


1 Introduction

The: description of nuclear collective motion in terms of the Wigner Function Moments
(WFM) was first suggested in 1981 [1]. It was applied successfully to study isoscalar
and isovector giant multipole resonances and low-lyiﬁg collective modes of rotating and
nonrotating nuclei with different realistic forces (2] Their energies, excitation probabilities )
and widths were described. However, all calculations were made in the small amplitude
approximation.

This work is the first attempt to apply the WFM method to the description of large
amplitude motion. The interest to investigate collective motion going beyond the usual
RPA (small amplitude approach) has been spurred after the experimental discovery of
high-energy structures in heavy-ion grazing collisions and their interpretation in terms of
multiphonon excitations of giant quadrupole resonances [3]. Also the recent possibilities
to study double Giant Dipole Resonances with good precision {4]-[9] gives a new impetus
to the theoretical study of multiphonon states. In the past the problem of large amplitude
collective vibrations has been treated along various lines. The best known are the boson .
expansion method, an extended review of which can be found in {10}, the generator coor-
dinate method [11] and the time-dependent Hartree-Fock (TDHF) method [1 1] together
with its adiabatic version ATDHF [11,12, 13].

The basic problem in the theory of collective dynamics is to identify the collective
variables and to derive the dynamical equations governing these variables: The practical
value of any method essentially depends on the possibility of selecting a small number
of collective degrees of freedom coupled weakly with all remaining degrees of freedom.
The selection of proper collective variables is certainly a gfeat problem and requires some
physical intuition. Very useful general theorems have been provided'in the papers[14, ‘
15, 16]. There it was shown that any time-dependent description of a quantum system,

derivable from the variational principle
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for ¥ in an arbitrary manifold in the Hilbert spa.ce of norma.hzed wave functlons is equiv-
alent to a cla.sslca.l Hamiltonian system. The va.na.tlon in the full Hllbert spa.ce leads to

the time-dependent. Schrodinger equation. Any restriction of va.rla.tlons results in a non-
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linearity of the equations. This property is a feature of ther classical .time evolution and
§ne of the reasons requiring requantization. Let us consider the subspace ¥(p, ) of the
Hilbert spacé which is specified by two sets of parameters p = {py, .. . pilym = [y, .., i)
Conseduently, each element of this subspace can be written as ¥(r,t) = ¥(r; p(t), 7(t)).
The parameters p, = can always be constructed as canonically conjugated variables. As-
suming norm-conserving variations of ¥(r; p,7) in (1), one derives the Hamilton equations
of motion for p(t),fr(t): ;
’ Op = O,H, O =—-0,H,

where H = (¥ | H | ¥) plays the role of a classical Hamiltonian. Increasing the number
of parameters p, 7 is equivalent to a gradual change from a classical to a quantum theory.
Our approach is based on the TDHF equation for the Wigner function (Fourter trans-
form of the one body density matrix). The collective variables are introduced as the vari-
ous phase space moments of the Wigner function. The corresponding dynamical equations
for them aré obtained by averaging the TDHF equation with respective weights. Natu-
rally, they are classical. It is possible (at least in the case of the two models considered
below) to solve the inverse problem and to explicitly find the collective Hamiltonian H
which generates these equations. It appears to be-equal to the average value of the mi-
croscopic Hamiltonian H. Hence, our approach satisfies the above mentioned theorems.
It was shown earlier [2] that several lowest rank moments are sufficient to describe
~the crudest characteristics of nucléi: center of mass, shape, giant resonances. To describe
more subtle characteristics one needs to study/higher momeﬁts. Naturally the general ruie
. reads:. the more the required information is detailed, the higher rank moments must be
 involved in the consideration. The knowledge of all possible (infinite number) moments is
: equivalent to the knowledge of the entire Wigner function. In other words, the higher the
‘momenys we take into acqéunt, the higher is the order of the quantum corrections which
is considered.
In this paper two simple models of a harmonic oscillator single particle potential with
» separable residual interactions are investigated to demonstrate the possibilities of the
“WFM method. “The systems of nonlinear dynamical equations for the monopole and

quadrupole moments of the nucleus are derived and analyzed.

,-T,h.e first model, describing nonlinear monopole vibrations, is rather schematic and -
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simple. However, il turns out to be very useful because, being analytically solvable, it
allows one to clarify some problems of the quantization of classical motion. TDHF is an
initial value problem and as such it cannot be applied to bound states’in the same way
as the Schrodinger theory. The solutions to this problem rely on various quantization
procedures [16, 17, 18]. However, some additional arguments (similar to the stationarity
conditions of Kan [15]) are required in,our approach to fix the initial conditions.,

The second model, describing coupled nonlinear monopole and quadrupole vibrations.
is morc complicated. It is attractive because the equations of motion are derived rigorously
and can be solved (numerically) without any approximations. Furthermore, it can be
generalized such as to make it quite realistic.

The paper is organized as follows. In sectioh 2 the general outline of the WIFM
formalism is described. This formalism is applied to the models of a harmonic oscillator
with mohopolc—monopole and quadrupole- quadrupole residual interactions in sections 3
and 4 respectively: the equations of motion for collective variables are derived and solved.
the encrgies and excitation pfobabilitics of multiphonon excitations are calculated. The
anharmonicity of the quadrupole multiphonon spectrum is studied in section 5 by means
of quantization of classical cqua.tigns of ﬁlotion. Concluding remarks and the summary

of the main results are contained in section 6.

2 Formulation of the metih(‘)’d\

The basis of our method for the description of collective nuclear dynamics is the equation

of motion for the one-body density matrix p(ry,rs; ) ={r[p(t)|rz) s

Cegeld, e

where II is the self consistent one-body Hamiltonian depending implicitly on the density

matrix.  Equation (2) with an explicit form of the one-body Hamiltonian: appears in
the Hartree-Fock theory; it is also currently used within the so-called (‘n('rg_yﬂl(fnsily-
functional approach leaving inore possibilities for the choice of the one-body-Hamiltonian
and in addition giving some grouuds to believe that equation (2)is rath(-r’gcnvral {19].

It is convenient to modify equation (2) by applying the Wigner transform of the density



matrix [20] o
’ f(r,p,t) =/d38 exp(—ip-S/h)p(r+§,r— -;—,t) - 3)

-and of the Hamiltonian

HW(r,p)z/d s exp(—ip - s/k)(r lHl ) (4)

Using (3,4) one arrives at [11, 21]

of 2 . [k _y '

=7 = 7 s <§(V, A AV V{)) HY f, 5)
where the upper index on the nabla operator stands for the function on which this operator
acts. If the Hamiltonian is a sum of a kinetic term and a local potential V(r), its Wigner

transform is just the classical version of the same Hamiltonian:

HY = p2/2m + V(r). ) (6)
Then )éciuatiop (5) becomes:
af 2 iy
—+-=p = —sinf{ — /
8t+ Vrf—hsm<2§7,. -Vp) Vf. _ (M

The generalization for non-local potentials is straightforward and can be found in [22].

2.1 Wigner function moments

Now we apply the WFM method to derive a closed sysfem of dynamical equations for
cartesian tensors of second rank. This method was suggested in [1, 23] and is described in
detail in Ref. [2]. Its idea is based on the virial theorems of Chandrasekhar and Lebovitz
[24] Tt is shown in [2), that by integrating equation (7) over the phase space {p,r}
with the weights z;,z;, ... TiyPiryy - - - Pin-1 Pin, Where k runs from 0 to n, one can obtain a
closed finite subsystem of dynamical equations for multipole moments and other integral
characteristics of a nucleus. By choosing a row of integers for n (0,1,2,3, and so on) one
obtains:subsystems for different multipoles.

Here we consider the case n = 2. Integrating equation (7) over the phase space {p,r}

with the weights z;z;, p;z;, pip; yields:

T an(r,t A(n(r, t)u(r,t
/dsr :c,:c,——at—) + /dsr Iilj%‘l‘:(r)) =0, (8)

2 A

m / dsrz_,-—gt-(n(r,t)u;(r,t))+ / d31‘n(r,t):c,'gv / Y 9 Au(r,t)=0, (9)
9 [ i a. 3 Ve 2% o o am
- / Pr Ay(rt) + / &rn(r, 1) [u.(r,tk) az,-],.j + / &r aI’A,.,(r,t) —0, (10)

where summation over repeated indices is assumed and [. . .J;; means symmetrization with

respect to the indices 7 and j ([a;;];; = aib; + a;b;). We have introduced the notations:
&p /
4/ (2—7rh—)—3_f(r’p’t)’
O
mn(r,t)u(r,t) = /(271_’1.:)3 pif(r,p,t),

N i S
m (@rh)s PrPi

By definition n(r, t) is the nucleon density, u(r, ) is the mean velocity of nucleons, A,-j(i', t)

n(r,t)

Ailiz---ik (I‘,t) = ‘Pikf(l‘, pat)'

is the kinetic enefgy tensor (or pressure tensor). Integrating by parts‘the last terms in

(8)-(10) and introducing the notation
Jij(t) = /d31‘ I,’Ijn(l‘,t)
for the inertia tensor, ‘
L,-,j(t) = m/d3r z.-u,-(r,t)n(i‘, t)

for the mixed momentum-position tensor and
1
IL;(t) = 3 &Pr Ai(r,t)

for the integral kinetic energy tensor we have:

d 1
i) = (Lt Lig) = 0, |(11)

1 d 3 av
33 ,J(t)+ /d rz,n(r,t).a_

alirl.~j(t)+1 / dsrn(r,t)[ (1) 3 :]-,

The last integral of equation (10) with the third rank tensor A,,J has dlsappeared due to

S = 0, (12),

|
e

(13)

the obvious boundary condition As;(r,t) — 0 at r — oo, which follows from the boundary
condition for the Wigner function f(vr,'p,'t) — 0 at r'— oo. We thus have derived a
system of three dynamical equations for the three collective variables Ji;(t), Li;(t) and

II;;(t). To close the system of equations one néeds to represent’ the integrals involving-
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‘derivatives of the potential V(r) in terms of these three‘v‘a‘,riable,s.‘ This problem can be
solved rigorously only in the case of a potential ,VH with quadreti‘c coordinate dependence
(wilat is the subject of this paper). For more realistic potentials some approximations are
vneedhed.

_ We suggest the following procedure. Considering the potential Vg as the zero order
approximation to the realistic potential Vg, we expand the difference Vg — Vy; in a Taylor
series and truncate it on the r™ term. The integration of the potential will generate the
tensors of different ranks from 1 up to n. Hence, to have a closed system of equations
we-are forced to write the subsystems of dynamical equations for tensors of all ranks
from 1 to n, the subsystems being coupled. The more terms of the Taylor series are
taken into account, ti:le higher rank tensors must be included in the calculations. So, the
requlred minimal rank of tensors is determmed by measuring the deviation of the realistic
potentlal from the harmonlc oscillator one. The desired max1mum rank is determined by
the physics of the phenomenon to be studied: in general the more detailed information is
. Tequired, the higher rank tensors must be considered.
~ Both equations (11) and (13) evidently are symmetric with respect to the indices i, j,
whereas eq. ’(12) has no specific symmetry. We can provide easily the symmetric and

antisymmetric equations by obvious combinati‘ons of (12) with different indices:
av ' :
/d3rn (r t) [x,a ] —~1IL;(¢) = 0, (14)
I ij

d 5 v avY
E(L;,J‘ - Lj,,') = /d rn(r,t) {Ij—a?i - I;aTj} . (15)

4dt(L 5 + LJv

By definition, the left-hand side of the equation'(15) is the angular momentum cbmponent:‘

Miij=Li;—-Lj;=m / &r n(i‘,t) {z;uj(r,t) —zu(r,t)}.

When V(r,t) is a self—con51stent potential, the rlght -hand side of (15) is equal to zero,

what demonstrates angular momentum conservatlon :

Taklng into account equatlon (11) it is p0551ble to rewrite equation (14) in a more

convenient form <

av Lo
.J(t /dsr n(r t |:.’E_, ] - H.‘j(t) =0. (16)

Ox; i : . ’

. Concluding this section, we will give the receipe of deriving the integrals of motion

fro/m the eq.uations of ‘the system (16, 13). Let us suppose-that:these equations can be
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written as Euler- Lagrange cquations:

doc_oc )
dtdg, 0q,
Then there must cxist at least one integral of motion:
doc oL oc
. (4oL 5 . 18) -
zv:qu(dt 55, og,) " di Zq ‘( )
Following this way one finds from (16):
J.JJ., + J,,/d"r n(r,{) [z, ] — Ji;IL;(t) = 0. (19)
I ij .

Subtracting from this expression equation (13), multiplied by Ji;, onc obtains:

d 1% . /
dt(mJ2 Jiilli;) + Jl_,/d rn(r, ) [z] ] - —J,]/darn r,t) [u, E ] =0. (20):
Tilij vdij
To make the next step one needs the detailed expression for the potential V(r). For
. . o, oV o . Lo
exainple, in the case of the harmonic oscillator Fr z;: Substituting this relation into
(20) and using the definitions of.J;; and L;;, one finds (with the help of eqlxation (11))

that the intcgrelé in (20) cancel. llence, in the case of harmonic potentials the system

(16),(13) has six integrals of motion: °

® .],'j(t)H;j(t) - %J‘,‘j(t)z = ¢ij, 1,7=1,2,3> . 21

3 Harmonic oscillator with residual

monopole-monopole interaction

3.1 Equations of motion

-

Let. us first consider the classical and quantum-mechanical aspects of the exactly solvable

one-dimensional inodel whose microscopic Hamiltonian is-

11—2("

where zi is the value of the tensor Jy; for an osci”at()r ground state. “This model was

mw 23y 4 = ch(:r —.ro//l)(r - ro/ \) V C(22)
. t#] Cd . W

studied for various values of the constant wo. 1t is known as the Suzuki model {25] when



" z2'is equal to the equilibrium value of the tensor Jy;. Its solution in a time dependent
‘Hartree approximation was found by Blaizot, Schulz and Reinhardt [26, 27]. The case of
zo = 0 was studied in [28].

The mean field of the model is
V(z,t) =~—mw 2% + &(J — z3)(2? - 2%/ A), (23)

where J = Jy;(t). For this potential eq. (15) is fulfilled identically and equations (16),
(13) become: B '

Lz—j + %J [mwz + én(] — Jo)] -1

Il
k=)

(24)

!
=]

| T [%uﬂ +&(J - Jo)]

with Jo = 23, I = In(t). - The time dependence‘of tensors is omitted for the sake of

SImphc1ty The second equatlon of thls system can be reduced to the integral of motion
IS —w2J+ (J Jo)? =.co,. (25)

whose physxcal meanmg is that the total energy of the system 1s a conserved quantity.
It is 1ndeed easy to see: that it is equal to the Hartree Fock avcrage of the microscopic
Hamiltonian 1(22) ie. co = (¥ [ H | ). Another 1ntegral of motion can be found using

equation (20). For the potential (23) the integrals in this equation cancel and we get:

J(t)n(t)ﬂi(t)?:c, f @

where the constant ¢ is determmed from the Initial COIldlt.lOIlS (IC) With the help of

equatron (26) one is able to reduce the system (24) {o the smgle equatlon

m. M, c Y
4J+2wJ+K(‘X];_JO)J_7_.8_J_J2 . (27)

Performing the change of variable J = Jor? this equation can be written in the form:

Fw? 7‘+2:‘c(r3—'r)-—:,—3 =0, (28)

o J ‘
where & = K.m:? and ¢ = 2¢/(muw?JE). If to suppose here ¢ = 1 this equation becomes
identical to equation (5.8) of ref. [26] (their variable n* = r?/A) and to equation (3.17)

of ref. [27] (their-variable r? = r2, &/wo, their wp is identical to our w, the parameter
P ;

8

& is fixed by their self-consistency requirement that leads to the relation & = wo). The
choice of ¢’ is not accidental - this value is linked to the method of solution, especially
due to the boundary condition in [26] and the self-consistency condition in [27], where
it is supposed that the ground state has to be that of the harmonic oscillator. On the
contrary, our method allows to find a more general solution. Solving equations (25) and
(26) with respect to II, one can rewrite the energy in a more traditional form, as the sum -
of kinetic and potential energies: ‘

co—-—-J2+

_ 2 —
] J+ J+ - (J Jo)? (29)’

or in terms of r:
o= %Jo{ﬁ + o2 [r? + fr? 4 R(r? — 1)) (30)
Again, if we here suppose ¢/ = 1 this expression becomes identical to expression (5.9) of

[26] and to expression (3.30) of [27]. The r-dependence of the potential
M 2702 172 1 202 2
V(r) = Ot Jolr? 4 ¢ fr? + R(r? — 1)7]

for various values of & is illustrated schematically in fig. 1.

3.2 Equilibrium state and small amplitude approximation

By definition, at equilibrium the kinetic energy is equal to zero and the potential energy

is at its minimum. The equation determining the extremums of V(r) is
gr)-¢=0, L - (31)

where g(r) = r*[l + 2&(r? — 1)]. The function g(r) for varrous yalnes of & is sketched in
fig. 2. s ‘ . ‘

It is seen that in the case of K. ‘> 0 the polynom-(31) has only one positive root for
¢ > 0 that corresponds to the minimum of the potential (see ﬁg.l). It describes the
stable equilibrium state that is more compressed (‘chj,_‘<, Jo),:than that of:the harmonic
oscillator, when ¢ < 1 and less compressed (JE; > Jo) when ¢-> 1. Using an analogy with
an equilibrium deformation, one can say that the system has a positive static compression

for ¢ <1 and a negative static compression (dilatation) for ¢ > 1 if to assume that the

oscillator ground state has a zero static compression.

"9



# <0 \ r2

Fig.1. The r;dependencé of the’pétenﬁal V(r) = 2Jow?*[r? +/r? +&(r* — 1)*] for various

“values of & and ¢,

g -
) L %<0
- "
; ] . Py
) \
- \\1 r‘-"-;/'/'" .\
’~ {
- 0 1 v \ r2
— %>12 — %>-1
m——<2 ——-%<-]

: F1g2 The function g(r) = r*[1 + 2&(r? — 1)] for various values of .

10

There is no necessity to analysé the situation with ¢’ < 0 (see however next section)
because this integral of motion cannot be negative in the state of equilibrium. Really

substituting J =0 into (26) we find: :
Ceq = Jeglleq. - (32)

J and 11 being positive by definition, hence c., and ¢, arc positive definite. By the way,
using in (32) the relation Ile, = 3 Jow?r2 [1 + 2&(rZ, — 1)] following from (24), onc can
reproduce equation (31).

In the case of & < O the polynom (31) has two positive roots if 0 < ¢ < (1 -
2£)/(27%?). The smaller root corresponds to the minimum of the poteritiali well and the
bigger one corresponds to the maximum of the barrier. The latter equilibrium state is
metastable due to the finite value of the barrier height. For & < —1 the equilibrium
state has a positive static compression independent of the value of ¢. For # > —1 the
equilibrium state has a positive static compression when ¢’ < 1 and a negative onc when
¢ > 1. The potential has no extrema, when ¢ > (1 — 2&)3/(27&?), possessing only an
inflection point at r? = (——c’/k)l/j.

To find the energy of small vibrations around the equilibrium state we apply the
linearization procedure. Writing equation (28) in terms of the new variable y = r — Teq

and neglecting nonlinear terms in y we find:
i+ yw? [1‘ +3 e, + 28(3r2, = 1)] + 0 [reg — ¢ [12, + 28(r2, — reg)] = 0. (33)
This equation is transformed into - ’
P 4 RG, —l=0 (31)

after taking into account eq. (31) satisfied by req. The corrésp()nding eigenfrequency is:
= 2w L+ (3, —‘2).“ o ' (35)

Assuming here zo = 0, we reproduce expression (9.45) ) in [28].

Equation (31) can be solved anahtlcally when ¢ = 1. One posm\( extrenum lu\ at
r2 = L. It corresponds to the maximum of the barrler for E < —l and to the mmnnmn of
the potential for Z > —1. Only this mmlmumrwa.s analyscd in [ZG] angl[lt]. }_‘r()rlx formula
(35) one gets the corresponding cxpression for the IU”A frcquency: ‘ s

Q=2VT+r o 6)



Another positive extremum lies at r> = —(1 + V1 =8&)/(4k). 1t corresponds to the
maximum of the barrier for 0 > & > —1 and to the minimum of the potential for & < —1.
Formula (35) gives the corresponding expression of the RPA frequency in this potential
well: k

(1? = w¥(1 - 8% — 31 — 8k). (37)

The strength conetant Tc = —1 is the critical one. With this & the potential has neither

2 minimum nor a maximum and the point r? = 1 turns out to be its inflection point.

3.3 Analysi"skof thé eﬁc’act solution

To find an exact expression for the function J(t) it is convenient to use equation (29). Its

solution can be expressed in terms of the Jacobian elliptic function [29]:

() = m o+ (2~ m)sn(@t + X). (38)
Here & = w+/&(m ~ n3)/Jo and n; are the real roots of the polynomial
P(J) = —J3+a2J2+a1J+ag (39)

with ay = 2Jp = mw?/k;a; = 2¢0/x:— JE, ag = ——ZC/rc. The roots satisfy the condition
m>nm>nzfor >0 and n; < 2 < n3 for & < 0. The phase x is determined by IC. The
function sn(¢) is periodic with the period A¢ = 4K, where
' /2 .
K= / % (40)

{

is a complete elliptic integral of the first kind with K= . There exists an analytical

N3 — 171
_expression for the Fourier expansion of this function [30]:

. n—1/2

snwt = Z 1 — sin(2n — 1)

n.—l

Here q = exp(—7K'/K), K'(k) = K(k'), k' = +/T — k2. This formula involves only the
frequencies proportiehal to odd numbers of the basic frequency 2 = 291% It is obvious that
sn? includes the frequencies n§2 with n even only. So, the Fourier expansion of the function
J(t) will involve only one basic frequency 20 and its satellites 482, 62, etc. Numerically

the frequency 20 = L—UI—{E can be rather different from the result of the harmonic problem
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(35). So, the effect of including the anharmomc term ~ J2(t) into the system (24) is the
variation of the basic frequency { — 200 and the appearence of satellites n2Q “which are
interpreted (usmg the quantum mechanical terms) as the levels of multiphonon states.
The equidistance of such spectrum is evident, characteristic for bounded classical motion.

It is necessary to note the dependence of Q on IC (also characteristic for classical
motion). The roots of the polynomial (39) depend on ¢, cp. These constants together o
with the phase x are determined by J(0), J(0) and H(O) Examples of such a dependence
are demonstrated in table 1.

A very interesting situation arises at-a sufficiently large value of J(0), when the con- ’
stant ¢’ becomes negative. If & > 1/2 and the 0 > ¢ > (1-2k&)®/(27%?), the polynom (31)
has two positive roots (fig.2) with r? < L: the bigger one corresponds to the minimum of
the potential well, and the smaller one corresponds to the top of the barrier. In this case
the time dependent single particle potential (23) is always repulsive. Nevertheless, the
system can possess a collective dynamical potential whose bottom is lower than that of

the equilibrium state (E.,). The top of the barrier will be higher than E. if the condition
E>2/(4=-3r2) - : - (41)

is fulfilled. Such a potential is shown in figure 1 by the dashed curve.- The eigenfrequencies
calculated for this potential well are shown in table 1.
Table 1 ‘
Dependence of eigenfrequencies oh initial conditions.
(I) 8 =2, Eyr =24 Mev,r? = 1.-(ll) k=2, Eyr =24 Mev,r?, = 0.752.
(1) & = —0.5, Eyr = 9.5 Mev,r2, =1.:(IV) & = =2, Eyr =15 Mev,r2 = 0.5.

1| ¢ 0001 01 05 1
RO | 9.25+ 1413 17.91 21.84 23.98

| ¢ |-0001 -0.04 -0.08 -0.1 -0.11]
RO | 16.89 1596 14:55 1331 12.18|

Ml ¢ | 094 0945 095 1 1.005
1an| 553 7.04 758 ©9.50 .9.60 | -
W & {47 0705 0 7500755

AQ | 1066 14.68 18.90 19.42 19.46

The limits of variation of & are determmed by the mput exc1tatloq enervy E at some
value of ¢ the enertry E., + F turns lower tha.n fhe bottom of the potentlal well or hlgher

than the top of the potentlal barrler

13



3.4 ,Q‘uantization’ N {

Solving nonlinear equations of motion one expects to find anharmonicity effects. We have
observed ‘already the main effect of anharmonicity - the satellites of the basic frequency
that form the equidistant spectrum of multiphonon states. However, such a result is
contradictory to the practice of quantum mechanical calculations, where one usually has
some ‘deviation from precise equidistancy.  Hence, to obtain the anharmonicity of the
speci‘.;’urn it is necessary to quantize this mddel.

: Its quantization is elementary because we have already the expression for the energy
 of vibrations (29). Choosing ¢ = J and p = % as the canonically conjugate variables,

“one can represent the Hamilton function in the form

2
= 42
g 5 V() . (42)
with _ ‘
Wit Cm
V(Q) —w q + - + (q - Jo) , m = .‘Q . (43)
. . . . . . OH
It is easy to see that equatlon (27) coincides with the Hamilton equations ¢ = o

p= —a—H what ‘justifies our ch01ce of canonical variables.
The quantum Hamlltonlan can be produced following the Pauli {31}, [32] prescription.
This operation, however does not ‘complete the construction of the quantum Hamiltonian
: because it is necessa.ry to §olve the initial condition problem. Our quantum Hamiltonian
will contain the constant ¢.which 1s determined by the IC. Thus, the‘variety of initial con-
’ ditions of the classical problem will generate a variety of quantum Hamiltonians. However,
the Hamiltonian which ideolly describes the dyna.mics of the nucleus should be unique.
We suppose that-the s_olution of this p'roblem can be found by taking into account
“ the principal difference between the classical and quantum descriptions of excitations.

, Belng an integral of motlon (energy), the classical Hamiltonian is changed each time

' the initial condltlons are cha,nged Hence, strictly speaking, all excited states and the

equilibrium (ground) state are described by dlfferent Hamiltonians. Absolutely another ‘

“751tuatlon prevalls ina quantum case. Here all states (ground and excited) are obtalned
;a8 the elgensta.tes of only one Ha,mlltoman The ground state is the only state tha.t is
- descrlbed by the same Ha.mlltoman in both cases. So, it is natural to use for quantlzatlon

the classical Hamiltonian derived for IC which correspond to the ground state. That

.14

means, that for our model we h‘zklve"to "taAkve (he equilib’riumkvalue of the constant c. 'Ithis
statement agrees with the conclusion of A. Klein’[28] thut ?the value of ¢ is related to the
equilibrium value of ¢”. Iurth(‘rmore it bears a slrong resemblence to the stationarity
conditions of Kan [15]. So, the picture of excnatlons 1n the classx(‘al case is much richer
than in the quantum one.

Two methods will be used to analyse t‘he spectrum. The first one is the Bohr-
Sommerfeld quantization rule: -

[Mr@dg=sntn+3). S

@
where ¢, and g, arc the classical turning points, P(q) = \/m

Another method was suggested by Cambiaggio [18] Its idea is in the self-consistency
prescription. One calculates the Fourier Spoctrum of the action (Lagrangian) for different
input energies £. The selection of the encrgies goes as follows. When one finds the value
of E that satisfies the relation B, = E — E,, where E, is the energy of the first Fourier
peak, one selects this energy and calls it [%. Then one continues to calculate the Fourier
spectrum of the action with the input, energies £ > E,. Again, when one finds the value
of F that satisfies the new relation £, = E — Ej, one sclects this energy and calls it F,.
The procedure is repeated until the iimit value of F is achieved.

The results depend strongly on the values of ¢., and . Inan accordance with the
results of the previous analysis three domains of & values must be considered @paralcly:
k>0 —l<k<0and £ < —1L. ‘

Let us consider first the case: & > 0. The P()lrentidl W(!ll‘llOr(‘ has infinite walls and a
minimum at'the point J = Jp (fo'r gy = 1) that corrcsponds 16 an equilibrium state of
the harluonic oscillator, i.e. the inclusion of the residual interaction does not change the
cquilibrium state of the system that is characterized by tll(‘ in(‘rtia tensor Joy = Jo and
by the encrgy E,, = 1nw2J0 The spectrum, being mﬁmte has- vory small anharmonicity.
The calculations with & = 2 show that the levels E, -arc posmon('(l (qm(hslantlv with
a good accuracy up to a rather large n. - For _(',xamplke, the (llffg‘r(';l(‘(‘ Iy = Eo = 23.981
practically coincides with Fppa = 23.971_ M(;,v::A small unharnm:ni('it_v can be noticed at
n =~ 100. So the difference Iy — Fh00 . =.26.017 M(‘\' d( monstmlox the anharmonicity
Anh = (Fror —Froo — Enpa)/ Erpa 2 8%. 0 ows e

The second case (—1 < & < 0) is more interesting. Here the potential (13) has a mini-
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mum at the same point J = Jo (for ¢/, = 1) that also corresponds to an equilibrium state
of the harmonlc oscillator. However this state‘is mctastable becanse now the potential
has the ﬁnlte helght barrier whose top lies at the point J = —Jo(1 41 = 8k)/(4k) > Jo.
So the mclusxon of the residual interaction with —1 < & < 0 changes the equxllbrlum state
of the system qualltatnely without changing its quantltatlve characteristics J.q and E.,.
The barrier height decreases from oo to 0 when & is changed from 0 to —1. Hence, the an-
harmonicity can be rather large when & is close to —1. For example, at & = —~0.5,¢,, = 1
the barrier height is &~ 50 Mev. The potential “Wwell has four bound states, and the devi-
| ation of the spectrum from the equidistant one is appreciable right from the beginning
(table 2). Taking.c,, = 1.05, one obtains the barrier with the height ~ 22 Mev. The
potential has only two bound states and the anharmonicity is slightly increased (table 2).
/ The thlrd case (fc < —1) is of special interest because here the potential has a maximum
at the pomt J=uJo (for ¢,y = 1). Its minimum lies at J = Jo; = ~Jo(14++/1 = 8k)/(4R) <
Jo The well depth (or barrier height) increases from 0 to co when & is changed from —1
to —oo. Hence a remarkable anharmonicity can be observed in the vicinity of & = —1.
For example, at k= —2 the well depth is ~ 67 Mev. Here there are four bound states
and the dev1at10n of the spectrum from the equldlstant one is strong, exactly as in the
previous case, already for the low lying states (table 2).
Table 2 A o ,
. The dlfferences between multlphonon levels calculated by Bohr-Sommerfeld (B) and
» Camblagglo (C) methods ; .
(‘Ila)’ ‘c',— 1, £ =-05, EnpA =9. 786 Mev,r2, = 1. (IIb) ¢ =1.05, £ = —0.5,
Erpa =8.975 Mev,r, =1.053. (III) ¢ =1, & = —2, Eppa = 14.891 Mev,rZ, = 0.64.

Ey—Ey Ey—E, Es—FE; Ei—E;s
{1la|B| 948 9151 8749  8.243
c| 949  9.166 8777  8.299
11b |B| 8557  8.032 - .
“lc| 8512 8.073 - -
II |B| 14.339 13.686 12.858  11.657
c| 14355 13.723 12939  11.870

It-is seen from the table that the results found by the Bohr-Sommerfeld and Cambi-
aggio methods are quite close, the difference between them increases together with the
’/
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anharmonicity. Such a behav1our is naturally explained by the fact, that both methods

are approximate ones.

4 Harmonic oscillator with residual
quadrupole-quadrupole interaction |

4.1 Equations of motion

The model we will consider here is a harmonic oscillator with a quadrupole-quadrupole
residual interaction. Its microscopic Hamiltonian is

A

A 2
H= Z(zp nt ’" ri) +%’°Z Y u(ri)al(rs), (45)

i=1 i#j n=—2

with the quadrupole operator q24 = 44/7/5 r?Y3,. The corresponding mean field potential

can be written as

V= gmettte Y Quied(e),  (40)

u=—2

where the quadrupole moment Q5,(¢) is defined as

. d3 ’
Q)= [Erann =4 [ [hoq@rep. @D
Using the relations
Quah = (Jun+J2 —2 Jss)(zl + z3 — 223),

Qzlq'.h + Q2—1q;_1 = 12( J13$113 + J231213)
Q22q;2 + Q2—2‘I;—2 3(J11 - Jzz)(Il - Ig) + 12 J12$1$2,

i

one can rewrite this potential in terms. of inertia tensors:

1 - g
V(r,t) = —2-mw2r2+2n22(3.],,z, Jss:c,.):c,, o (48)

r=1 s—'l

It is easy to see that for this potentlal the 1ntegral

N o
/ Pr (e, Yaig - = mwzJ., +ax Z(3J.,JJ, ~ J,,J,,) o 9)
4"1 R

T
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is symmetric with respect i,j. As a result; the 'rig}:1t ’hz:in‘d side of equation (15) is equal
to zero. Therefore, this model conserves the angular momentum.
Let us further note an interesting observation. With the model potential (46) our

system of the dynamical equations (11), (13),(16) for the variables

/frfaggﬁuqﬂnpﬁx./fr/cg%ﬁmwﬂﬁpJL

&p
/dsf' /W{I;Pj];jf(l', p,t)
coincides with the system (65) derived in the paper of Schuck [33] for the variances-

covariances
D(ziz;) =< (&: — z{)(2; — 27) >, D(pip;) =< (i — 5)(p5 — P5) >,

2D(zip;) = 2D(pjzi) =< [(&: — ={)(B;~ p§)lis >,
“where i, p; are quantum operators and =¥, p¢ are their classical counterparts. The equiv-
‘alence of both systems is not very surprising because, being written for essentially the
-same variables, they do not involve any approximations in the case of the potential (46).
Now substituting expression (48) into equations (16), (13), we finally get the following

_system of equations for the collective variables J;; and II;;:

3
%j;j + %wQ Jij 4 2« 2(3-];,-],', — JijJss) — 15 =0,
s=1
. m . . 3 . 1 S
H;_,' + ng Jij+ £ Z_I:[&];,(JJ‘, + ;M,,J') — J,‘jJ,,],‘J* =0. (50)

‘For the sake of simplicity the time dependence of tensors is again omitted. As angular
momentum is conserved, the variables M;; do not depend on time and are given by the

initial conditions. In this work we study the case without rotation and take M;;=0.

_ This system has several integrals of motion. The first one is obtained by summing the -

second equation of (50) over %, setting j = #:

3 3
m .
E H“ + Ew2 Ji+ k& E (31]‘2_1 —_ J,,J,‘,‘) = Cp. (51)

=1 a=1
Its physical meaning is the conservation of the total energy of the system. It is easy to

see that it is equal to the Hartree-Fock average of the microscopic Hamiltonian (45), i.e.
-
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co = (¥ | H | ¥). Others integrals can be found by using equation (20) which takes now

the form:
d m ., . 3 . . - : =
(—E(EJ‘J- - J,'_,'H.'J') =3k Z [J,‘J'(J.',JJ', + J.',JJ',) — 2J,‘jJ,‘st,] . (52)
=1
Summing it over ¢, one has:
3 m
Z (J,‘J'H,‘J' b gJﬁ,) = const. (53)
1,7=1

If the nucleus has a triplanar symmetry, its inertia tensor is diagonal (Ji; = 6i5J4),

and equation (52) gives three integrals of motion:

m

hﬁMdﬂ—glﬁfzq,izLZ& (54)

The integrals (54) for variances-covariances were found in another way by Schuck [33].
It is known [34] that a cartesian tensor of a second rank may be represented by a sum
of three irreducible tensors: 1) a zero rank tensor (monopole moment), 2) a first rank

pseudotensor (angular momentum) and 3) a second rank ténsor (quadrupole moment):

.

T = Too + Thy + Ty

Taking the linear combinations of egs. (50), we are able to represent them through the

irreducible tensors

Qoo = Ju +Ju2+ Jaz, Koo = My + Mgy + 1y,

Qo =Ju +J22 =23,  Kyo = 1y + Mg — 20,
Qanr = :F\/g(-]m + iJas),

Q242 = V/3/2(In1 — Jr2 £ 2iJ13),

Koty = ¢\/6(!113 +la3),
K:Z:k2 = \/ 3/2(“]1 - nn :h 21“]2)

Generally speaking, all equations (50) are coupled. HoWe_ver, by a proper choice of
the initial conditions the system (50) can be reduced to three cases which correspond to
the components u = 0,2,1 of the quadrupole moment and are known as g-mode, y-mode

and the transverse-shear mode (we will call it a-1node).
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4.1.1 f-mode

It is easy to see that one of the possible solutions of the system (50) is:
Tu() = Jaat) = 0, Jra(t) = J¥3(t) = Jn(t) = 0,
Mua(t) = Thza(t) =0, Tya(t) = Mya(t) = Mot) = 0

with the rest of variables different from zero. This solution keeps the axial and triplanar

symmetry of a nucleus (#-mode). In this case the system (50) is converted into
—Qoo+ 7w Quo+ 5 Q3 — Koo = 0,
%on + %w Qwn -+~ Q20(2 Qoo — Q) — Ky = 0,
Koo + %l—wono +£Q20Q0 = 0,
Ko + 50 Qa + £ Qu(2Qo0 — Qo) = 0. (55)
The third equation of this system is reduced to the inte;gra] of motion
Koo + g wWQoo + -;—ng = const (56)

that is just a particular case of (51). It is also easy to see that (55) has the particular
solution Q20 = K30 = 0 corresponding to the simple harmonic oscillator and to pure

monopole vibrations with the frequency ! = 2w.

4.1.2 ~-mode

Taking
Jn(t) = J];;(t) = Jg;;(t) = 0, H]g(t) = HIS(t) = Hza(t) = 0,

we find a second solution of system (50) which keeps the triplanar symmetry of a nucleus

but spoils its axial symmetry(y-mode). The corresponding set of equations is

T 00+ 7w Qoo+ k(@R +3J2) ~Kwo = 0,

‘142@20 + %wsz + £ {Q20(2Qo0 — Q20) +3J2} —K» = 0,
%JZ + —'ngJ_ +2xJ_(Qoo + Q20) — I_}_ = 0,
Koo + %l" W Qoo+ £ (Q20Q20 +3J.J-) = 0,
Kao + %wzon +xK {Q20(2 Qoo ~ Qz0) + 3J.j_} = 0,
ﬂ_ + -rg'wzj_ + kK {J_.(2 Qoo + on) + onj.} = 0, (57)
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where J_ = J;; — Jpp = (sz + Q2- 2)/\/6 and Il = H]] - H22 = (Kaz2 + K3-2)/ V6.

The fourth equation can be reduced to the mtegral of motion
Koo + —w’Qoo + = (Qm + 3J2) = const, (58)

that is a particular case of (51).;

Analy.zing the above set of equations; one can find three particular solutions. For the
first one we have J_(t) = H_(i) = 0, and the s&stem (57) is reduced to (55). The other
£Qa0(t), TI-(t) = £Kz0(t). The equality J_ = Qy
is equivalent to J; = Ja3, and the equality J_ = —Q20 leads to Ji; = Jas. Hence, these

two solutions correspond to J_(t) =

particular solutions represent nuclear vibrations which keep the axial symmetry along the
first and the second coordinate axes, respectively. The same kind of motion (with the
third axis as the symmetry axis) is presented by the system (55). From the physical point
of view, all three axes are equivalent to one another, so that the corresponding systems
of equations are equivalent. Indeed, assuming J_ = £Q30, I_ = £Ky in eq. (57) and
substituting the variables 2Q20,_ 2K30 by —Q20, K20, this system can be reduced to (55).

Formally there exists one more solution for cach of the systems (55).and (57) if we
take Qz0(t) = Qoo(t) as well as ICgo(t)

meaning because the equality Qg0 = Qqp is equlvalent to J33 = 0 i.e. we are deahng with

Koo(t). However, it has not much physical

a two-dimensional object.

4.1.3 a-mode
The most intricate solution is found when . : .

le(t) = J23(~t) = 0, ng(t) ‘= Hza(t) = 0

with the rest of variables being nonzero. Both triplanar and axial symmetries are aban-
doned in this case keeping the symmetry w1th respect to the reﬂectxon in the plane z; = 0

alone. The corresponding system of equatlons is
Ln‘Qoo + szQoo + E(Q + 12-]123 + 3J2) = ’Coo  = ‘_ 0,
‘“on + w Qo+« {Q20(2Q00 = Q) — 6J; 7+ 3J2} ’Czo =0,
_J_ —w’J_ + 25 {J-(Qoo + Quo) + 375} — 11_‘ =0,

J13+—w J13+f6-]13(2 Qos — Q20+3J )—H13 =0,
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Koo+ — w2Qoo + £ (onng + 3J_.J_ + 12-]13-]13)
K:zo + w on + & {Q20(2 Qoo on) + 3-]—--]— - 6Jl3Jl3}
I + ngj_ + K {J_(2 Qoo + ng) + onJ_ + 6-]13113} = 0,

ﬁlS + T—;'wzjla + ,—;‘ {J13(3J— on +4 Qoo) + J13 (3J- - Qn) = 0, (59)
where Ji3 = (Q2-1 — Q21)/\/2_4 and i3 = (K:z—l - K:21)/\/2—4
The fifth equation is reduced to the integral of motion
Koo + w?*Quo +3 (ng +3J2 4+ 12J%) = const (60)

which is a particular case of (51).

As to mathematics, one nontrivial particular solution is admitted here: J_(f) =
—Qa0o(t), I_(t) = —Kao(t). However, as we know, the equality J. = —Qs leads to
Ji1 = Jas. From the physical point of view the inevitable consequence of the last relation

is the equality J13 = 0, i.e. we return to the 8-mode.

4.2 Analysis of the equations‘of motion

4.2.1 Stationary solution

Investigating the stationary solutions of the systems (55, 57, 59), we can draw some
conclusions about the shape of nuclei. Let us study the most intricate case which is the

system (59). Assuming the time derivatives in (59) to be zero one obtains four relations:

mw?Qoo+ 2k (Q3, +12J% + 3J2) = 2Kqo, ~ (6D

mw?Qao + 2% {Q20(2 Qoo — Q20) — 655 +3J2 } = 2K, (62)
mw?J_ + 4« {J_(Qoo + Q) + 3J35} = 2IL_, (63)

Mt s +26 J12(2 Qoo — Qo +3J_) = 2lis. (64)

The first equation is a generalization of the well known virial theorem. This theorem
tells that the avérage kinetic (T) and average potential (V) energies of the system are

connected by the relation
: oT = kV (65)

if the potential V is proportitb)knal to r¥ [35]. When the potential is the sum of several terms

"V, proportional to different degrees of coordinates (V» ~ r™) this relation is transformed
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T =3 V. o | (66)
n

[u our case the potential consists of two terms with n =2 and n = 4.

The rest of equations couples parameters of nuclear deformation in coordinate spacce to
the ones of the Fermi Surface (I'S) def'ormati(jn (momentum space). A'rather nontrivial
conclusion can be derived from these relations. They tell that it will not be possible to
produce any quadrupole deformation (Q2 #0, Ji3# 0, J. # 0) without simultancous
I'S deformation (Ky # 0, i3 # 0, TI. # 0) and vice versa.  To demonstrate this

we transform cquations {62-64) using the self-consistent value of the strength constant

(33, 36]
| 2
—Tnw .
K = KBohr = 14 < 2 >- . (()7)

Taking into account the relation Qoo = A < r? >, we can present eq. (67) as mw? 4

4£Qoo = 0 which allows one to simplily equations (62-64) :

KB —Qh—6Th) =Ko, . (6§)
26(J-Quo +3J2) = II_, o (69)
K/J13(3J_ on) H]g. (70)

If we assume H{ls =1II_ = Ky = 0 then cq. (70) is reduced to: 3J_ = Qgg Umlg this
result in (69), we arrive at the relation on + 9J% =0 wlnch can be satisfied onl} under
the condition Jn = ng = J_ = 0. So, the Bohr self- cormstcncy Condlhon - t]l(‘ shap( of
the potential well follows the shapc of the dcn51ty --can be rel'ormulat( ed as: dnv variation
of the density shape leads 1nev1tably to the proper deformatlon of IS shape. We do’ nol
say “one shape follows another” because they é:;n be deformed "in phase” or “out of
phase”. One can show it by analyzing cqs. (68 70) Let us consldor an axially symme tric
nucleus where Jj3 = J_ = 0. In"this ca.q(- eq. (70) is identical to IIH =0, eq. (69) turns

into I1_ =0 (i.e. Uy = IIn) and cq. (6 ) reads:
,Kfzol?—Nng- S . {(71)
l\(epmg in mind that « < 0, we find from (71) tllat K20>0 (1 c. lI” > ) md( pe nde ntl\

of the sign of Q4. So, the nucleus’ IF 5 will always b( ob]at(‘ in splt( of the fa(l that the

shape of the nucleus can cither be prolate or ~oblate.
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The fact that there is always a FS deformation in conjuncvtion with a non-zero real
space deformation in our model is, of course, a"corrseguerfce' that we implicitly never
redistribute the particles after level crossings (diabatic m_otion). Did we put (by liand or by
an additional pairing interaction) the particles alWays irr t’he lowest available single particle
states (adiabatic motion), the FS would acquire orrly minor.deviations from sphericity,
however strong the real space deformation becomes {11, 37). This conclusion concerns the
equilibrium state and does not contradict the\‘\lyell-known staterrrent that FS deformation
is small for adiabatic processes {11] (see the next section).

To have a feeling on the order of magnitude of the FS deformation we express the

ratio Ka0/Koo in terms of the deformation parameter B. The desired relation is derived

with the help of the formulae (71, 61, 67) and (80):

2
E:E — > 20 Q20 _ '5—ﬂ2 (72)
Koo 2Q% — Q% 2Qoo 2

" This formula demonstrates quite well that the effect of the FS deformation is negligible
for the ordinary nuclear deformations (8 <0.3)inan accordance with the conclusion of

[11). However this effect becomes remarkable for g > 0.4.

4.2.2 Small amplitude approximation

Let us consider the system (59) in the small amplitude approximation. Applying the
4 6Qx, J- = JO 6, Jis=Jis + 6‘]1.3’

inﬁnitesimal variations of variables Qo =
IC,\o = K3 +6K 0, 1. = 9 +6T0., I3 = 115 +6H13 and neglecting the terms quadratic in
§ , one obtains four independent subsystems. One of them is the system for the monopole

tensors
12—5Qoo + lnz—wzaQoo — 6Koo =0, (73)
6Koo + %W%Q'oo =0

and the remaining ones are the systems for the components of the quadrupole tensors

with g = 0,1,2. All three have the same structure. For example:

'—5Q20 + (—w + 25 Qgp )5Q20 — 6Ky =0, (74)
6K:20 + ’—W 6Q20 =0.
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Imposing the time evolution via €™ for all variables, one ¢an easily find the corresponding
collective eigenfrequencies. The system (73) supplies the frequency of monopole vibra-
tions: \ }

Qo = 2w. ' (75)
which is just the unperturbed shell model value, since there is no residual monopole

interaction in our model. The system (74) for the quadrupole vibrations gives

92_2\'(4)24'—— 00 (76)

Using here expression (67) for the strength constant, one obtains the well-known (33, 36}

result for the quadrupole eigenfrequency:
= V2w. (77)

It is seen from the second equation of (74) that the amplitudes of 6Q2, and 6Kz, have
opposite signs, i.e. the nuclear density and the Fermi surface vibrate out of phase. Fur-
thermore, the order of magnitude of the factor mw?/2 is close to unity, therefore the FS

deformation and the density deformation are of the same order.-

0

4.2.3 Numerical solution and Fourier analysis

The systems of equations (55, 57, 59) are solved numerically by means of the Runge-Kutta
procedure. Most of the calculations are performed for 2®Pb and 49Ca. The solutions
depend strongly on the Inltra.l Conditions (IC). We take Q2u(0) = K24(0) = 0, Qoo(0) =

Q55 Koo(0) = Kof
2RZA with Ry = 1. 18A!/3, The equilibrium value of IC;% is fixed by relation (61).

The equilibrium’ value of the monopole moment is chosen to be
00 =
The time derivatives Q,(0) are varied arbltrarlly -

The most detailed analysis, has been performed for the ﬁ mode The typical time
dependence of the function Qo(t) is drspla.yed in fig.3. As one can see, on(t) oscrllates
quite irregularly. The behaviour is qurte similar to the one found by W. Bauer et al [38].
The period of oscillations 7, (when the curve begins to repeat itself) depends crucially
on IC. For this figure 7, = 457.4 MeV~! (7 = t/k). Knowing: the basic period of the

oscillations one can produce the Fourier ana.lysrs correspondmg to the curves and represent
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Fig.3. The time dependence

(r = t/h) of the quadrupole moment of 8Ph for the

0, Q20(0)

initial conditions QOO(O)

25000.

all the functions by a Fourier séﬁéé J
f(t) =‘;a?0 + Z(a;cbsd;,-t + b; sin w;t). (78)
’ ST = ‘

The results of such calculations‘arev shown in tables 3,4, where the frequencies hw; and
the corresponding Fourier coefficients a; and b; of the functions Q40 and Qqo are presented
for two versions of 1C. Let‘us aﬁalyze Table 3 in detail. As one can see, there are about
30 frequencies whose amplitudes a;, b; range from 10~? to 103, half of them range from 1
to 10>. How to interpret this variety of frequencies? As we have seen, the Fourier analysis
of the one-dimensional model describing the dynamics of the monopole moment gave one
basic frequency and an infinite number of satellites. In the case of a two-dimensional
problem of coupled monopole and quadrupole motion (3-mode) it is quite natural to

Table 3 Fourier coefficients and energies for Qoo(0) = 0, Q20(0) = 18000

huw; Qoo Q20
i || MeV by ! ‘a; b; I a;
0.00 0.00 | 202.47 0.00 | -481.45

1.69 || 3M-4Q || -0.00 | 0.02| . 0.24|  -0.84
205 | 3Q-2M | 3.10| -0.39 || -1532 | 172
3.74 | M-Q'| -6.68] -0.91] 196.11 32.15
580 || 2Q-M || -0.28| 27.83| . 3.46 | -68.38
748 || 2M-2Q || 1.04| -368| -7.16 | 21.24
7.85 | 5Q-3M || -0.16|  0.03 0.09 | - -0.00
9.17 || 5M-6Q || 0.05| 0.02 | - -0.01 0.02
954 | Q. |-83.83| -12.37 || 1727.16 | 373.68
9.90 || 8Q-5M || -0.06 |  0.01 0.00 | 0.03
10 | 11.22 (| 3M-3Q | 0.05| 006 237 1.25
11 | 11.59 || 4Q-2M || -0.12| 4.83{ -0.68| 6.70
121328 M 64.72 | -222.54 | 25.33 | -64.26
13 || 13.64 || 7Q-4M || 0.00 | -0.20 | .  0.01 . -0.00
14 || 14.97 || 4M-4Q || -0.04 | -0.02 0.01 | -0.02
15 [ 15.33 || 3Q-M || 27.42 | 420 -9.05| -2.44
16 [ 17.02 | 2M-Q || -248 | -1.I5( , 427 255
17 | 17.39 | 6Q-3M || 0.01 0.02 0.01| -0.05
18119.07 || 2Q | -30.12| 99.72 || 29.42 | -64.80
19 12076 |{ SM-2Q || -0.19| 032) 005| -0.06
20 | 21.13 || 5Q-2M || -0.60 | -0.09 0.28 [ 0.09
21 || 2281 | Q+M-| 452 | - 208| 607 4.05
22 12487 | 4Q-M || 0.16] -050 || -0.86 1.67
234 26.56 ||~ 2M [l -0.11 | - 0.18 || - 042 0.5 |-
24112861} 3Q || .208] 098] -133] -322
25 | 30.66 | 6Q-2M | “-0.0t | - 0.02 [ 0.02] “-0.04
26 || 3235 | 2Q+M || -0.05| 008 001 -0.04

OO -1 WN—O
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Table 4 Fourier coefficients and energies for QGO(O) :50; Q20(0) = 25000

hw; Qoo | Qo
i | Mev bi | a bi |
0.00 0.00 | '378.83 |  0.00 | -787.69

0.22 || 7Q-5M 1.32 -0.08 || -21.26 1.31
1.70 || 3M-4Q -0.17 214 |f - 7.09| -88.25
1.92 || 3Q-2M 59.95 1.12 || -318.53 -5.95
3.39 || 6M-8Q -0.26 1.62 3.92 ;7 -24.25
3.62 | M-Q -67.69 -6.72 || 785.15 77.94
5.53 || 2Q-M -16.15 | 136.67 43.90 | -371.48
5.75 11 9Q-6M | -11.29 -0.64 34.09 1.92
7.01 || TM-9Q -1.31 -0.35 12.65 3.35
7.23 || 2M-2Q 14.97 | -74.64 -74.15 | 369.79
10 4| 7.45 | 5Q-3M || -18.08 -2.48 31.82 4.37
11§ 8.93 || 5M-6Q 5.38 + -18.85 | -37.80 | 132.43
12 | 9.15 Q -157.77 | -34.71 || 2092.70 | 460.45
13 || 9.37 || 8Q-5M 0.88 -5.62 -17.96 | 114.87
14 || 10.85 || 3M-3Q || -20.76 -6.35 || -120.68 36.92
15 || 11.07 || 4Q-2M || -21.13 88.14 -43.78 | 182.65
16 || 12.76 M 177.67 | -544.27 || 113.80 | -348.64
17 [112.98 || 7Q-4M 15.84 4.11 14.76 3.83
18|t 14.46 || 4M-4Q || -13.89 33.26 4.01 -9.60
19 11 14.68 || 3Q-M || 202.16 70.20 -62.13 | -21.58
20 | 16.38 || 2M-Q -59.05 | - -25.98 66.71 29.35
21 | 16.60 || 6Q-3M -5.03 13.65 3.05 -8.28
22 |1 18.08 || 5M-5Q || -24.21.{ -13.06 14.38 7.76
23 | 18.30 2Q -67.25 | 145.42 44.50 | -96:22
24 18.52 || 9Q-5M || -15.51 -6.05 10.67 4.16
25 |1 19.99 || 3M-2Q || -11.69 20.73 5.06 -8.98
26 )| 20.21° ) 5Q-2M || -21.15 | -10.26 13.53 6.57
27 112191 | Q+M 31.04 18.28 2.67 1.57
28 || 23.83 || 4Q-M 1.21 -1.97 -9.65 15.71
29 | 25.53 ||° 2M -1.77 2.43 6.18 -8.45

LTI W — O

expect the appearance of two basic frequencies ;, 02, and their satellites. Due to coupling
there exist many linear combinations of these frequencies: n,9; + n,0;. For the ~-mode
there must be three basic frequencies with corresponding satellites. One can recognize
\ immediately the energies of the qua._drupole (GQR) and monopole (GMR) giant reso-
nances. They are very close to their values in a small émplitude approximation: E; (fiws)
becomes 9.54 MeV instead of 9.78 MeV, and E, (hwlg) becomes 13.28 MeV instead of
13.84 MeV. It is elementary to show that all remaining energies are just the combinations
of the two basic energics: E, and Ey. The results of combinatorial analysis are shown in
the third columns of the tables. The comparison of tables 3 and 4 shows that the results

are quile sensitive to IC. As to mathematics, this fact is absolutely correct - we have
P
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already observed it in the case of thé one dimensional model. Furthermore; any textbook
illustrates such a dependence by the example of a nonlinear pendulum (35, 39] (see also.
section 4 of the paper). In thisyéohtexi itis if}teresting to know the order of magnitude of
the deformation, attained dur&ng the vibrations. To this purpose one needs to express the
quadrupole moment @4 in terms of the deformation parameter 3. We derive it assumirig -
a sharp nuclear edge. By definition
27 x R(6,4)
QuolB) = no(B) / dé / d0 sin 0 / dr r¥(z? + 2% — 222). (79)
0 0 0

Here R(0,¢) = Ro (14 8Y20(0,4)), =} + 2§ — 223 = ~4,/Zr?Yy(0, ¢), and the density

ng(B) is defined as
-1

27 x R(0,4)
no(B) = A (/d¢/d€ sin @ / drrz)
0 ) .0

Performing simple but tedious calculations, we get:

4 /5 15
Q20(B) = —4\/§"0(ﬂ)Rg (ﬂ + 7 Eﬂz + mﬂa

100 [ 5 25-53 <\
o (M)aﬂi T 13(47r)2ﬂ ) ’ (80)
-1
2 /5 :
no(B) = 3% (47!’ +36% + 7 4_7r-ﬂ3) .

The calculations show that the limit of maximum possible amplitudes is achieved at

Qoo(0) = 0, Q2(0) ~ 28000 (in Mev fm?/K units): the maximum positive value of-ng
is ~ 2700, and the maximum neéa.tive value is ~ 3800. By using (80), we find that
the vibrations with the maximum amplitude corres’pond to ,B ranging :from ~ 0.42 to
~ —0.42. So, the nuclear sha};e changes during the vibraltions from oblate to prolate.
Further increase of Q30(0) leads to insta.bilit-y: the amplitudes begin to grow indefinitely.
The amplitudes presented in fig.3 correspond to ,3 ~ 0.25.

As it was expected, the solution of system ~(57) yields three basic energies. For example,
with IC Qoo = 6100, Q30 = 104.',‘j_'= 10° we get: Ep = 13.66 Mev (GMR), Ep = 9.5
Mev'(f-mode of GQR) and Eg = 9.75 Mev (7—/mode). The difference AE = Eg — Eg =
0.25 Mev represents the splitting of the GQR due to large amplitude vibrations.
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4.2.4 Radiation probability

The radiation probability can be calculated by two mefhods. The first one uses the

classical formula for an intensity of the quéd}upole radiation [40]:

Int = W Z th (81)

ki=1
where Dy, = eZ[ABJy -6y S L, Jss). Using the relations 6J;; = 2Qo0+ Q20 +3J_, 6Jy; =
2Qo0 + Q20 — 3J_, 3Ja3 = Qoo = (20, one can represent the expression (81) in terms of

our variables. So, for the a-mode we obtain:

eZ\* 1 2 2 2
Int = (7> W(Q” +3 J_ +12 J,,). (82)

The formulae for - and S-modes are obtained from this expression by neglecting Jy5 and
Jua, J_ respectively. For the sake of simplicity the followiné formulae will be proposed for
the B-mode only. Assuming J;3 = J_ = 0 and inserting into (82) the Fourier expansion

for (20, we get after averaging over the greatest period of oscillations:

— eZ 1 e 6 @7 + b? >
fot= ( A ) 12065 21: =3 Int;. (83)
= i=1 .

Dividing Int; by #iw;, we obtain the radiation probability W;. Taking into account the
relation between W; and the reduced probability [11], we find:

eZ\? 5 Z\? 125 a? + b2
se= (5) ey = (2) Bari,

where By is the Weisskopf unit. The generalization for - and a-modes is ‘elementary.
The second method is based on a classical limit relation between the average value (f)
of some operator f and its classical counterpart f(?). It is known [41] that in the classical

“limit the matrix elements (m|fn) are equal to coefficients f,,_, of the Fourier expansion

of the function f(2) (see also [33]):

f(t Z fsexpiw,t. (85)

$=—00

Hence, in aclassical limjt the formula

B(E2)p—r = |(m|f]n)|? (86)
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is converted into . } -

BED=IAP (87)

Remembering that f = EAgrng,,(H, é) = E%\/S/lﬁwqg,.(r) and taking into account the
; A ,

rclation between the coefficients of different representations (85) and (78) of the Fourigr

expansion fi, = (af +1b)/2, we find:

Sy = %y/ﬁ/lﬁn’(a, +ib,)/2 (88)

Substituting this expression into (87), we reproduce immediately the formula (84). The

second method is also applicable for the derivation of the formula for B(£0):

Z\N*'1 ,, Z\%1
B(E0); = (‘37) 1—6—7—;(a?+b?) = (Z) 1 (a? + 8?) Bw, (89)

Some numerical results will be presented in the next section.

5 Quantization of 8,y-modes

The classical Hamiltonians for 8, modes are found easily with the help of the energy

integral (51) and the integrals of motion (54). The energy integral for these modes takes

the form: s s
ma, K 72
; |:H;+?w it ;u, J,)] =co (90)
where J; = Ji;, Il; = II;;. Using the integrals (54), one can write the kinetic energy term
/_..— II; as: .
3 3
Yoo :Z( J2+c,)/J 91)
=1 ) i=1
Introducing now the momenta P; = UJ' instead of ;clocil.ies ‘J.,~, one obtains the llamil-
tonian in terms of canonical variables P and J;: -

Il is casy to sce that the first of equations (50) coincides with the Hamilton cquation

. all
P = ~ o that justifies our cholco of canonical variables. The other Hamilton equation
.ol ' )
J; = P is identical to our d(rnlhon of lh( momcntum l
€
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Let us consider in more details the ﬂ mode. Assuming J; = J2, ¢; = ¢; and intro-

ducing the momenta P; = 57, Jl, P = kva J3, we ﬁnd from (90, 91) ‘the corresponding
Hamiltonian: 4
J 2J 2
Hy=1P24+ 2203 +—Cl+c—3+—w (2, —|—J3)+2n(.]1 J3)2. (93)

PR A

We need the Hamiltonian in terms of irreducible tensors Qgo, @20 and their conjugate

variables. Changing the variables Ji, J3 to Q2 = Q20 = 2(J1 — J3), Qo = Qoo = 21 + J3,
we find: ~

2 12¢; 3c3

Hy=— (QsP2+Q_P)+ =2 4+ 22

g Im (Q+ ++Q _)+ Q+ +Q—

where Q4+ = 2Qo + Q2, @- = Qo — @2, P = Po+ P, P. = Py — 2P,. The momenta
P,, Py are defined by the formulae:

Q+ Q- Qr Q-
F= <Q+ Q_)’ o= (Q++Q->

It is seen that Hamiltonian (94) is strongly nonlinear and nonpolynomial. The mass

m K '
+ 2000+ 503, (o)

coeflicients depend on the variables Qp, Q2. The collective potential

12¢, 3 m K 5
‘2Q0+Q2 Qo — Q2 2" Qo 2Q2 - (95)

which one may call the diabatic potential, contains the terms (proportional to c;,c3)

that come from the microscopic kinetic energy. In agreement with the considerations of
section 2.4, we take for the constants ¢, c; the equilibrium values. Substituting into (54)
the relation 2II;] = mw?J; following from (61), we find:

1 1 .
& = f = pmuA(JF) = (@),

‘The general picture of the potential energy surface is demonstrated by fig.4 where the

i;family of equipotential curves for *°Ca is shown. Obviously, physical sense has only the

‘area above the lines Qy = Q2 and 2Qy = —Q,. The potential has infinitely high walls on

these lines and grows linearly with increasing Qo. Its minimum lies at Q2 = 0,Qo = Q¢ =
390fm There are two. sadd e points: at negatlve Q@2 (Q2 ~ —290fm?, Qo ~ 480fm?)
where the ba,rrler height is ~ 25 Mev, and at positive Q2 (Q2 = 710fm?, Qo ~ 940fm?),
where the ba.rrxer height is ~ 233 MeV. So, the stable vibrations in ‘°Ca are possible

only with energies less than 25 MeV. The vibrations with higher energies are unstable:
e
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Fig.4. The equlpotentlal curves of the collectlve potentlal for 4"Ca.. The scales for

Qo, Q2 are in fm2 The numbers near the curves are energles in Mev

®

33



after several oscillations (depending on the initial values 6f @2, Qo) the amplitudes begin
to increase indefinitely. The equipotential curve at 25 MeV shows that the maximum
amplitude vibrations change the nuclear deformation in the limits —0.32 < 8 < 0.49. The
analogous results for 2%8Pb are: saddle points lie at Q; ~ —4300fm?, Qo ~ 7360 fm? (the
130 Mev) and at Q2 =~ 10600fm?, Qo ~ 14121 fm? (the barrier height

~ 1212 Mev). The maximum amplitude vibrations change the nuclear deformation in the

limits —0.31 < 8 < 0.47.

barrier height ~

In a small amplitude approximation the Hamiltonian splits into monopole
Huy = PEJ(2M) + 2Mu2?

and quadrupole

Hq =P} /M + (M’ + /2)y"
parts, where 4M = m/Qg", & = 6Qu(t), y = 6Q,(1). Natxurally their eigenfrequencies are
the same as given by formulae (75), (76):

To find the eigenvalues :of the quantum Hamiltonian corresponding to (94) we will
use the semiclassical procedures developed for applications in multidimensional problems
(14, 17], {16, 42], [43], [18]. -

: In papers (14, 17] the quantization rulé is derived from the requi;ement that the
variational wave function must be gauge invariant and periodic (GIPQ method). Caurier

et al [16 42] generahzed thxs method for weakly non-separable systems. Both methods

glve the same rule of quantlzatlon
prkqu =27hn;, n;=0,1,.., (96)
[ k v

where ¢; is a closed trajectory in the space of conjugate variables pr, gr. This result

(pra;tica'lvly coincides \yith the well known [43] Einstein-Brillouin-Keller quantization rule:
?{Zpkqu =27h(n; + a;f4), n;=0,1,..., . (97)

o The only difference is the Maslov index «; showing the number of times the trajectory ¢;

touches the edges of the classically allowed region.
. The described methods are the generalizations of the Bohr-Sommerfeld quantization

rule. The Cambiaggio method [18] can also be generalized to be applied for multidimen- /
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sional systems. The genéfaliZation‘ is trivial:the procedure described in section 3.4 is

performed separately for each mode. ‘

Poincare sections are usually used to find the periodic trajectories (16], {43]. However.
in the paper [42] a method, very convcnicnt‘/for'préctical applications, was proposed.
Using this method in our case, it is necessary to s‘taybrt with the initial conditions FPy(0)-=
0, P,(0) =0 at somé energy E and to ﬁmi the least coupled modes by varying Qo(0) and
Q2(0). The distinctive sign of such a \.modek/is the periodicity (or quasiperiodicity) of the
corresponding trajectory, i.e. after one 6scillation the trajectory must return practically
to the same point Fy(0), P»(0), Qo(0), Q2(0) (the deviation from these values must be
minimal). Changing the encrgy E, one finds the trajectory obeying the quantization
condition (96).

The set of initial values of Qo, Q2, at which the quadrupole mode is least coupled
with the monopole one for 2°Pb, is shown in fig.5 by crosses. The example of the least-
coupled trajectory for the energy £ ~ 24 Mev is presented by the dashed curve. It is easy
to see that for this trajectory the Maslov index is d = 2. There cxists a‘ great variety of
non-periodic trajectories and theif pictures _resemble very much the analogous ones of the
other studies [42], [43], [44]. '

The results of quantization of the quadrupole mode in 2°Pb are shown in table 5. The
second, third and fourth columns present the results of calculations by formulac (96,97)
and the Cambiaggio method, respéctively, for Po(0) =0, P;(0).= 0 and Qo(0), Q-(0)
corresponding to the least-coupled modes (crosses in fig.5). It is scen that all spectra
are quite similar, the third and fourth columnb (marked by I and 111) being practically
indistinguishable. So, one can conclude that formula (97) is preferable to quantize our
equations of motion. The table demonstrates the_weak anharmonicity of the quadrupole
excitations spectrum. The distance between thvé le\;cls is decrcased by ~ VO.OG Mev, when
the excitation is increasing. The same ordcf ﬂofrmag\nitixdc has t‘ll(‘ differeil(‘(& Eppa— (I -
Ep) = 0.04 Mev (let us remind that fippa = 9.78 Mév), which also can serve as a measure
of the anharmonicity. k

The Cambiaggio method allows onc to quantm(‘ w1tll arbltrdr) initial conditions. We
have calculated the quadrupole spectrum with the initial valies of Qq, Q2 disposed ap-

proximately on the line OB of fig.5 (fifth column of table ")) The mmpAarison of the fourth
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and fifth columns leads to the conclu;.sibn that the lower pért" yo‘f*spectrun»l is not"very
sensitive to the choice of initial conditions, the difference being appreciable starting from

the five-phonon state.

Table 5. Distances (in Mev) between the levels of the quadrupole spectrum of 298Pb.

E I II, I1I- the energies are calculated for the least-coupled modes (see the text) using .
= ) ‘ . :

= E formulae (96, 97) and the Cambiaggio method {18] respectively. IV - the Cambiaggio -
2 method for initial conditions corresponding to the line 0B of fig.5.

1
D
%

AFE 1 11 | I

Ey — Eo || 9.7613 | 9.7354 | 9.7358 | 9.7349
E, — E, | 9.7081 | 9.6793 | 9.6799 | 9.6830
Es— E, || 9.6490 | 9.6172 [ 9.6177 | 9.6314
E, — E5 | 9.5831 | 9.5467 | 9.5484 | 9.5792
Es — E4 || 9.5094 | 9.4691 | 9.4708 | 9.5263

Qg Qpleq)

§ The monopole mode is exa.ctly decoupled from the quadrupole one for the initial con- -

dition Q2(0) = 0 that corresponds to the particular solution Q2(t) = 0 of the system (55).

This result has a natural physical explanation. It is possible to change the root mean

! square radius (r.m.s.) of a spherical nucleus without disturbing its shape (breathing

mode), but it is impossible to change the quadrupole moment of a nucleus (i.e. to ex-

The least-coupled trajectory for the energy I

cite quadrupole vibrations) without disturbing its r.m.s. (i.e. without exciting monopole
vibrations). Due to the absence of nonlinear terms the system(55) exhibits in'this par-

ticular case the lack of any anharmonicity and has only one monopole excitation that is

! shown in the appendix A.

The nonlinear effects increase r emarkably when the mass number A is decreasing,.

Fig.5. The equipotential curves of the collective potential for 28Pb. The scales for

: 2
Qo, @2 are in fm?. The numbers near the curves are energies in Mev. The set, of initial
values of (o, @2, at which the quadrupole mode is least coupled with the monopole

demonstrated by the dashed curve.

one, is shown by crosses.

Two factors are most important here First: the height of the collectlve potential barrier

is decreasing. Second: the giant'resonance energy Eggr s increasing. +Their combined:

208["3b

action leads to a rapid decrease of the number of bound states with decreasing mass.

For example the barrier height Vg in **®Pb is about 130 Mev,: Eggr =~ 10 Mev, so

one can find about 12 bound states in its potential well (taking into account. the zero
lations energy ~ 5 Mev). The nucleus with A=70 has Vg'~ 40 Mev allowing only
Ey = Ecgr = 13.69 Mev and E; — E; = 13.08 Mev:

oscil

two bound states for which' Fy —

Here the difference (Ey — Eo) — (B2 — E1) =0.6 Mev is an order of magnitude more than
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in **Pb. The same is true also for the difference Egp, — Egor = 0.38Mev.

The “°Ca has only one bound state with Egor =,15.78 Mev (see the fig.4). This
energy differs from Erpy = 16.95 Mev by 1.17 Mev that exceeds 30 times the respective
value for 2°8Pb, j.e. the anharmonicity in light nuclei is considerably stronger than in
heavy ones.

And finally, the nuclei with A<40 have no bound states at all. After the appearance
of multiphonon states in heavy nuclei it is the most remarkable effect of the nonlinearity.

Naturally an interpretation of this result is required because one knows that the GQR
in light nuclei is observed experimentally. The interpretation could be twofold: 1) the
theory is in line with the general trends of the experimental situation, 2) the model must
be modified to imprbve the agreement with an experiment.

In connection with the first statement it will be useful to remind that the GQR sys-
tematic is usually given separately for A>40 and A <40 nucle; because of the principally
different behaviour of GQR in heavy and light nuclei. A citation from the review of A.
van der Woude [45] will be helpful here: "For A>40 nuclei 50-100% of the E2 EWSR
has been localized in a peak at about g5A~1/3 Mev and with a width which is slowly in-
creasing with decreasing mass from ~2.5 Mev for 28Pb to about 4.5 Mev around A~90.”
He continues further: In sd-shell nuclei'the GQR strength is fragmented..., around 40%,
30%, 25% and 60% of the E2 EWSR was localized in the region between 14 and 25 Mev

for **Mg, Mg, 28Si and 4°Ca respectively.” And else [46): ... it should be noted that
in-still lighter nuclei like !2C only a small amount of the GQR strengi:h has been located,
less than 16%; which probably signifies the disappearance of this collective phenomenon
in very light nuclei.” N

The ‘exact bound of the area of the GQR existence depends naturally on the forces
used in calculations and on the definition of GQR. Microscopically giant resonances are
described as a coherent superposition of 1particle-1hole excitations. In heavy nucle;j these
excitations are coherent enough to create the collective state which exhausts most of
the EWSR and can be treated as the vibration of the nucleus’ quadrupole moment,.
The coherence is decreasing gradually with decreasing mass number, so the E2 strength
becomes more and more distributed and less and less concentrated in the region of GQR

find :this region itself becomes too wide. At some critical value A,, of the mass number
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the contribution of the GQR yrégion: into EWSR‘ becomes less than that of low (and maybe
higher) lying states. Strictly speaking there is no GQR in nuclei with A<A,,.

In connection with the sccond point of the interpretation it is necessary to note that
our simple model gives only onc 2* state that exhausts 100% of EWSR. So we are able
to reproduce the experimental situation more or. less adequately when most of the exper-
imenta] E2 strength is concentrated in a small region. The more complicated situation
of strongly distributed strength can not be described by the model - that is revealed
by the lack of any bound states in the collective potential. -The generalization of the
model for the description of more than one collective 2+ excitations can be done- by
taking into account additional degrees of freedom. The respective collective variables
are derived by taking the phase space moments of Wigner function with the weights
TiT;ThT, TiT;ThPIy TiT;iPkPly TiPiPePi Pip;Pxpr and reducing the obtained tensors. It was
shown in [47] (in a small amplitude approximation) that low lying 2+ states appear in
this case.

One should not be confused by the small amplitude approximation result £ = V2hw,
that has no formal limits of a;;plicability, because this result doeés not say anything about
the existence or nonexistence of GQR but only shows the scale of the quantum energy
spectrum. So, if one accepts the definition, that GQR is the vibration of the nucleus’
quadrupole moment, then A, can be determined very well with the help of our model. It
is interesting to recall the A. van der Woude’s [45]‘deﬁnition of giant resonances: ”Giant
resonances are small amplitude, high frequency, simple, collective modes of e;(cit.ations of
nuclei.” We agree with all these attributes of GR except t}}e first one. The latter does
not work everywhere. For example the GQR in 28Pb cbrreSponcnis’t'() the vibrations of
its quadrupole moment Q40 from 750fm? to —850fm2'wh;at can be seen from fig.5 (the
equipotential curve for 15 Mev: EGQR} energy of zero ’point oscillal.ibvns;)‘. This fangc
of the change of @y corresponds to a variation of the _qgadfllpolc deformation 3 from
-0.1 to +0.1. In principle tl#is is not such a sma}ll‘deforrmat“ién, however its square value
B? is negligible, being an order of nlagnitudcvlcss}'xvliatf explains l.hg appli(-abil‘il‘y of a
small afnplitudc é.pproximat:iorrli_in» hf:va.vyA xlptléi\.,,Tl»)c‘vsi!.uaiiq? "in iligbt“nuclei xs qn‘il.(- .
difi‘ercnt. During the vibratic}ns th;e}"q;li'ardrupoyl:c» (ﬁomcnt 'of_"’_"(}gti_s cllﬂang‘cdjfbron) 130fm2

to —250/m? (see the equipoteﬁtia] pur.\zc of fig.4 for 24 Mcﬂf). The respective quadrinpql(‘ :

Tl
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deformation 3 is changed from -0.30 to 0.43. “This is already a rather large amplitude

that does not allow the small amplitude approximation.

Let us also mention that the coincidence of the disappearances of the GQR around
“°Ca in our model on the onc hand and also on the experimental side may be a pure
accident. Indeed it is difficult to imagine that a realistic force produces a barrier in
quadrupole direction in a purely diabatic scenario neglecting on top of it the Coulomb
force. On the other hand we have seen that for lighter nuclei the deformations attained
during the-GQR are much stronger and thefefore also the deformations in momentum
space. The latter ones probably can easily become so large that particles are spilled into
the continuum what implies a strong damping from escape. This may also indieate the
end of a well defined GQR. In this context it would be very interesting to study the
potential of deformation energy in the purely diabatic case for a realistic situation. A

Concerning the transition probabilities, having formulae (84, 89) at hand , we are
able to calculate them for the various levels. For example, substituting into (84) the
values of a; and b&;, calculated for 2°8Pb with the input energy E=9.735 Mev, we find the
B(E2)-factors for GQR in the case of S-excitation:

B(E2,GQR) = 23.5 By = 1609.9 ¢* fm*.

This result is in qualitative agreement with other studies [46]. Repeating the calculations
with the input energy E=9.735+9.679=19.414 Mev and using a;, b; corresponding to twice
the energy of GQR (satellite), we get: \

o S B(E2,2xGQR) = 0.02 Bw = 0.9 10 B(E2,GQR).

So;‘the. B(E2)-factor of the double GQR is three orders of magnitude less than that of
the. GQR. The B(E2)-factor for the three-phonon state is six orders of magnitude less
than that of the GQR.

“Itis interesting to'compare the dependence of B(E2) factors of the GQR and double
GQR on the value of (the strength parameter of the quadrupolé-quadrupole mteractlon)
) ‘For example; taking & = 0.5xp,y, we find that'the B(E2) of the GQR is decreased by 1. 23
times, whereas that of the double GQR is decreased by 13.9 times. Further decreasing of &
(toO. IKBD]“) leads to the decreasing of the B(E2) of the GQR by 1.37 times (in comparison
with the case of x = KBohr), Whereas that of the double GQR is decreased by 735.6 times

e

40’

that means practically the,disappearahce of this excitation. . This is .the natural result
because the multi-phonon resonances existence itself is oryll'y‘(‘due to the anharmonic terni
of the Hamiltonian. The similar conclusion was done in the paper [48]: ” the inclusion of
small anharmonicities and non-linearities strongly enhance the exc1tatlon cross section of
the two phonon states without modlfylng much the popula.tlon of the one phonon state”.
The estimate of the B(E0) factor for GMR can be found in the Appendix A.
The authors of Ref. [49] found the deexcitation rates of the one- and two-phonon GQR

by using a microscopic approach with the Skyrme forces. The calculations were done for

40Ca only. Their results are:

W(GQR) = 0.6-10"%s7", _
: a1
W(2xGQR) =0.26-10" 57" ~ 3 W(GQR).

In our calculations the GQR energy of 4(’Ca is E(GQR)= 15 78 Mev. Using aj, b;,
calculated w1th the mput energy E=15.78 Mev, we e find ’

W{GQR) = 1.12- 10" s7%, ..

that is a.pproxuﬁa.tely ttventy times more than that of [49] Usmg the Founer coefﬁaents
a,,b of the 2E(GQR) satelhte calculated w1th the same mput energy E 15 78 Mev we
get
W xGQR) —8.92. 1015 o 2 W(GQR), “

/that is approximately forty times more than that of. [49] though the ratio W(2)/W(1) is
only off by a factor of 2. However, this. number has not much physical mea.nmg because
the double GQR energy 2E(GQR)= 31.56 Mev exceeds the barrier energy Ep ~25 Mev
and a stable two-phonon GQR in **Ca does not exist in our model(see_ the discussion after
fig.4) contradicting the experimental predietion [3]. This is quite similar to the situation
with the disa.pﬁea.ra.nce of GQR in’A<4O nuclei and we ‘spppose:that it is resolved by the
same considerations (see above). - 2

Of course, the barrier height depends on the forces used in ‘tl}e calculations, so it would
be interesting to repeat the calculations of the paper [49] for the harmonic oscillator with
the Q-Q residual interaction. In any case one should not expect the absolute coincidence

of the results because workmg in a coordmate spa.ce we treat a.ll 1nteract10ns exa.ctly,
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whereas the authors of {49] are compelled to do approximations in their approach (boson

representations of fermion operators):

6 Conclusions

Let us list the main results of the paper.

Two models with separable forces are considered. Sets of nonlinear dynamical equa-
tions for monopole Qoo and quadrupole @2, moments of nﬁclei are derived from the TDHF
equation by using the method of the Wigner function moments. The collective Hamiltoni-
ans, which generate these equations, are constructed. In accordance with general theorems
they are just the rﬁean values of the respective microscopic Hamiltonians. The new ele-
ment of our approach is the division of the standard variational procedure, described in
the introduction, in two steps. One derives at first the equation of motion for the density
matrix (or Wigner function). After it, taking the phase space moments of this equation,
one introduces the collective variables (the variational parameters p;, 7, menﬁoned in the
introduction), deriving simultaneously the dynamical equations for them.

. The classical ::ﬁd quantum aspects of the analyf;ically solvable one-dimensional mono-
\ }.;ole‘ inodel of Suzuki are revisited. It is shown that the anharmonicity-of the collective
.spectrum, being the specific property of quantﬁm systéms, cannot be observed in classical
_.ones. The choicé of the initial conditions, necessary for a quantization of the models, is
established. | | '

Ldrge amplitude vibrations of @2, and Qqo are described in the model of the harmonic
oscillator with the Q-Q residual interaction. The nonlinear equations of motion are derived

exactly, without any approximations. They are solved numerically. It is found that the
“functions Q24(t) and Quo(t) oscillate irregularly. The maximum amplitudes correspond
' tq the deformation parameter =~ 0.50. Their Fourier analysis exhibits giant quadrupole
: fmd monopole resonances and multiphonon states built-on them. The essertial features of
. the large amplitude motion manifest themselves by the coupling ovaMR and GQR and
: by the GQR splitting in spherical nuclei. The radiation probability of the two-phonon

- "giant quadrupole resonance:turns out ‘three orders of magnitude less than that of the

_“one-phonon GQR. The quantization of the model allows one to observe the spectrum’s

: anharmonicity that increases with the mass number decreasing. The analysis of the
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potential energy surface shows that tﬁe nurmbver of bound states in the collective potential
(or multiphonon excitations of’th‘e‘model) is aecrea:sed‘quickly with decreasing mass.
reaching zcro at A~40, i.e. the model predicts the disappearance of the GQR in these
nuclei. The experimental situation is more complicated; demonstrating the large decrease
of the collectivity of GQR in light nuclei and the real disappearance of this phenomenon'
in very light ones. So, an improveméht 6% the model is required. _ ’

The theory can be modified to take into account spin and isospin degrees of freedomn.
Then it will be possible to study spin and isovector collective modes .for the case of
large amplitude motion. Considering highér rank‘ tensors, one is able to describe low-
lying modes. The extension to the description of excitatigns of higher multipolarities is
straightforward. v ’

It should also be mentioned that the separable multipole-multipole forces considered
here lead to a bounded {time-dependent) mean field. This entails that the Fourier spec-
trumn only reveals discrete stal-;es. In a realistic TDHF calculation, such as it was per-
formed by Flocard et al [50], there i‘s very likely a strong céupling to the continuum
and the Fourier analysis may only yield a spectrum of strbngly"dverla;)ping resonances
of various multipolarities. Though such a spectrum may bear ‘some resemblance with an
experimental one, it certainly will lack quantization. On the other hand quantisation of

damped TDHF motion is to our knowledge an unresolved problem.
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Appendix A
In the case Q20(t) = 0 the system of equatiohé (55) is regi;xcrefd to more simple system

s m . TRt 1
%Qoo + ‘2—0’2qu —Keo =0, _

o Kee T Qa =00 s L (99)

that describes the giant monopole resonance. It can be solved ‘analytically. Second cqua-

tion gives the energy integral Koo(t) ;}-;%w?Qm(t) = F;-that allows to rewrite the. first
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equation as

m -
ZQoo +mw?Qe = E

It is evident that its solution has the following form: Quo(t) = ag + aycosSU + bysinit

Using it together with the initial condition Qoo(0) = 0 one gets:
mw?ey = E, b =0, (mw?* — m1?/4)a; = 0.

The last relation determines the frequency= 2 = %. The coefficient a, is determined
with the help of the initial condition Qeg(0) = ag + a; = E/(mw?) + a, and the integral
of motion (54), that in our case takes the form Q00(0)Ko0(0) = 9¢;. We have chosen ¢; =
mw?(Q58)?/18. So, one has: 2K0(0) = mw?(Q58)?/Qoo(0). Substituting this expression
into the energy integral Koo(0) + mw?Quo(0)/2 = E one obtains the quadratic equation
which allows one to determine Qgo(0) as a function of E, i.e. to determine the classical

turning points:

E E2
Qoo(o)lz—m 5 vy - (Q50)*

One ﬁnds from here that a; = :!:\/Ez/(mzw") —(Qo5)* Using this expression in the

formu]a (89) and taking into account the relation E,, = mw?QS one gets:

CB(EO) _ 2B Eh 27 [QR(0)— (@)«
By A amiot T AT 16Q,(0)

To estimate the numerical value of B(E0) one can use the Cambiaggio [18] self-consistency
condition £ — E.,=hrQ:

B(E0). Z® hQ 22k 2R AR

= — 2 A h37‘
"By, AZgmags (2 +hQ) > A7 ey 90 = Am 4l 5A2A2/3 Zosa

mb541

Taking ro = 1.2 one gets for °8Pb the value B(E0) = 5923 By = 471 €*fm* that is in
-qualitative agreement with other [46] calculations of GMR.
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