larger than the Fermi momentum PF, thus producing 
the excitation of a donor nucleus. 

For relative velocities of the interacting nuclei at which the adiabatic ap­
proximation loses its accuracy, the model developed in [4,5] suggests that 
particle-hole states are excited in the two interacting nuclei as a result of di­
abatic transitions between the single-particle levels of a time-dependent one­
body potential. Thus, in this model, a description of the dissipative processes 
is strongly based on the single-particle level schemes in the two-center po­
tential well of a dinuclear system. Detailed calculations based on this model 
for the 139La+ 109 Ag reaction [6) have shown that the excitation energy per 
nucleon t:* is smaller for the heavier reaction partner. At the same time, it 



is known from the calculations of inelastic processes in nucleus-nucleus col­
lisions that appreciable energy dissipation takes place even before the first 
crossing of the single-particle levels near the Fermi surface [7]. Therefore, it 
is necessary to look for other possibilities to explain an observed partition of 
the excitation energy between reaction partners. 

The important aspect of the description of a nucleon transfer and a ki­
netic energy dissipation is connected with an influence of the peculiarities of 
the shell structure of the interacting nuclei on the correlations between the 
kinetic energy loss and the width of the fragment charge distribution. Indeed, 
it was demonstrated in [1, 8-11] by analysing the experimental data for dif­
ferent reactions that these correlations are sensitive to the projectile-target 
combination. 

So, it is interesting also to investigate the effect of the shell structure near 
the Fermi surface on the sharing of the excitation energy between fragments 
of binary reactions. This is the aim of the present paper. 

In fact, we will investigate an influence of the single particle level den­
sity near the Fermi surface on these characteristics. The calculations are 
performed with the experimentally determined single-particle scheme of Ca 
isotopes and with the single-particle scheme in which 'the level density is 
doubled artificially. The proton and neutron separation energies remain con­
stant. In [12-14], we developed a microscopic approach to describe the loss of 
the total kinetic energy and its partitioning between the reaction partners in 
DIC. Using this model, we have succesfully described different characteristics 
of deep inelastic reactions, such as the centroid positions and the width of 
the mass and charge distributions as functions of the excitation energy and 
partition of the excitation energy between the reaction product. 

Comparing our model to the model [3], we should mention that in prin­
ciple the effect of the addition of relative and intrinsic nucleon momenta can 
be taken into account. In order to do this it is necessary to transform the 
Hamiltonian into an intrinsic frame. Then, the additional terms depend­
ing on the velocity of the relative motion will appear in the Hamiltonian. 
These new terms will contribute to the matrix elements of the single nucleon 
transfer and, therefore, wili' influence the kinetic energy dissipation process. 
However, this effect is not included in the present calculations. 
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2 Model 

It is convenient to start with the total Hamiltonian of a dinuclear system 
written in the form 

H = Hre1(R; P) + H;n(O + JV(R, e), (1) 

where the Hamiltonian of a relative ~otion, 

A P2 
A A 

Hre1(R; P) = 9 + V(R), 
-µ 

(2) 

consists of the kinetic energy operator and the nucleus-nucleus interaction 
potential V(R). Here, R is the relative distance between the centers of mass 
of the fragments, P is the conjugate momentum, and µ is the reduced mass 
of the system; ( is a set of relevant intrinsic variables. The last two terms 
in ( 1) describe the internal motion of nuclei and the coupling between the 
relative and internal motions (for details, see [12,131). It is clear that the 
coupling term leads to a dissipation of the kinetic energy into the energy of 
internal nucleon motion. Our further consideration will be concentrated on 
this term. 

Let us take a sum of the last two terms in ( 1) as a single-particle Hamil­
tonian of a dinuclear system i£ plus a residual interaction, 

Hin(O + J\/(R,e} 

1l(R(t)) 

1l(R(t),() + hresidu~I, 

L =--~i+Vp(r;-R(t))+Vr(r;) , A ( t,,2 , ) 

i=l 2m 
(3) 

where m is the nucleon mass and A = Ap + Ar is the total number of nucleons 
in the system. 

Then, in the second quantization representation, the Hamiltonian 1l(R( t), O 
can be written as 

il(R(t),0 = Lt:papap + I:c:ra1:ar + L½i1 (R(t))ata;,, (4) 
P T i~ 

where 

L V;;,(R(t))atai, = L A)?'),(R(t))aj;ap, + L A¥f,(R(t))4ar, +(5) 
i,i' P,P' T,T' 

L gn(R(t))(aj;aT + H.c.). 
T,P 
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Here P = (np,jp,[p,mp) and T = (nr,Jr,lr,mr) are the sets of quantum 
numbers characterizing the single-particle state in an isolated projectile and 

· target nuclei, respectively. The single-particle basis is constructed by the 
asymptotic wave vectors of the single-particle states of the noninteracting 
nuclei-the projectile ion IP) and the target nucleus IT)-in the form 

IP) 

IT) 

IP) - ¼ L IT)(TIP), 
~ T 

IT) - ! L IP)(PIT). 
2 p 

(6) 

(7) 

For this basis set, the orthogonality condition is satisfied up to terms linear 
in (PIT). Then 

A~),(R(t)) = (PIVr(r)IP'), 

A¥;/,(R(t)) = (TIVp(r - R(t))IT'), 
1 

gn(R(t)) = 2(PIVp(r - R(t)) + Vr(r)IT). 

(8) 

(9) 

(10) 

The nondiagonal matrix elements A~), (Alf,).,) generate the particle-hole 
excitations in the projectile (target) nucleus. The matrix elements 9PT are 
responsible for the nucleon exchange between reaction partners. These ma­
trix elements were calculated using the method proposed in [15, 16]. In (4), 
EP(T) are the single-particle energies of the nonperturbed states in the pro­
jectile (target) nucleus. The coupling between the intrinsic nuclear degrees 
of freedom and the collective variable R is introduced by the R dependence 
of the sum of the single-particle potentials in (3). Since the trajectory cal­
culation shows that the relative distance R( t) between the centers of the 
interacting nuclei could not be less than the sum of their radii, the tail of 
the pa~tner single-particle potentials can be considered as a perturbation 
disturbing the asymptotic single-particle wave functions and their energies. 

It is convenient to include the diagonal matrix elements of V;;,(R(t)) in 
H;n, introducing the renormalized R(t)-dependent single-particle energies 

€p(R(t)) = Ep + (PIVr(r)IP), 

ir(R(t)) =Er+ (TIVp(r - R(t))JT). 

(11) 

(12) 

Since explicit allowance for the residual interaction requires extensive 
calculations, it is customary to take the two-particle collision integral into 
account in linearized form ( r-approximation). 
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To calculate the excitation energies of the reaction partners, we should 
find the occupation numbers of the single-particle states in both nuclei. They 
can be found by solving the equation for the single-particle density matrix ii 
in the form [12,13] 

iii oiif). (t) = [H(R(t)), fi(t)] - iii [ii(t) - fie\R(t))], 
t T 

(13) 

where iieq(R(t)) is a local quasi-equilibrium distribution, i.e., a Fermi distri­
bution with the temperature T(t) corresponding to the excitation energy at 
the internuclear distance R(t). Substituting our Hamiltonian ( 4) into (13), 
we get 

·n oii;( t) 
i -

f)t 
L [V;k(R(t))ih;(t) - Vi;(R(t))ii;k(t)] 

k 

iii [ii;(t) - n?(t)] , 
Ti 

(14) 

where ii; is a diagonal and ii;k is a nondiagonal matrix element of the density 
matrix. The approximate equation for nondiagonal matrix elements takes 
the form 

iii Oii;k( t) 
f)t 

2i 
= Ii [wik(R(t)) - -] ii;k(t) 

Tik 

+ Vi;(R(t)) [iik(t) - ii;(t)], 

where we have used the notations Wik= [i; - €k] /Ii. 
Substituting the solution of the Eq. (15) into Eq. (14), we get 

fi;(i) =xp ( 
1 

;, ') { fi;(t) + ¼ ! dt'fi;'(R( t')) exp ( t';, t) 

(15) 

t t' 11 - } 

+ L, j dt' j dt"O;k(t', t") exp (t 
7

~ t) [iik(t") - ii;(t")] , (16) 
k t t ,k 

where 

!1;,( t, t') ~ ;, Re { V., (R( t)) V,; (R( t')) exp [• / dt" W,;(R( t")) ]}- (17) 
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The formal solution of Eq. (16) is found by dividing the interval l - t 
into small steps 6.t. The time step 6.t used in the calculations is 0.8 • 10-22 

s which thus characterizes the time interval during which the R-dependent 
mean field of the combined dinuclear system changes so little that we can 
neglect the effect- of this changing on the intrinsic motion. The results is 

ii;(t+6.t) = n?(R(t+6.t)) [1 - exp (-:t)] +n;(t+6.t) exp (-:t), (18) 

where 

n ·(t + 6.t) = ii ·(t) + " tf+Atdt'n- (t' t') sin[wk;(R( t') )( t' - t )] [- .(t') - - ·(t')] ' ' 7 ,k ' Wk;(R(t')) nk n, . 
t 

( 19) 
Note that Eqs. (18) and (19) present an integral equation for ii;(t). 
One of our aims is to calculate the ratio of the excitation energies of the 

projectile-like ( Ej,) and target-like (Er) fragments 

RP/T = Ep/ Ey. (20) 

The excitation energies Ej,(T) are calculated step by step along the time 
scale using the equation 

Ep(T)(t + 6.t) = Ep(T)(t) 

+ I: [sP(r)(R(t)) - Ap(r)(R(t))l[np(r)(t + 6...t) - np(T)(t)]. (21) 
P(T) 

Total kinetic energy losses are defined as 

E1oss = Ep + Ey. (22) 

As can be seen from Eqs. (16) and (17), the occupation numbers depend 
on an interaction matrix element ½k(R(t)), which is a short notation for 
x1),, xi/'t, describing particle-hole excitations in projectile-like and target­
_like nuclei, or gpy, which is responsible for nucleon transfer. Thus, we can 
separately analyse the contribution of the two mechanisms-particle-hole 
excitations and the nucleon transfer-to the kinetic energy dissipation. 

The variances aJ and o-'ftv are determined by occupation numbers through 
the equation 

2 '°'Z(N) _ _ 
<Tz(N)(t) = 0 np(t)[l - np(t)]. 

p 
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(23) 

f 

3 Results and discussion 

The well-known nonequilibrium sharing of the excitation energy between 
fragments of the deep inelastic collisions was reviewed in [2]. The light and 
heavy products of deep inelastic heavy ion collisions are distinguished by 
the average energy distance between the single particle levels near the Fermi 
surface: in a light fragment, this energy distance is larger than in a heavy one. 
For this reason, on the average, the·energy of the particle-hole excitation in 
a light fragment is larger than in a heavy fragment. Due to this fact, it 
is natural to assume that the main reason for a larger excitation energy 
per nucleon in a light fragment is the larger energy interval between the 
single-particle states in the light nucleus near the Fermi surface. Below, 
we will check this assumption. In fact, to establish the influence of the 
shell structure near the Fermi surface on nucleon transfer and the sharing 
of an excitation energy ·between the fragments of binary reactions, we will 
compare the results of calculations performed with the single-particle level 
scheme of a light nucleus that are well-established experimentally with those 
schemes which have an increased or decreased energy intervals compared to 
the experimental ones. Since the nucleon separation energy remains to be 
fixed, we can talk about variation of the single-particle level density near the 
Fermi surface. 

As an example, consider the 40
,
48Ca +248Cm reactions. The calculations 

are performed with the experimentally determined single-particle scheme of 
Ca isotopes and with the single-particle scheme in which the level density 
is doubled artificially. The proton and neutron separation energies remain 
constant. The results of the calculations are shown in Figs. la and 2a. 
It can be seen that RP/T decreases with the increase in the single-particle 
level density near the Fermi surfaces of the projectiles at the given TKEL, 
E1oss• The results of calculations for other combinations of the interacting 
nuclei confirm this tendency. The grounds for characterizing the interacting 
nuclei in deep inelastic heavy ion collisions by asymptotic single-particle level 
densities came from the fact that the interaction time is not large enough to 
reach complete equilibriation in dinuclear system before its decay. Thus, we 
can conclude that a larger value of the excitation energy per nucleon in the 
light fragment is explained by its lower single-particle level density near the 
Fermi surface compared to a heavy fragment. 

In Figs. 1 b and 2b, we show the results of calculations of the charge 
variance o-} as a function of the total kinetic energy losses performed with 
different single-particle schemes for a light fragment. It can be seen that o-} 
increases more rapidly with increasing of excitation energy if a single-particle 
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level density of the PLF takes a larger value. This result is in a correspon­
dence with the experimentally observed influence of the shell structure on the 
correlation between the charge variance and TKEL [9, 11]. It was observed 
that TKEL increase more rapidly with a} in the 208 Pb (7.6 MeV /A)+ 208Pb 
reaction than in the 208Pb (7.5 MeV / A) + 238 U and 238U (7.4 MeV / A) + 
238 U reactions. In other words, at the same TKEL, a1 is larger in reactions 
with 238 U than with 208 Pb. The single-particle level density near the Fermi 
surface in 238 U is also larger than in 208 Pb. 

Now consider the influence of the scaling of a level density on the oc­
cupation numbers of the single-particle states in the interacting nuclei. In 
Figs. 3-6, we shown the occupation numbers of neutron and proton single­
particle states calculated with the experimentally established (Figs. 3a-6a) 
and compressed (Figs. 3b-6b) single-particle schemes of Ca while the single­
particle scheme of 248Cm was not changed (Figs. 3c-6c). It can be clearly 
seen that with an increase in the single-particle level density near the Fermi 
surface, the transitional region from the occupied to the unoccupied states 
becomes narrower. This means that the effective temperature characterizing 
the single-particle occupation numbers in PLF is smaller for the larger level 
density if the reaction conditions, including the bombarding energy, are the 
same. For clarity, we have shown also the results of the approximate descrip­
tion of the calculated occupation numbers by the smooth Fermi distribution 
function with temperature fixed to get a better fit (Figs. 3a-6a). A decrease 
in the effective temperature characterizing the nucleon occupation numbers 
in the reaction products with an increase in the single-particle level density 
near the Fermi surface is just in correspondence with the results demon­
strated in Figs. 1-2. The calculations are done for two projectile-target 
combinations, 40

•
48Ca + 248Cm. In these cases, the projectiles differ by the 

positions of the chemical potential. Note that the lowest single-particle levels 
in 248Cm were not included in the calculations because of the small changes 
of their occupation numbers. They are not presented in Figs. 3c-6c. Thus, 
a density of the single-particle levels near the Fermi surface plays a crucial 
role in a generation of the excitation energy of nuclei. 

Closing this section consider some other effects of the shell structure. It 
is clear that peculiarities of shell structure depend on the neutron numbers. 
For example, the proton separation energy in 4°Ca and 48Ca are differed 
significantly, 8.329 MeV and 15.807 MeV, respectively. To see this effect it 
is interesting to compare of the values of RP/T presented in Figs. la and 
2a for 4°Ca +248Cm and 48Ca +248Cm reactions. The additional neutrons 
in 48Ca lead to an increase of the ratio RP/T for a given value of the total 
excitation energy. It correlates with the result obtained in [14] that neutrons 
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get more excitation energy than protons. Therefore, an increase of a number 
of neutrons in a projectile leads to an increase of the ratio RPfT. 

Another effect of an increase of a neutron number of projectile is seen 
in a correlation between the charge number variance, at and TKEL ( Fig. 
2b ). The curve describing dependence of a} on TKEL for reaction with 4°Ca 
is lower than the curve for 48Ca + 248Cm reaction at the large TKEL. This 
result is in a qualitative agreement with the experimental data obtained for 
the reactions under consideration [17]. This effect can be explained by a 
difference in the proton separation energies of 4°Ca and 48Ca. The proton 
separation energy for '18Ca (Sp = 15.807 Me F) is larger than for 4°Ca ( Sp = 
8.:329 l\leV). It means that 48Ca has more bound states of protons than 4°Ca. 
So, during deep inelastic collisions the 48Ca can exchange by a larger number 
of protons with the target nucleus 248Cm than 4°Ca. The similar results was 
observed in reactions with 248Cm as a target and 1.1 Ecout. 48 Ca and 4°Ca as 
projectiles (Fig. 10. in [17]). 

4 Conclusion 

We have investigated the influence of the single-pa.rtide level density of the 
PLF near the Fermi surface on the ratio of the excitation energies of the 
light and heavy fragments in DIC. It is shown that a two-fold increasing the 
single-particle level density of the PLF ( the single-pa.rticle level scheme of the 
TLF remains unchanged) decreases the ratio of the excitation energies of the 
light to heavy fragments by approximately 1.5 times. Since light fragments 
have smaller single-particle level densities near the Fermi surface than the 
heavy ones, we consider this result as an indication of the possible reason 
for the well-known experimental fact that the projectile-to-target excitation 
energy ratio is significantly larger than the ratio of their masses, as is expected 
according to thermodynamical arguments. It is shown also that the difference 
in nucleon separation energies of 4°Ca and 48 Ca effects on the ratio of the 
excitation energies of projectile- and target-like fragments, RPJT, and the 
correlation between the charge number variance, a1, and TI..:EL. 
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.U)Konoc P.B. H .up. 
Bnmrnue o6onoqe,rnoii cTp)'KTypbI Ha .uuccunaumo :mepnrn 
B CTOnKHOBeHmIX T.sJ)KenbIX HOHOB 

E4-98-281 

B MHKpOCKOnHqecKOM no.uxo.ue aHanH3HpyeTC.sJ RJIH.sJHHe o6onoqeqHoii CTp)'K­
Typbl Ha pacnpe.ueneHtte 3Hepnrn BoJ6J)K.lleHH.sJ Me)K.lly npO.U)'KTaMH rny6oKOHeyn­
pymx CTOnKHOBeHHii. TioKaJaHO, qTo OTHOllleHHe 3Heprnii B036J)K.lleHH.sJ <ppa™eHTOB 
onpe.uen.sieTC.sJ IlnOTHOCT.sJMH O.UHOqaCTHqHb.lX ypOBHeii npOTOHHblX H HeiiTpOHHbIX 
IlO.UCHCTeM B6nHJH IlOBepxHOCTH <l>epMH Ha HaqanbHOH CT<UlHH CTOnKHOBeHH.sJ. 
TIOKaJaHO, qTO o6onoqeqHa.sJ CTp)'KTypa RJIH.sJeT Ha Koppen.siumo Me)K.lly lllHpHHOH 
Jap.si.uoBbIX pacnpe.ueneHHii H noTepeii nonHoii KHHeTuqecKoii 3Heprnu. PacqeTbI 

- 40 48 248 BbIIlOnHeHbl .un.si peaKUHH . Ca+ Cm. TionyqeHHbie peJynbTaTbl )'KaJbIBaIOT 
Ha BO3MO)KHYIO npuquHy KOHUeHTpaUHH 3HeprnH B036J)K.lleHH.sJ B nerKOM <ppa™eH­
Te, Ha6nIO.uaeMoii B rny6oKOHeynpyrnx CTOnKHOBeHH.sJX B lllHpOKOM .uuanaJOHe no­
Tepb nonHoii KHHernqecKoii ::i~epmu. 

Pa6orn BbmonHeHa B Jla6opaTOptttt TeopernqecKoii <pHJHKH HM. H.H.EoronI0-
6oBa 01-UHJ:. 

npenpHHT 06i,e)lHHeHHOro HHCTHryTa ll)lepHhlX HCCJJe)lOBaHHH. Jly6ua, 1998 

Jolos R.V. et al. 
Effect of Shell Structure on Energy Dissipation 
in Heavy-Ion Collisions 

E4-98-281 

The effect of shell structure on the distribution of the excitation energy be­
tween fragments of the deep-inela-;tic coHisions is analysed in the microscopic 
approach. It is shown that the density of the single-particle levels of the proton 
and neutron subsystems near the Fermi surface determines the ratio between 
the excitation energies of fragments at the initial stage of the collision. It is shown 
also that the shell structure strongly influences the correlations between the width 
of the charge distributions and the total kinetic energy losses. Calculations are 

performed for the 40.48ca + 248Cm reactions. The results obtained suggest 
a possible interpretation for the observed concentration of the excitation energy 
in the light fragment in deep-inela-;tic collisions for a wide range of the total kinetic 
energy losses. -

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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