


I. INTRODUCTION

The “He three-atomic system is of considerable interest in various fields
of physical chemistry and molecular physics. Studies of the helium dimer and
trimer represent an important step towards understanding the properties of
helium liquid drops, superfluidity in *He films, and so on (see, for instance,
Refs. [1-3]). Besides, the helium trimer is probably a unique system where a
direct manifestation of the Efimov effect [4] can be observed since the binding
energy ¢; of the *He dimer is extremely small (~ —1mK [5-7]) even in the
molecular scale. For this reason, the helium trimer is certainly of interest for
nuclear physicists, too. Moreover a theoretical study of the He trimer is based
just on the same methods of the theory of few-body systems that are used in
solving three-body nuclear problems.

From the standpoint of the general theory of few—body systems the “He
trimer belongs to three-body systems that are most difficult for a specific in-
vestigation, first, owing to its Efimov. nature, and second, because it is neces-
sary to take into account the practically hard core in the interatomic He - He-
interaction [8-11]. At the same time the problem of three helium atoms can
be considered as an example of an ideal three-body quantum problem since
the *He atoms are identical neutral bosons with zero spin and the analysis
of this problem is complicated neither by separation of spin-isospin variables
nor by takmg into.account the Coulomb interaction.

There is a great number of experimental and theoretical studies of 4He
clusters. However, most of the theoretical investigations consist merely in com-
puting the ground states energies of clusters of that sort, mainly on the basis
of variational methods [12-16]. Besides, the methods based on hyperspherical
expansions of the Schrodinger and Faddeev equations [17-19)] in the coordi-
nate representation were used. Also, the Faddeev integral equations in the
momentum representation were employed in Refs. [20,21] while the results of -
Ref. [22] are based on a direct solving the two-dimensional Faddeev dlﬂerentlal
equations in configuration space. From the experimental studies we would like
to mention those of Refs. [5-7,23] where clusters consisting of a small number
of noble gase atoms were investigated. \

“Though much effort was undertaken for studying molecular clusters various -
problems related to the *He trimer remained beyond the scope of thorough
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consideration. In particular, the elastic scattering phases of a helium atom
on a helium dimer and breakup amplitudes (at ultralow energies) have been
calculated only recently [24-26]. These computations were preceded only by
the computation of characteristics of the He-He; scattering at zero energy [20]
and estimation of the recombination rate (1+1+1 - 24 1) [27].

As a matter of fact, we have already pointed out basic reasons for compu-
tations of excited states and scattering being especially difficult in the ‘He,
system. First, this is a low energy of the dimer ¢; which necessitates to con-
sider very large domains in the configuration space with a characteristic size
of hundreds of A', Second, a very strong repulsive component in the He-He
interaction produces la.rge‘ errors in the standard approximation of the three-
atomic Hamiltonian at short distances between atoms. The capacities of mod-
ern computers do not yet-allow one to reach dimensions of grids that would
remove both the above-mentioned reasons and would provide stable results
with the use of the conventional methods. SRR

The present paper is a sequel of studies of the *Hes system undertaken
in the papers [24-26] within an approach that is capable, as we ‘think, to
resolve both the above-mentioned numerical problems. In"these’ papers the
.repu_lsive component of the He-He interaction at short distances between atons
is approximated by a hard core. This allows one to investigate the ‘He, system
within a mathematically rigorous method-of solving a three-body- pfoblem in
the Boundary-Condition Model developed in [28,29]. An important advantage
of such an approach that essentially diminishes computational errors is the
flecessity to approximate, inside the core domains, only the Laplacian '6perat0r
instead of the sum of this operator and a huge repulsive components of the He
He-potentials (see [26]). In [24-26], such an approach has been successfully
applied for calculating not only scattering but also binding energies of the
. ground and excited states of the helium trimer. Investigation made in ‘[24-26]
has shown that the method proposed.in [28,29] is well suited for performing
three-body molecular computations in the case where repulsive components
of interatomic interactions are of a hard core nature. - - et

There.is a series of works [18,21,26] showing that the excited state of the

“He trimer is initiated indeed by the Efimov effect - [4]. In these works the -

various versions of the Aziz *“He-"He potential were employed (HFDHE2 (8],
HFD-B [9], and LM2M2 [10]). However, the basic result of Refs. [18,21,26]
on the excited state of the helium trimer is.the same: this state disappears
when the interatomic potential is multiplied by the “ampliﬁcation factor” A of

order 1.2. More precisely, if this potential is multiplied by the increasing factor-

A > 1 then the following effect is observed. First, the difference ez(\)— E,(l)(/\)
between the dimer energy e;(\) and the energy of the trimer excited state

*E,(l)(/\) increases. Then the behavior of this difference radically changes and
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with further increase of X it monotonously decreases. At A ~1.2 the level EXM
disappears. It is just such a nonstandard behavior of the energy E,“)(/\) as
the coupling between helium atoms becomes more and more strengthening,
points to the Efimov nature of the trimer excited state. And vice versa, when
A slightly décreases (no mnore than 2 %). the second excited state E® appears
in the trimer {18,21}].

This paper is aimed at elucidating the fate of the trimer excited state upon
its disappearance in the physical sheet*when A > 1 and at studying the mech-
anism of arising of new excited states when A < 1. As the interatomic He - He
potential, we use the potential HFD-B [9]. We have established that for such
He - He- interactions the trimer excited level E\" merges with the threshold
g at A & 1.18 and with further decreasing A it transforms into a virtual level
of the first order (a simple real pole of the analytic continuation of the scatter-
ing matrix) lying in the unphysical energy sheet adjoining the physical sheet
along the spectral interval between €4 and the three-body threshold. We trace
the position of this level for A increasing up to 1.5. Besides, we have found
that the excited (Efimov) levels for A < | also originate from virtual levels of
the first order that are formed in pairs. Before a pair of virtual levels appears,
there occurs a fusion of a pair of conjugate resonances of the first order (sim-
ple complex poles of the analytic continuation of the scattering matrix in the
unphysical sheet) resulting in the virtual level of the second order.

As it will be clear from the further exposition (see Sect. III), the above-
mentioned resonances are not, geuerally speaking, genuine resonances of the
1He; trimer since they are situated outside of the energy domain for which
we can rigorously prove the applicability of the methiod we are using for com-
puting the resonances. We will call the resonances found outside the range of
guaranteed applicability of the method the (quasi)resonances. '

The paper is organized as follows. , ,

In Sect. II, we describe the method of search for resonances in a three-
body system on the basis of the Faddeev differential equations. The idea of
the method consists in calculating tlie analytic continuation of the component
So(z) (see formula (6)) of the scattering matrix corresponding to the (2+1 —
2+41) process, in the physical sheet with the use of these equations. A particular
attention in this section is paid to the description of the parabolic domain on
the physical sheet where one can analytically continue the function Se(z) by
numerical solving the coordinate space Faddeev partial equations. For the
potentials we use, the three-body resonances (including virtual levels) lyving
in the unphysical sheet of energy = plane adjoining the physical sheet along
the interval (eq,0) are the roots of the function S¢(z) in the physical sheet.
We have earlier employed this method for computing resonances as roots of
So(z) in the three-nucleon problem [30].
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In Sect. III. we first briefly describe the numerical method we use to solve
the (2+1 5 2+1;1+141) scattering problem for the *He; system with
going out into the domain of complex energies. Then we describe the results
of our calculations. ' '

Some notation used throughout the paper is as follows: by C we denote the
complex plane; \/z stands for the main branch of the function Y2 Im\/z > 0
for any z € C; the symbol R? is used for the quadrant = >0,y > 0; by
Ly(R%) we understand the Hilbert space of complex-valued functions which
are integrable on R} with the absolute value squared: the symbol 7 stands for
the complex number conjugated to =. ‘

II. METHOD FOR SEARCH OF RESONANCES IN A,
THREE-BODY SYSTEM ON THE BASIS OF THE FADDEEV
DIFFERENTIAL EQUATIONS Tt

A. Faddeev partial differential equations in the case of smooth -
' potentials \

In this paper, we will consider the *He, system in the state with the total
angular momentum L = 0. . : Lo . :
First we consider the case where the interatomic interactions are described
by conventional smooth potentials that include no hard-core component. In
this case, the angular partial analysis reduces the initial:-Faddeev equation
for three identical bosons to a system of coupled two-dimensional. integro-
differential equations [31] : ’ S

Ty

[Hoi = 2] Ffz,y) = <V(@)(z,y). .. ()

Here, z,y stand for the standard Jacobi variéblés? z>0 érid y 2,0', and
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for the partial component of the kinetic'energy ‘operator. Functions from 4th’e"‘ »

‘domain of ‘Hy,; are assumed to obey the boiindary conditions

which ‘are quite standard when the expansions over bispherical basis are used.
The potential V(z) is assumed to.be central. In our paper, the energy z can
get both real and complex values. At L = 0 the partial angular momentum { .
corresponds both to the dimer and an additional atom. The momentum { can .
assume only even values, [ = 0,2,4, ... .
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_ The partial wave functions ¥(z,y) are expressed through the Faddeev
partial components Fi(z,y) by the relations =

‘ +1 1 ! )
Yi(z,y) = Filz,y) + Z/l dn hu(z, y,) Fo(z',y') (4)
, 14 = :

.

where

’ 1 2 3 2 iﬁ
z —\/4-95 +4y 5 Ty,

and —1 < 5 < 1. The explicit form of the functions Ay can be found, e.g.,
in Refs. [31,32] (see also [26]). Here we only deal with a finite number of
equations (1), assuming that [ < /. where [, is a certain fixed even number,
Imax > 0. The condition 0 <‘[ < [, is equivalent to the supposition that the
poterRial V(z) only acts in the two-body states with [ = 0,_2,. ...,lmax. The
spectrum of the Schrédinger operator for a system of three identical bosons
with such a potential is denoted by ¢3p. '

It is well known (see, e.g., Ref. [31]) that if the potential V/(z) is smooth
and decreasing as ¢ — co together with its derivatives not slower than z73-¢,
€ > 0, then the asymptotic conditions as p — oo and/or y — 00 for'the
partial Faddeev components of the (241 — 24 1; 1+ 1+ 1) scattering wave
functions* for z = E +i0, E > 0, read -

Fl@,452) = butha(z) {sin(vz=eay) +exp(ive—eay) [aa(z) + o (1)]}
' exp(iv/zp) .
—L[A(2,0) + 0(1)] -
N .

We assume that the *He; dimer has an only bound state with an energy €4,
€4 < 0, and wave function 1g(z). This function is assumed to be normalized so
‘that for all z > 0 values of t4(z) are real. The notations p, p = /22 + y?, and

f, 0 = arctg y , are used for the hyperradius and hyperangle. The coefficient

ao(z), z = E+i0, for E > ¢4 is the elastic scatteri{lg amplitvude. The functions
Aj(E+i0,0) provide us, at E > 0, the corresponding partial Eaddeev b.reakup
‘amplitudes. Note that for z = E+i0 the correction terms o(1) in coeﬂ'icuants of
outgoing waves exp(iv/z — €3y), E > €4, and exp(iv/zp)/,/p, E > 0, in (5) are

’ \32‘ 12 \/g
y—_\/Zx +4y +‘2ny77,

)

*Here we speak about the wave functions usually denoted by sign “(4)”. The as-
ymptotics of these functions in the total three-body configuration space R® contains,
apart from the incident wave, only the so-called outgoing spherical waves (see, e.g,

(31]).



of the form, respectively, o(y~'/?) and o(p~/?). This property ensures unique-
ness of the solution of the boundary value problem (1-5) for real scattering
energies E > ¢4 [31].

The (2 4+ 12 + 1) component of the-s-wave partial scattering matrix for
a system of three helium atoms is glven for real 2 ="E +1i0, E > ¢4, by the
expression - ‘

So(z) —1 + 2iap(z) (6)

while the (2 +1 — 2+ 1) scattering phases read

1
(So(p) = 5 Im'In So(Cd + p2 + 10) , p>0,

where p stands for the momentum conjugat‘ed to the Jacobi variable y.

B. Holomorphy domains of the Faddeev components F( z) and
scattering matrix S;(2)

Our goal is to study the analytic continuation of the scattering matrix
So(z) into the complex plane (the physical sheet). As it follows from the re-
sults of Refs. [33,34], roots of the function Sy(2) in the physical sheet of energy
z plane correspond to the location of the three-body resonances 51tuated in the
unphysical sheet connected with the physical sheet by crossing the spectral
interval (€4,0). This statement is a particular case of more general statements
regarding the three-body resonances obtained in [33,34] for the case of.two-

-body potentials decreasing in the coordinate space not slower than exponen-
tially. We assume that V(z) is _]ust a potential which falls off exponentlally
and, thus, forallz >0 . :

V)< Ceplpz), o

with some p051t1ve C and g. For the sake of sunpllaty We even assume some-
times that V(z) is finite, i.e., V(z) =0 for z > ry, 7o > 0. Looking ahead,
we note that, in fact, in our numerlcal computations of the ‘Hes system at
complex energies we make a “cutofl” of the mteratomlc He- He potential at
a sufficiently large radius . :

It is well known that different representatlons of the same holomorphlc
function (for instance, either by a series or by an integral) allow one to describe
this function only in some parts of its Riemann surface. The description [33,34]
of the holomorphy domains for different truncations of the total three-body
scattering matrix in the physical sheet was based on the use of the Faddeev
integral equations in the momentum representation. In this paper, we make use
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of the Faddeev equations in the configuration space. Therefore it is necessaly
to perform an investigation, independent of [33,34], of domains in the physical
sheet where we can analytically continue the Faddeev components Fi(z,y; )
and the amplitudes ag(z) and A;(z,8) just with the use of the configuration
space techniques. ‘

Let us list briefly the main results of this investigation obtained by us
for the *Hes system under the assumption (7). To formulate these results we
distinguish the following three domains in the complex plane C.

1°. The domain ¥} where the Faddeev components Fi(z,y;z) (and.
hence, the wave functions ¥;(x,y;z)) can be analytically continued in z so
that the differences

Oy(z,y;2) = Fl(I,y;~) dioa(x) sin(vz — €4 y) (8)

at'z € MY\ &35 turn out to be elements of Ly(R%). The domain Y is
described by the inequality

Im — g < mm{——y, \/—\/Td} (9)

For fixed ,y the functions ®;(x.y;z) are continuous in = up to the rims of
the cut along the continuous spectruim [€a, +00).

2°. The domain T4 where both the elastic scattering amplitude ag(=)
and the Faddeev breakup amplitudes A4;(z,#) can be analytically continuo‘d
in z, z ¢ osp, provided that the functions Fi(xt,y;z) obey the asymptotic
formulas (5). This domain is described by the inequalities

1 V3
Im\/~:+'§§m s < leal s (10)

3
Imvz+Im/z ——cd<£u - (11)

3°. And finally, we distinguish the domain I1%), most interesting for us.
where the analytic continuation in z, = ¢ o3p, can be only done for tl.le elastic
scattering amplitude ag(z) (aud cousequently, for the scattering matrix SU(:)'):
the analytic continuabilty of the amplitudes A;(z,0) in the whole (‘lomam
1S is not required. The set [ is a geometric locus of points obeying the

inequality

1 V3 i
Imyz—es < mm{-ﬁ el Tp} . (12)

-
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For the domains 1Y), 114 and I1¢5), the following chain of inclusions
o c o c o, |

is valid.
Note that the type (9) or (12) condition,

Imvz—a<vbh, a€R,b>0, - (13)
is equivalent to the inequality ’
Rez>a—b'+E(Imz)2. (14)

Therefofe, for 1 < 2/|eq| the set TIY) is the domain bounded by the parabola

3 1 |
Rez > : —lcdl—zl-y + 2(Imz)2_ (15)

3u
For p1 > 2,/|eq| this set coincides with the domain
Rez > —4Iéd| +

-—-—21 dl(Imz)z. | o '} (16)

Analogously, 1f n< ,/ |ea) then the domain H(S) is descrlbed by the 1nequal-

ity (15); whereas for it > 2 /]ed] by the inequality

Rez > — ,cdl + —(Imz)*. = - (17)

3

4ledl
As'to the curves bounding the domains (10) and (11), we only notice that their
order with respect to the variables Rez and Im z is higher than the second
order. It is easy to check that each of these curves is connected, symmetric with
respect to the Re z axis.and crosses the latter only once. For the first cirve this
intersection:occurs at z = %cd, the slope angle of the tangent ‘at-the point of

inters'ectio'n"being’i\‘h‘depen‘d’e‘nt of éd, jIR” S ; :thé As Rez — +oo the
Im z=40
boundaries(10) and (11) are asymptotically approxunated by the type (14)

parabolas with coefficients a and b which can be computed explicitly. -

To prove the assertion 1° concerning the domain II¥) we note that the
functions ®(z,y; z) given by the formulas (8) satisfy the equations

8

[HOI+V(:E)_Z](DI(‘T y,2)+V / dTlhu'(x y,n )(I)l’( aya )

) . ‘ =X( I,y 2 ) (18)

where

xi(z,y; 2 l‘)/ dflhtol‘y, )iba(z') sin( \/Z_Cdy
Obviously, for z € II") the functions Xl(a:,y; z) fall off exponentlally as p —
00. Moreover, for all the directions 0 < # < 7/2 the uniform estimate

xi(z,y; 2) Pl 0 (exp(—ap)>

is valid with o = min{ —Im/z — €, %3 \/Z 3Im/z—= cd} . Conse-
quently, if the condition ( ) holds then the 1nhomogeneous terms xi(z,y; z)
considered as functions of the variables z and y at fixed z, are elements of
Ly(R2). At the same time, the vectors x;(z) turn out to be holomorphlc func—
tions of z € I1'") with respect to the L(R2) norm. :

In the problem under consideration, the spectrum of the Faddeev matrix
operator defined by the Lh.s. of Egs. (18) ‘and by the boundary conditions
(3) in the Hilbert space constituted of the vectors ® = (9o, D5,..., %P1 ),
b, € Lz(R2), coincides with the spectrum o3p of the corresponding three-
boson Schrédinger operator with two-body potentials V(z) only acting in
the states with [ = 0,2,..., . This means that for any energy z € II(¥)
lying outside of the spectrum 038, the inhomogeneous system (18) is uniquely
solvable in the class of the functions' ®(z) € La(R2), [ =0,2,...,lmax. Since
outside of the set ag3p the resolvent of the Faddeev operator is a holomorphic
operator-valued function of the variable z, each of the components ®;(z) of
the solution of Egs. (18) also is a holomorphic function of z € ¥\ g35. The
bound-state energies of the three-boson system under consideration turn out
to be poles of the first order for ®,(z). Thus, the Faddeev partial components
Fi(z,y; z) admit the analytic continuation in z'in the form (8) into the domain
H () \0'3B

The proof of the assertions of 2° and 3° regarding the domains I1*®) and .
4 is rather cumbersome. This is why we here only outline its main steps. .
Note that the proof is based on the integral equations method and it is quite
standard (see, for instance, Ref. [31], Chapter V). First, the equations (18) are
rewritten in the form of the Faddeev partial integral equations. To do this, it
suffices to reverse the operators Ho;+V — z in (18). Since the variables z and
y in Hy are separated, the kernels RO(X, X'; 2), X = {z,y}, X' = {z', ¢}, of



the respective resolvents R()(z) = (Ho;+ V — z)~! are explicitly expressed in
terms of the two-body problem. Analytic properties in the variable z and coor-
dinate asymptotics of the kernels R{)(X, X’; z) are.well known (see Ref. [31],
Chapters IV and V). Iterations first “improve” and then stabilize the as-
ymptotic properties of the iterated kernels and inhomogeneous terms of the
Faddeev equations. (In the case under consideration, this stabilization requires
only three iterations.) Further, it turns out that, for z ¢ [eg, +00), the iterated
kernels are represented by sums of exponentially decreasing terms admitting,
in certain domains of the configuration space, an explicit asymptotic factor-
ization with respect to X and X'. Since we are working in the domain where
xi(z) € Ly(R2), the corresponding asymptotic factors of these terms, along
* with the asymptotics of the iterations of the inhomogeneous term, determine
the coordinate asymptotics of the functions ®(z,y; z). Therefore, finally we
are able to determine the geometric locus of the points z in the complex plane
for which there exists a (non-empty) set in the configuration space such that
thfe leading term of the coordinate asymptotics of the function' Q)(z,y;z) in
this set represents a term of the form ag(z)ya(z) exp(iv/z — €5 y), and thus, for
these z the scattering matrix So(2) is well defined. This geometrical locus is
Just the domain II5). In this domain, as y — oo and/or p — oo, the functions

®(, y; z) admit the asymptotic representation ‘ ‘
@i(2,y; 2) = dotpa(z) {exp(i\/z ~ €ay) [ao(z) +o(1)] + fo(y;,z)} - (19)
oo exp(iyzp) ' R '
o+ Pﬁ(\/\,—)/_i) [Ai(2,8) + o(L)] + Fr(z,y52)

with

b(y:2) 5,0 () and - File,432) = 0 (e¢¥) - (20)

where

ap(z) = —2—\/|ed| Y Imy/z—¢g,

(21

ay(z) = min{ao(z) ,’ \/T?:,u‘— Imv/z — ed,"Im\/;}‘. o (22)

In'a: parabolic neighborhood of the y-’axis,A the funétionsﬂFl,l(:v,y; z) are also
subjected to the asymptotic estimates . . »

- Fi(e,y2) =
) Yy — oo
<y

O(exp(—ao(z)y)) S ®
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where v is an arbitrary fixed number smaller than unity, v < 1.
As to the domain IT1t4), the leading asymptotic term of each of the functions

Fi(z,y; z) for = € I is a spherical wave exp(i\/zp)/,/p with the amplitude
Ap(0) being a differentiable function of the angle 0. Therefore, for = € ) the

‘term Fy (,y; z) in the r.lus. of the formula (19) can be added to the asymp-

totic term with a spherical wave preceding F, ;. In the domain I1'5), and hence,

in a narrower domain IT4) the condition fo(y;:)yfooo(exp(i\/z—cdy))

holds. Consequently, for z € T4, the Faddeev components Fi(x,y;z) do
obey the standard asymptotic conditions like (5).

Therefore, for any v < 1 the dominant term of the asymptotics of
the function ®g(x,y:z), = € I3\ 035, in the domain r < y” reads as
ag(z)¥a(z) exp(iv/z — €qy) as y — co.. This means that, for = € [N o3, it is
always possible by solving the equations (1) to separate explicitly the elastic
scattering amplitude ag(z) and, thus, to construct the analytic continuation
of the scattering matrix So(z). : : :

Outside of the domain I1¢®) the numerical construction of Sg(=) by solving
the Faddeev differential equations is. in general, impossible since for « < y*
and v < 1 both functions fo(y; =) and Fyp(x,y:2), 2 ‘¢ 11 include terms
decreasing slower than exp(iy/z — €4 y) as y — oo. .

B. The partial Faddeev differential equations in the case of potentials
with hard core i o -

In the case of potentials with lard.core, the partial Faddeev differential
equations for a system of three identical bosons at L =0 acquire the form -

[Hoy — 2] Fi(z,y) = { —Vt(m)(\)ljl(m’y)’ ; Z z’ (24)

where ¢, ¢ > 0, is the core size. The partial wave functions ¥,(x,y) are ex-
pressed via Faddeev partial components Fi(z,y) by the formulas (4). The
components Fj(z,y) satisfy the standard boundary conditions (3). The two-
body central potential V() acts only beyond the core domain, i.e. only where
x > c. We assume as before that V() falls off not slower than exponentially
as © — oo and, hence, it satisfies the condition (7) for some ' > 0 and 4 > 0.

A main difference between the model with hard core and those with smooth
potentials-is that the functions Fj(x,y) in this model satisfy the auxiliary

boundary conditions

+1 ;o
FI(C»yHZ/I dy b (e, y,m) Fo(a',y') =0 (25)
[

11



requiring that the wave functions ¥y(x, y) vanish on the boundary = = c of the
core domain. It can be shown that in fact the conditions (25) force the wave
functions (4) to vanish also inside the core domain at all energies except for a
certain countable set of real values of z (see Ref. [26] and references therein).
Asymptotic conditions for the partial Faddeev components Fi(z,y; z) of
the (241 — 24 1; 1 4 1 + 1) scattering wave functions as p — oo and/or
y — oo are again of the form (5). The only difference is that the dimer wave
function 14(x) is considered as zero in the core domain,i.e.for 0 <z < e
In the hard-core model, all the assertions of Sect. II b regarding the holo-

morphy ‘domains of the functions @;(z,y; z) and the scattering matrix So(z)

in z still hold true.

r. Resonances and v1rtual levels as roots of the scattering matrix Sy(z)
' _in the physrcal sheet .

We have already notlced that the roots of So(;) in the physical sheet of
energy z plane correspond to the location of the three-body resonanceés in the
unphysical sheet adjoining the physical sheet along the spectral interval (eg, 0).

In the case under consideration, this statement is an immediate consequence =

of the unitarity of the scattering matrix So(z) for z = E+10, ¢ <E'< 0, -

SlE+i0)S(E+0)=1. ()

Indeed as we have established, the functions (I)](I y; z) are holomorphic func-
tions of z € ' \ 03p. Since the boundary value problem (1-5) is uniquely
solvable, one easily 'verifies. that the bouridary values @;(x,y; E' 4+ i0) and
®,(z,y; E —10) for these functions on the rims of the cut along [€4, 4+00) are
related to each other as

By(z,y; E +10) = —~B(z, 33 E — 10) . (27)

since, on the one hand; their asymptotics (19) as y = oo and/or p—+ oo has:

the same structure and on the other hand

xz(x v; E+ 10) = —Xt(I y, E=i0) = —txxv(a:.,’yj E-— 10), e

since L O -
sin(\/E—ed—HOy —sm(\/ —ed—loy —sin \/ —ed—r()y) '
Consequently,

ao(E+i0)= “ag(E—10) (28)
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and
So(E +10) =So(E —10), E > €. (29)}
Therefore, it follows from Eq. (26) that for ¢, < £ <0
So(E +i0) = [So(E —i0)]! and So(E ~1i0) = [So(E + iO)]"1 .

This means that the function So(£+i0) is continued through the cut [ez, O] into
the domain Imz < 0 as Sg l(z In a similar manner, So(E — i0) is continued
into the domain Im z > 0, again as S;'(z). All this signifies that the scattering
matrix So(z) admits analytic continuation at least into the domain II*® of the
unphysical energy sheet connected with the physical sheet by crossing the
interval [es,0], the value of the continued function So(z) at z € II®) in the

- unphysical sheet comc1d1ng with the value of S5'(2) at the same z but in the

physical sheet.

Recall that those points =z on unphysical sheets are called resonances where
the analytically continued scattering matrix possesses poles. The resonances z
with zero imaginary part Imz = 0'and Rez < ¢4 are called the virtual levels.

Thus, we have here presented a simple proof of the fact that the resonances
mcludlng the virtual levels corresponding to poles of the analytic continuation
of the scattering matrix So(z) in the unphysical sheet connected with the
physical one by crossing the spectral interval [e4, 0] aTe the roots of this matrix
in the physical sheet. At the same time, the poles of the function So(z) in the

. physical sheet correspond 'to bound states of the.three-boson system under"

consideration.
Concluding. the subsectxon, we- note.that it follows from Eq (28) that
a,q(z)>= ——-a,o( ) and, hence, ;. - .. ¢ - - : '

"STj='so(f) ' Qf | "(30)'L

for any z € TIS). This means that the roots of the functlon So(z) are s1tuated
symmetrlcally w1th respect to the real ax1s

III NUMERICAL METHOD AND RESULTS OF COMPUTATIONS ;

In the present work we make use of the Faddeev equatxons (24) consxdered
together with the boundary.conditions (3);.(5) and (25) to calculate the values
of the *He; scattering matrix So(z).in‘the physical sheet. We search for the -
resonances including the virtual levels as roots of S¢(z) and for the bound-
state energies as positions of poles of Sg(z). All the results presénted below
are obtained for the case . = 0. :

13



Ta6nuna I. The parameters for the HFD-B *He—*He potential.
‘ 10.948

2.963
184431.01
10.43329537
—2.27965105
1.36745214
0.42123807

Cho ' 0.17473318

D ’ ' 1.4826

In all our calculations, h?/m = 12.12 K A2 As the interatomic He - He-
interaction we employed the widely used semiempirical potential HFD-B con-
structed by R. A. Aziz and co-workers [9]. This potential is of the form

o : L Cg  C «
Varp-B(z) = ¢ {Aexp(—a( + ﬁgz) — [% + ZEB + ‘(‘Tl(())] F(()} - (31)

where ¢ = z/rp,. The function F(¢) readsv

: ex —D‘—i"’, ifc.gD
F“):{l,p[ (bfe-vr, <D

For completenéss the parameters of the potential HFD-B are given‘in‘Table I.

The value of the parameter c (the core “diameter”™ of particles) is chosgn to
be so small that its further decrease does not appreciably influence the dimer
binding energy €; and the energy of the trimer ground state E't(o) . Unlike
papers [24-26], where ¢ was taken to be equal 0.7 A, now we t'ake c=13A.
We have found that such a value of ¢ provides at least six reliable figures of

¢4 and three figures of E®.

Since the statements of Sect. II are vélid, generally speaking, only for the

potentials decreasing not slower than exponentially, we cut off tl}e potential
HFD-B setting V() = 0 for z > ro. We have established that thlso)cuto(f(f;)for,
ro > 95 A provides the same values of €5 (€4 = —1.68541 mK), E! (E; =
—~0.096 K) and phases do(p) which were obtained in our earlier calculations
[24-26] performed with the potential HFD-B. Comparison of these results
with results of other researchers can be found in Refs. [24-26]. In all the
calculations of the present work we take ro = 100 A, Note that if the formulas
from Sect. II including the parameter p are used for finite potentials, .one

should set u = +co.
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Before making numerical approximation of the system: of equations (3),
(24), (25) at lpax = 0 we rewrite it in terms of a new unknown function
®o(x,y; ) that is expressed via the Faddeev component Fy(z,y;z) by the
relation (8). Note that for = € I[(¥) \ o35 the function ®¢(z, y;z) is square in-
tegrable in x, y (see Sect. II B). Therefore. this function is uniquely determined
by the asymptotic condition

Bo(x, y; :)’;’;)00 : (32)

that can be easily approximated and programmed. One could, for instance,

require ®g(x,y;2) ' = 0 at a sufficiently large pmax and look

VE2 2 =puax

for a numerical solution of the system (3). (24). (25) satisfying this condi-
tion. Further, for = € M) one could. going sufficiently far from pay into
the domain of smaller (but nevertheless, providing the asymptotics (19))
values of p, separate the elastic scattering amplitude ao(z), putting, e. g..
ao(z) = Bo(x,y; =) exp(—~iy/z = €q y). where the value of z corresponds to the

maximum of the function vy(z). Such an approach is, however, not effective

in view of a}iﬁelative'}y slow decrease of the exponentials exp(—m.z') and
exp(—Im /z — €5 y) as well'as of the function exp(— Im V= p) in the energy
domain of interest for us in II(5), For a proper approximation of the condi-
tion (32), very large values of puax are to be taken. This. is just a reason why
one should take into account the asymptotics of the function ®o(x,y;z) as
z — 00 and/or y — co. Though the asymptotic formula (5) only holds for
z'€ I, we employ it also for = € 1119 \ I1'4). Indeed, when = € T1(5) \ 14,
the leading term of the asymptotics of o(x,y;2) as y - co.and & < yv.
v <1, i$ given by the same expression ao(z) exp(iv/z — egy) (see Sect..11B)
as.in Eq. (5). OQutside of the pvarabola\ & < y*, it suffices to require the con-

“dition (32) to be satisfied. The presence, in Eq. (5), of the spherical wave

exp(ivz p)/ \/}_)"doles not contradict this requirement. Therefore, the use of
asymptotic condition (5) is justified even if = € [1(5) \ [1t4), : v
-A detailed description of the numerical method we use is .presented in
Ref. [26]. Here we only mention main steps of the computational scheme [26]
helpful for understanding our results. v ' :
When solving the boundary-value problem (3), (5), (24), (25) written in

terms of the function ®,, we carry out its finite-difference. approximation in -

polar coordinates p and 0. The grid is chosen in such a way that the points of

intersection of arcs p = p;, i = 1,2,... s Ny, and rays 6 =0, j = 1,2 Ny, -

with the line &« = ¢ turn out automatically to be its knots. The p; points are
chosen according to the formulas

z

=—=—c, i=12,... N©
NP 4 ¢

pi

1



Pintr =\ +yf, i=12...,N,— N,

where N!?) stands for the number of arcs inside the core domain and
.:f(T,)‘ 2 _Cz,‘ T.:____i__
yz T /)N‘J s 1 Np _ Nc(p) .
The nonlinear monotonously increasing function f(7), 0 < 7 < 1, satisfying
the conditions f(0) = 0 and f(1) = 1 is chosen in the form

flT) _ { T l , T €[0,7)

arT+ 71", 1€ (10,1] °

The values of ag, ag > 0, and ay, &; > 0, are determined via 7o and v from
the continuity condition for f(7) and its derivative at the point 75. As a rule,
we took values of 7y within 0.1 and 0.2. The value of the power v depends on
the cutoff radius pmax = PN, = 50-—4100 A its range being within 2 and 4 in
our calculations. N

“The knots 6; at j = 1,2,...,N, — N are taken accordlng to b;
arctg(y;/c). The rest knots 6;, j = N NC(") +1,..., Ny, are chosen equldls-
tantly. Such a choice of the grid-is prescribed by the need to have a higher
density of points in the domain where the functions ®;(z, y; z) are most rapidly
changing, i.e. for small values of p and/or # and lower in the asymptotic do-
main. In this work, we used the grids of dimension Ny = N, =600— 1000.
The number of the last arc knots i 'in 6 lylng in the core dornam was usually
equaltoN")*—S - :

" The finite-difference approximation of the integro-differential equatlons
(24) -and boundary conditions (3), (25) for lmax = 0 reduces the problem to
a system of ‘N, Ny linear algebraic equations. The finite-difference équations
corresponding to the arc i = N, include initially the values of the unknown
function ®(z,y;2) from the arc ¢ = N, + 1. To eliminate them, we express
these values through the values of ®(z;y;z) on thearcs i = Nyand ¢ = N,—1
by using the asymptotic formula (5), just in the manner described in the con-
cluding part of AppendixA of Ref. [26]: In [26], this approach was only used
for computing the energies of bound states. Now we extend it also on the
scattering problem. (Note that the formulas (A10) and (All) in [26] related
to the described approach contain misprints. The values Cy, in these formulas
should be replaced with*inverse values I/CN .) The matrix of the resultant
system of equations has a block-three- dlagonal form (see Ref. [26], Appendlx

A). Every block has the- dimension Ny X Ny and consists of the coefficients
standing at unknown values of the function ®(z,y;z) in the grid knots be-
longing to a certain arc p=pi The main dlagonal of the matrix consists of

N, such blocks.
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In contrast to [24-26], in the present paper we solve the block-three-
diagonal algebraic system on the basis of the matrix sweep method. This
allows us to dispense with writing the system matrix on the hard drive and to

- carry out all the operations related to its inversion immediately in RAM. Be-

sides, the matrix sweep method reduces almost by one order the computer time
required for computations on the grids of the same dimensions as in [24-26].

We searched for the resonances (roots of the function Sp(z) on the physical
sheet) and bound-state energies (roots-of the function Sg'(z) for real z < ;) of
the helium trimer by using the complex version of the secant method. Within

‘this method, the approximation z, to a root of a holomorphic function f(z)
" is constructed from the two previous approximations z,_; and z,_, accordlng

to the formula

f(Zn—ll(Zu—l - Zn‘—zl
f(zn—l) - f(Zn_z)) ’

As the relationship (30) implies the symmetry of properties of the scatter-
ing matrix Sg(z) with respect to the real axis, we performed all the calcula-
tions for So(z) only for Im z > 0 (except the tests of the code). We start with
a study of graph surfaces of the real and imaginary parts of the scattering
matrix So(z) in the domain of its holomorphy II¢®) \ g35. The root lines of
the functions Re Sp(z) and Im’ Sg(z) obtained in the case of the grid parame-
ters Vg = = 600 and pmax = 600 A are depicted in Fig. 1. Both resonances
(roots of So(z)) and bound-state energies (poles of So(z)) of the “He trimer
are associated with the intersection points of the curves ReS¢(z) = 0 and
Im Sp(z) = 0. When the roots or poles are simple, these curves intersect each
other at the right angle. Note that for real z < €, the function So(z) is real
and, thus, ImSg(z). = 0..In Fig. 1, along with the root lines we also plot
the boundaries of the domains II{S), 114 and MY, One can cbserve that a
“good” domain 1) includes none of the points of intersection of the root
lines Re So(2) = 0 and ImSo(z) = 0. Nevertheless, as we will see below, the
going’ beyond this'domain is of an interest, even though’ the asymptotic for-
mula'(5) is not valid for z € C \ ey and the function So(z) ‘calculated there
cannot be interpreted as the scatterlng matrix. The caption for Fig. 1 pomts
out 'positions of the four * resonances”, the roots of So z) found 1mmed1ately
beyond the boundary of the domain II(5), As one could expect the values of
the function Sg(z) atz e C \ 169 and positions of its roots in' C \II® turn
out to be unstable and strongly depend on the value of the cutoff radius pmax,
whereas the dependence on the number of knots is weak. In partlcular, for
Pmax = 400 A, a (quasi)resonance, closest to the real axis, is situated at the
point (— 1 95 4+ 11.81)mK, if Ny = N, = 300, at the point (—1.90 + i1.85) mK,
if Ng = N, = 520, and at the point ( 1.89 +i1.86) mK if Ny = N, = 800. The
same (qua51)resonance in Fig. 1 (calculated for pmax = 600 A) 1s situated at
the point (—2.34 +10.97) mK. If Ng = N, = 600 is fixed, the increase of pmax

Zn = 2p-1 —
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(mK)

Im z

." 2 .’.‘:/{i-\/.. 1.' “ L . I " L
Re z (mK)

Prc. 1. Root locus curves of the real and imaginary parts of the scattering matrix
So(z): The solid lines correspond to ReSo(z) = 0, while the tiny dashed lines, to
ImSo(z) = 0. The Numbers 1, 2, 3 denote the boundaries of the.domains II¥),
I1S) and I14), respectively. Complex roots of the function Sy(2) are represented by
the crossing points of the curves Re So(z) = 0 and Im Sp(2z) = 0 and are located at
(—2.34+10. 96) mK, (—0.59 4+ 12.67) mK, (2. 51+14 34) mK and (6.92+16.10) mK.
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Ta6muna 11. Dependence of the difference ¢4 — E{*’ (mK) between the dimer
energy €4 and the trimer excited state energy E!" on the grid parameters. The
values of p,,, are in A.

Ny, N, (Ng = N,) 600 l 800 l 1000
pmax n
400 0.7752 0.7661 0.7625
600 0.7809]. 0.7695 0.7649
800 0.7852 0.7723 0.7669

up to 800 A shifts this point to the point (—2.44 + 10.65) mK.

All the aforesaid regarding the instability of the function So(<) values and
positions of its roots beyond the domain II®) bears no relation to its pole
at the point z = E(” = ~2.46 ml\, corresponding to a trimer excited-state
energy, even though this energy does not belong to I1S). The point is that
the position of the pole of Sp(z) is only determined by the position of the
root of the determinant of the linear algebraic system we solve, whereas the
inhomogeneous term of the system plays no role. Therefore, the search for
the poles of the grid function Sg(z) is equivalent to the search for the binding
energies of the trimer. The grids we have used turn out ta be quite sufficient
for this purpose. The convergence of our results for E,m with respect to the
parameters Ny, N,, pmax and tlieir accuracy can be judged from the values of
the difference ¢; — E,(l) obtained with different grids and shown in Table II.-

We would like to stress that we do not consider the roots of function Sy(z)
drawn in Fig. 1 as genuine resonances for the ‘Hes system since they are
situated beyond the domain I1'5) where the applicability of our method is
proved. We should rather coubider them as: artifacts of the method: However
it is remarkable that the “true” (i.e., getting inside 1)) virtual levels and
then the energies of the excited (Eﬁmov) states appear just due to these
(quasx)resonances when the potential V(x ) is weakened. This is the object of
our further consideration. . )

Following [18,21,26], instead of the mltxal potentlal V( ) = Vupp-g(z), we
will consndel the potentlals

Vir)=AX- LHFD B(2).”

To establmln the mechamsm of founatxon of new excxted states in the ‘He
trimer, we have first .calculated the scattering matrix Se(z) for A < L. In

Table III for some values of .A from the interval between 0.995 aud 0.975...
we present the positions of roots and poles of So(z), we have obtained af*

real = < ¢y(A). We have found that for a value of A sllghtl) smaller than
0.9885, the (quasl)lcbouau(e closest to the real axis (qee Fig. 1) gets on it
19 [
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Ta.Gmma I11. The dimer binding energy ¢4 and the differences ¢; — E( E(Z)
ea— EP" and 4= EP*° (all in mK) between this encrgy and the trimer emted state
energies EWY, E,m and the virtual-state energies ED" EO™ depending on factor
N : s

A € g — EV ea— B | eq — B g — EP| o (A)
0.995] —1.160 0.710 - - - 723"
0.990! -0.732 . 0.622 - - - 910
0.9875| —0.555 0.573 0.473 0.222 - 1046
0.985 .—0.402 ' 0.518 0.4925 0.097 - 1228
0.980{ —0.170 0.39616 0.39562 0.009435 - 1890
0.975( -0.036] 0.2593674545 0.‘2593674502, - .0.00156. 4099

and transforms into a virtual level (the root of S¢(z)) of the second or-
der corresponding to the energy value where the graph of So(z), z € R,
z < €g, is tangent to the axis z.  This virtual level is preceded by the
(quasi)resonances z = (—1.04 +i0.11)mK (z/|es| = —1.58 4+10.168) for A =
0.989 and z = (=0.99 4 10.04) mK ( /]cdl —1.59 4 0. 064) for. A = 0.9885.
The originating virtual level is of the second order since s1multaneously with
the root of the function Sy(z), also the conjugate root of this function gets on
the real axis. With a subsequent decrease of A the virtual level of the second
order splits into a pair of the virtual levels E{** and E®™ Eg?)' < Etm"_ of

the first order which move in opposite diréctions. A characteristic behavior of -

the scattering matrix So(z) when resonances transform into virtual levels is
shown in Fig. 2. The virtual level E',m" moves towards the threshold ¢; and
“collides” with it at A < 0.98. For A = 0.975 the function Sy(z) has no longer
the root corresponding to E{®**_ Instead of the root, it acquires a new pole
corresponding to the second excited state of the trlmer with the energy Em.
Note that though the virtual levels E' ) and E ™ appear beyond the domain
), already at A = 0.985 the point E( )™ turns out to be inside this domain.
Therefore, it should be considered as a “true” virtual level of the trimer. We
expect that the subsequent Efimov levels originate from the virtual levels Just
according to the same scheme as the level E( ) does. ‘

The other purpose of the present investigation is to determine the mech-
anism of disappearance of the excited state of the helium trimer when the
two-body interactions become stronger owing to the increasing coupling con-
stant A > 1. It turned out that this disappearance proceeds just according to
the scnene of the formation of new excited states; only the order of occurring

events is invese. ,
The results of our computations of the energy E™ when A changes from
*.17 are given in Table IV. In the interval between A = 1.17 and
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S A = 0.9890
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.'\. __--""’—'——:—-—h—“:‘“"\“
0 - — -
N w
_5 n L " ! .‘ ! " ) I "
-1.90 -1.75 -1.60 ‘—’1.45 -1.30 _ -1.15 -1.00

Z/|€d|

Puc. 2. Graphs of the function Sy(z) at real z < ¢y for three values of AL 1

The notatlons used: E‘ = E,(Z)'/I d| E"‘ Em"/l al-

Taﬁmma. Iv. Dependence of the dlmer energy ¢q a.nd the difference ¢; — E(l)
between this energy and the trimer exited-state energy E ) on: the factor A..

A €4 (mK) ¢q — BN (mK) ' Pmax (A)
1.05 —12.244 0.873 300
1.10 ~32.222 ' 0.450 ' 200
115 ~61.280 0.078 150
1.16] —68.150 . 0.028 _ 120
r17f -75.367) ~0.006 ' 120
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Ta6auua V. Dependence of the dimer energy ¢4 and the difference ¢4 — EM”
between this energy and the trimer virtual-state energy E,m‘ on the factor A.

A €4 (mK) e — BN (mK) Prax (A)
1.18 —82.927 0.001 110
1.19 —-90.829 0.016 110
1.20 —99.068 0.057 100
1.25 —145.240 0.588 85
1.30 —199.457 1.831 S (i
1.35 —261.393 3.602 70
1.40 . —330.737 6.104 55
1.50 —490.479 , 12.276 50

A = 1.18 there occurs a “jump” of the level Et(l) on the unphysical sheet
and it transforms from the pole of the function S¢(z) into its root, EM,
corresponding to the trimer virtual level. The results of calculation of this
" virtual level where A changes from 1.18 to 1.5 are presented in Table V. For
all the values of A presented in Tables IV and V, the dimer possesses an only
bound state. We have found that the first exc1ted state of the dimer appears
only at A = 6.81.

Note that in the case of finite potentlals the geometric characteristics of
the domain II®) where the function So(z) can be calculated reliably, are only
determined by the value of |e4(A)] (see formula (9) for u = +00). When |eg())]
increases, the domain () is enlarged. It is easy to check that the energies
of the excited state level Et(l)(/\) and of the virtual level Etm*(/\) given in
Tables IV and V belong to the corresponding domains II(5}()). For A>1,
this results in a weak dependence of the calculated values of E" (/\) and

E(l) (A) on the parameters Ny, N, and (this is espec1a11y important) on the
parameter pmax.

In essential, we chose the values of the cutoff hyperradius pmax given in
Tables III-V from the scaling considerations. As a matter of fact, we took
the value of ppay, following the formula

Cy

P = A, (33)

|ea(M)]

where the “constant” C), = (\/Ifdlpmax)l corresponds to an appropriate

, A=1
choice of pimax at A = 1. It has been established in [24-26] that such a choice

is ensured if pmax =400—600A. In determining the values of pmax(XA),
' ) A=1 .

22

indicated in Table I1I, we followed the formula (33) literally. As the “constant”
C1, we took its value C(Irresponding to the base value of Pmax =600 A. The
values of pnax(A) presented in Tables IV and V correspond '\ti)l the choice of
Pmax in the interval within 400 and 800 A. All the results presenIed m
Tables III V have been obtained with the grlds parameters Ng N = 600.
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Konranosa E.A., Morosunos A.K. E4-98-243
O MexaHU3ME BOIHUKHOBEHHS e(pMMOBCKHX COCTOSHHIA
B TpuMepe renus He

Hccnenyercd MexaHH3M HCUE3HOBEHHS H BOSHHKHOBEHHUS e(PUMOBCKHX YPOBHEH
y TpHUMepa Trems 4He3 NpH H3MEHEHMH CWIBF NapHOro B3aWMopeficTBud. Yc-
TaHaBJIMBAeTCsl, YTO BTH YPOBHH BO3HHMKAIOT U3 BUPTYaIbHBIX YPOBHEMH, KOTOphIE, B
CBOI0 OYepelb, MOoNyyaTcsd M3 (KBa3H)PE30HAHCOB, CANALIMXCS Ha BEIIECTBEHHYIO
ocb. st BBIUHCIIEHHS pe30HAHCOB, BKJII0Yas BHPTyalbHBIE YPOBHM, HCHONB3YeTCH
METOJI, OCHOBAHHBIH HA PElLIeHHH NMPH KOMIIIEKCHBIX SHEPTHAX KPaeBoil 3afauH s
muddepeHLHANBHBIX ypaBHeHHd PanpeeBa, oTBeyaloulel npoueccaM paccesHus
(2+1—>2+1; 1+1+1). Bce pacueTsl Npon3BOAATCS C H3BECTHBIM MEXaTOMHBIM
He-He-norenunanom Asuza HFD-B. OueHb chnbHast OTTaIKMBaTeNbHasi KOMIIOHEH-
Ta 9TOr0 MOTEHLHAIa Ha MAIBIX PacCTOSHMAX MEXIY aTOMaMH relus anmpok-
cuMmupyercss TBepobiM KopoM. Ocoboe BHHMaHHMe YHeNeHO OOOCHOBAHHIO
HCIIOJIb3YEeMOro MeTOIa pacyeTa Pe30HaHCOB H HCCNeJoBaHHI0 obnacrteii ero npuMe-
HEHHS.

PaGora BrinonneHa B JIabopaTopuu BHIYUCITHTENBHON TEXHUKH M aBTOMAaTH3aLMH
1 Jlaboparopuu Teopetnyeckoil ¢pusuxku um. H.H.Boronw6osa OUSH.

Npenpuut OObeXHHEHHOrO HHCTHTYTA SACPHEIX HccinefoBaHuit. NyGHa, 1998

Kolganova E.A., Motovilov A.K. E4-98-243
On the Mechanism of Formation of the Efimov States
in the Helium “He Trimer

A mechamsm of dissappearance and formation of the Eflmov levels of the
helium He3 trimer is studied when the force of interatomic interaction is changed.
It is-shown that these levels arise from virtual levels which are in turn formed from
(quasi)resonances settled on the real axis. The resonances including virtual levels
are calculated by the method based on the solution of the boundary value problem,
at complex energies, for the Faddeev differential equations describing the scattering
processes (2+1 —2+1; 1+ 1+1). All the calculations are performed with the
known .interatomic Aziz He-He-potential HFD-B. A very strong repulsive
component of this potential at short distances between helium atoms is approximated
by a hard core. A special attention is paid to the substantiation of the method used
for computing resonances and to the investigation of its applicability range.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation and at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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