


] Construction concepts of gauge gravity theories
of higher order

Tliere are many different reasons for construction of gravity theories with higher
derivatives, Partly it is gauge reasons but all gravity theories of higher order are
nou-LFiustein theories,

At first the theory of such sort was proposed by Weyl in 1918 ({1]). In Weyl’s
theory the metric tensor ¢, remained as a gravity field variable. One-parameter local
gauge invariance was used by Weyl for electromagnetic field introduction. This idea
was followed by modification of space-time V; connections and Lagrangian of theory.
Weyl's Lagrangian was curvature tensor square. Hence Weyl’s theory equations were
ol more higher order of g,. derivatives than Einstein’s equations ([2]). But it was
not gauge gravity theory.

Utiyama was first wlho tried to get the gravity theory from the local gauge invari-
ance principle ([3]). He used Lorentz group as the gauge symmetry group. Modified
connections were found to be Ricci connections, that is the gravity field variables
was of higher order than Einstein’s one. Therefore Utiyama introduced a’priori 16
new variables hy,, (vierbeins) in addition to Riccl connections A,(ik). He postulated
that g,, = hjlhw' and the gravity Lagrangian is Einstein’s one (scalar curvature R)
hevond the gauge scheme.

To avoid apriority in h,, introduction in 1961 Kibble proposed to use Poincaré
group of space-time coordinate transformations as the local gauge symmetry group
([4]). Really he interpreted general covariant coordinate transformations z*' =
J*(«?), where f#(2") is arbitrary function, as following local gauge Poincaré trans-
formations:

2 = gk + fa*, where dz* = ez + €,

€, ¢"- 10 Poincaré group parameters which are functions of coordinates. After
t! at Kibble proposed to consider £* = e“z” + €* and €* as independent functions.
It is incorrect assumptions. But as a result he obtained 16 vierbeins k!, and 24
counection coefficients 4,(¢k) as the gravity field variables.

Without any matter A,(7k) coincide with Ricci connections A, (ik) but in matter
presence A, (7k) can depend on the spin matter tensor S%, . It is need to note that Kib-
ble introduced hL by other compensating procedure than Weyl-Yang-Mills-Utiyama
one. He did not can obtain Einstein’s Lagrangian R by any regular procedure, but
did not use curvature tensor square as the Lagrangian following from the standard
compensating procedure.  Later the spin matter tensor S%, was identified with tor-
sion tensor of V}, and so Kibble’s theory turned out the gravity theory with torsion.
It is non-Einstein theory.

After Utiyama’s and Kibble’s papers it became clear that GR is not a theory of
Yang-Mills type. Even now there is not exist any gauge theory where GR can be
obtained by the compensating procedure. But it is possible to obtain many different
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non-Einstein gravity theories by formalistic extension of connection coefficients and 2.1 Einstein’s GR as the gauge gravity theory
space-time structure. Some of them contain higher derivatives of g,,. Good review

of metric-affine gauge theories is ([5]). [t i necessary to choose:

There is an opinion that new geometrical objects (torsion, nonmetricity. cte.) o licld variables - g,.. (netric tensor of 13):

are necessary for - quantization of gravity. Hence the quantum gravity must be non-
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Einstein theory. Is that so? o svnmetry group - (g (0% = "))
. o transformation properties - g, is syunnetrical tensor of rank two, i.e. under

2 GR as the gauge theory: Mathematical tech- (v .4 its transformations are: :

nlque ¢ bl,.’/;ur = ET(J‘)(I)T_(/;H' + f/r:/i)xtﬁT(<l') + yur'(‘)l'frh")-

/hy a ? : ti ics goal is unificati ! A . e .
Why GR must b.e gauge theory M-odem theore lcal.physms goal. is unification of ar-Lie derivatives. €7(e)-Killing's voctor. o = o 4 &9(e). gy = 0.1.2.3:
all fundamental interactions: mechanics, electrodynamics, nuclear forces (weak and
high) and gravity. o order of dertvatives iu Lagrangian -2.

The ways of this problem decision being proposed now: o ) ) . ]
Hence, Lagrangian has Einstefn’s form: L = R, and equations of theory are Einstein

1. Single big symmetry group G, generating all conservation laws for all interac- one: |
tiens (for example, Grand Unification); R. — 5Ynw R=0.

? :ingle big wave function ¢ which components correspond to each particle or Here GR s constructed without any compensating idea. torsion. cte.. hut by the
field (for example, supersymmetry); same regular procedure which is used for all other interactions.

3. Single equation which components correspond to equations of each interaction 2.2 SO(3.1)-gauge gravity

(Kaluza-Klein theory and its extensions);

Corresponding choice must be done in the following way:
4. Single construction principle of each interaction theory under conservalion in- ‘

dividuality of each interaction. » iield variables - A (/&) (Ricei connections):

In all cases the gauge invariance is used. Fourth way was proposed by me in 1967 o synunetry group - G (local Lorentz group};
and published in ([6],[7]). It does not use any compensating procedure. In this case

" o transformation properties under G .¢:
each gauge field theory can be produced by choice:

8AL(ikY = fik o Du(p@)e™ (@) + 8™ (2),

e field variables;

. . Qoo iR . . af - SR 1 PV Y stors of (5 .-
« symmetry groups (space-time symmetry and internal symmetry); where fi5 -the structure constants, ¢'*(2)- parameters of (7
* transformation properties of field variables under two types of symmetry groups; o order of derivatives in Lagrangian - 2.
o order of derivatives of the field variables in Lagrangian. Henee, Lagrangian of theory is £ = R, (ik)R*(ik). i.e. it has Weyl's form without
Weyl's connections but with Riemannian curvature tensor.
Lu is necessary and sufficiently for construction of variational and geometrical theory ] LEquations of the theory are similar to Maxwell and Yang-Mills one:
. . " v
of any fundamental interaction. L .
\ TR .
including GR! ' O 1 (ik)... = 0.
Some of gauge gravity theories were obtained by this technique. For instance: i/
&



2.3 GR + SO(3,1)-gravity
It is corresponding with the following choice:
o field variables - ¢,, and A, (ik);
o symmetry groups - Goog and Go6;
e transformation properties (the same that in pp.2.1-2.2):
e order of derivatives - 2 for each variable.

Hence. Lagrangian is:

L=1-— %]{W(ik)l'{“"(ik) (1
equation system is: )
R*™(ik), =0 (2)
1 . . 1 . .
R, — ;Z—gu,,R = k(R (2k)R](ik) - Zgu,,ffxr(z/\')lz‘\’(zk)) (3)

With respect to g,, in cases 2.2-2.3 we have the gauge gravity theory of higher
arder. But g,, and A,(¢k) are introduced as independent variables.

The main feature of this approach is absence of Poincaré local gauge group.
Instead of it we have two groups Gy and G acting in fibre bundle space on
Vi (tangential fibre bundle). G4 acts in the base of fibre bundle space (i.e. in
Riemannian space-time V;), and G acts in the fibre bundle (tangential space).

The gravity field variable choice is a problem of paying attention to the physical
sense of theory, devices properties and measurement methods being used.

[ Au(ik) is field variable, then R*“(ik) is analog of F'
grangian (1) is analog of any gauge field Lagrangian in Riemannian space-time:

of any gauge field. La-

;w

L=R-ZFLF"

pvta

A, (ik) is analogous to vector-potential A
Stress-energy tensor of real gravity (tidal forces) is analogous to Maxwell one:

. . 1
T = w(Ryur (1K) BI(3K) = 29, Rac (1K) R (k) (1)
1
];ue/m) = P FT gl“"E\"F/\T (5)
4

3 Hilbert equations and Wheeler-Misner
geometrodynamics

In 1915 in his paper "Die Grundlagen der Physik” ([8]) Hilbert obtained a system
of two variational equations for description of gravity and electrodynamics together.
Each equation corresponded to its field variable. These variables were g,, (metric
tensor of Vi) and ¢, (vector- potential of electromagnetic field, i.e. A4, in modern
designation). Hilbert noted that in conséquence of general relativity coordinate
transformations 4 equations of the system are corollary of the rest. And so he decided
to consider the electrodynamics equations as corollary of 10 gravity equations. From
this statement it followed that electromagnetic phenomena are effects of gravity.

As invariant function under integration (world function H) Hilbert chose H =

K + L, where K = R (Riemannian scalar curvature), L = —1F,, F* (in modern
d=signation;.
Hilbert’s system of equations can be written in the form:
(VoF)y = Fr =0 (6)
R, — gwR Tm (7)

(here & = 1,T{™)-stress-energy tensor of electromagnetic field (equation (5))).

Such equation system coincides with the system of equations of Wheeler-Misner
geometrodynamics ([9]), which was proposed in 1957.

In 1970 I showed that in Riemannian space-time V; any gauge fields are described
by analogous equation system ({11]):

=0 (8)

R, _gWR T(gf) (9)

where T‘Sﬁf)-stress—energy tensor of any gauge field which has Maxwell-type form:

T = Fe FT, ~ igw o (10)
Wheeler and Misner found explicit relations between electric E and magnetic H
strenghs, on the one hand, and gravity variables, on the other hand. It turned out
that, indeed, the gravity variables can describe the electromagnetic effects. But de-
pendence of E and H on g, has very complex and nonlinear form, and corresponding
formulae contain derivatives of Ricci curvature square.
These formulae were at first obtained by Rainich in 1924/25 ({10]) and, indepen-
dently, by Wheeler and Misner in 1957([9]). They have the form:

E, = (£0,0)cosa, H, = (£,0,0)sin e (11)



a(z) = /Ia”(a:)dx“ + ao;
0

o, = V9€uap R R, (12)
b ReRT ’ -
Here ofx)- complexion of field; ¢-eigenvalue of Ricci tensor Ry, in the coordinate
system, where R,, has diagonal form (£* = %RZR;); €40y - discriminant tensor.
The angle «(z) realizes a dual rotation of electric E and magnetic H felds.
Moreover a(z) must be independent on integration way in V;. This is additional
constraint to metrics g,,:

Oy = Qe (13)

This constraint contains second derivatives of curvature tensor and so derivatives of

G up to fourth order.
Hence, in Wheeler’s opinion unified classical theory of electrodynamics and grav-
ity can be full described by equation (13) and Rainich conditions:

Y 4 1 v T
RuRa = Z‘SuRiRav (14)

under positive energy condition: Ry <0 and RIR] +# 0.

In such form geometrodynamics does not contain any coupling constant.

It is necessary to note that perhaps it is better to replace the equation (13) by
equation

Ruvir = Ry

of paper ([11]). The constant of integration o must be chosen as ag = /2.

4 50(3,1)-gauge gravity vacuum and GR. Hyper-
bolical instantons '

Let us consider the gauge gravity theory with g,, and A,(ik) as field variables.

Equation system (2)-(3) is analogous of the system (6)-(7) of geometrodynamics
and (8)-(9) of any gauge field in Riemannian V;. Such a theory takes into account
the extend of real objects and describes the real gravity forces acting on them, i.e.
tidal forces. In this theory vacuum can be defined by condition T}, = 0 as it is in
GR. Then gravity vacuum definiton is:

TL2) = (R (R (6K) ~ 70,0 B ()R (18)) = 0. (15)

Besides trivial solution R,,(ik) = 0 equation (15) has nontrivial solutions. These
solutions obey the duality equations, which in electrodynamics have the following
forn:

F,, = £i*F,,

Nontrivial solutions of duality equatlions are named the instantons. They min-
imize the action integral S = [ F,, F"dV" and transform it into the topological
constant,

In the case of the gauge field the instantons are nontrivial solutions of the equa-
tions T4 = ¢ and duality equations

F = 4iF

av
They minimize the action integral § = [ 1 F#d1" and transform it into the topo-
logical constant.

T the case of the gauge gravity the equation T‘Sﬂ) = 0 implies arising of the
vactuum state of the real gravity and the transition to GR. All solutions of Einstein
equations are the solutions of the gauge gravity equations. Bul instead of duality

equations

R = +i"R}) (16)
we lave twice dual equations

Ry =21 (17)
and therefore

i, = £"R;, (18)

The duality equations (16) which are analog of electromagnetic conditions of
cuality have only trivial solutions in the case of gravity (Euclidean V%),
Faking into account that equations (3) followed by R = 0 we can transform them
to the form ([11])
t N = s A *
R‘L/ — _H(Rﬂﬂr _ R Hor )(Ruar,\ + R ) (]())

var)

Therefore T‘Sﬂ) = 0 if either

1
RY=+"R"  and R, =+4'R., =R, - SInR— B=0  (20)

1y ny
and we have not any new solution, or

By =="R* and  R.=-"Rl, — R, =0 (21

o ny

that is Einstein gravity.

Hence we have vacuum Einstein equations which solutions are gravity instantons
by definition in the frame of (GR+S0(3, 1))-gauge gravity. theory. Therefore all so-
lutions of GR-equalions describe the vacuum structure of the gauge gravity theory
and Schwarzschild solution is one of them. The hyperbolical signature is not an oh-
stacle to being instanton. All vacuum Einstein spaces are the hyperbolical instantons

([12)).



Thus it is shown that the gravity (including Einstein’s GR) has to be consider the
gaige field in the single scheme with other interactions and quantizatiou procedure
has to be analogous to that of any nonabelian gauge field. Tt is necessary 10 note
that under condition T, = 0 we obtain always the Einstein gravity vacuum eguation
“udependent I of the gauge field type. Thus all gauge field instantons cau take part
in creation of space-time vacuum struciure.
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Konomnepa H.IT. E4-98-207
O61mas TEOPHA OTHOCHTEIBHOCTH
M KanHOpOBOYHbIE TCOPHH IPABHTALHH BBICIIEIO MOPSAKA

HpeactaBnen kpaTkuii 0630p COBpeMeHHBIX KAUTHOPOBOYHBIX TEOPHI [PaBUTALMU H HX B3AUMOCBA3EMR
¢ ofed TeopHel OTHOCHTENLHOCTH DHHIUTEHHA. AHATH3HPYIOTCH KOHUEMNLUHH, HCNOJL3YEMBIE NIPH MO~
CTPOCHHH KATHOPOBOYHBIX TEOPHIt MPABHTALHK C BbICIUHMH npou3sonHbIMH. OTO paccMmaTpuBaercs Kak
KanuOpoBOUHAR TEOPUS [PABHTAUMM, COOTBETCTBYIOIai BHIOOPY G..4 B KAUESCTBE JIOKATLHOR IDPymibt
CHMMETPHH H CHMMETPHYHOTO TEH30pa BTOPOIO paHra g, B KaYeCTBe NoeBoii nepeMenHoi. Henonssys
eHHBIA Q13 BCceX (DyHAaMEHTATbHBIX B3aHMOICHCTBMI MaTeMaTHYECKMil amnapar (a2 HMEHHO,
BapHaUHOHHBIH opMamu3M ang GeckoHeyHblx rpynn JIi), MOXHO MOJYYHTh TEOPHIO DHHIUTEHHa KaK
KAaTHGpPOBOUHYI0 Teopuio Ge3 Kakux-nubo wiMenehuii. Bce apymie KanuGpoBOYHbIE MOIXOIBI BEAYT
K He3HHIUTCHHOBLIM TEOPHSM rpaBuTaumy. Ho BhimieynoMssyTad MaTtemarmdeckad TEXHHKA MO3BONACT
CTPOHTh H KATHGPOBOYHBIC TCOPHH IPaBHTALHH BhICLIEro nopsainka (Hanpumep, SO (3,1)-rpaBuranio)
TakuM 00pa3zoM, YTO BCE BAKYYMHbIC PEIUCHHA yPaBHEHHMIT DiHIITeRHA ARtsioTcd pewennamu SO (3,1)-
rpaBUTAHOHHOH TeopHH. CTpyKTypa ypasHeHui SO (3,1)-rpaBUTAllMH CTRHOBUTCA aHANOTHYHOR CTPYK-
Type ypaBHEHHH NeOMETPOMHAMHKH YHiepa-Musnepa.

PaGora eunonuesa g JlaGopatopuu teopethucckoit usukn um. H.H. Boramotosa OMAN.
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General Relativity and Gauge Gravity Theories of Higher Order

It is a short review of today’s gauge gravity theorics and their relations with Einstein General

*Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives

are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G.. 4 as the local
gauge symmetry group and the symmetrical tensor of rank two g, as the field varable. Using
the mathematical technique, single for all fundamental interactions (namely variational formalism
for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes.
All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical
technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity)
so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory.
The structure of equations of SO (3,1)-gravity becomes analogous to Weeler-Misner geometro-
dynamics one.
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