


1. Introduction

Theoretical tools to deal with many-body systems at finite temperatures were developed
long ago. But the observation in the early eighties of collective dipole oscillations in hot
nuclei up to temperatures of an order of several MeV [1] gave a strong impact on the
renewed interest in the field. Shortly after the dlscovery of a giant dipole resonance in hot ’
nuclei several theoretical investigations were performed where a linear response theory at
finite temperature was explored [2] . Later on more elaborated approaches were suggested
and applied to the problem of temperature dependence of the GDR width in hot nuclei [4].
A standard technique of treating quantum many-body systems at finite temperature T is
the thermal Green function (Matsubara) method. But in the early seventies an alternative
approach — the thermo-field dynamics (TFD) [5, 6] — was formulated. In the present
context TFD has at least two appealing features: a) temperature effects arise explicitly
as T-dependent vertices, providing a good starting point for various approximations; b)
generalization to the time-dependent situation is easy since temperature and time are
independent variables in TFD. Both the features allow for stra.ightfoﬁva.rd extensions
of well-established zero-temperature approximations, as it was already demonstrated in
[7, 8]. Recently, by the use of the TFD formalism a new approximate method going
beyond the thermal RPA (TRPA) has been proposed [9] to describe collective excitations
in hot finite Fermi systems. This method called the thermal renormalized RPA (TRRPA)
is an extension to finite temperature of the so-called extended RPA of Ken-ji Hara [10].

New approximate methods of a nuclear-structure theory are usually examined by
applying them to simple exactly soluble models in order to gain some insights into a range
of their validity. One of the widely used models is the two level schematic shell model,
which possesses the SU(2) symmetry and is often called-the SU(2) or Lipkin - Meshkov
- Glick (LMG) model {11]. This well-known model has been used many times to justify
approximate methods of the many-body theory at finite temperature as well. For example,
the works [7, 12] have focused on boson expansion methods apd symmetry breaking in hot
LMG-systems. The so-called mixed state representation has been formula.ted and then
applied to the LMG- model in refs. [13-16]). The thermal Hartree - Fock approx1matlon
(THFA) [15] as well as TRPA [16] have been studied within the approach. The THFA
and the static path approximation were also analyzed within the LMG- model in ref. [17]

In the present paper, we investigate the accuracy and the range of validity of TRRPA
by comparing it with exact calculations for the grand canonical ensemble with the LMG-
model. Moreover, a comparison with THFA and TRPA is also made.

The organization of the paper is as follows. Basic elements of the formalism of thermo-

11t is worthwhile mentioning that some aspects of collective motion in hot nuclei have also been studied
earlier [3}
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field dynamics are given in Section 2. In"Sectisn 3 a deri\}ation of tlie TRRPA equations
for the LMG- model based on the TFD formalism is presented. The necessary formulae
for the exact numerical grand canonical calculations with the LMG—model are given in
Section 4. The results of approximate methods and their compa.rlson w1th the exact ones
are discussed in Section 5. Section 6 contains the summary and brief concludmg remarks.

2. Thermo field dynam1c5° basic elements

To be more understandable whlle describing a.pprox1ma.te methods we brleﬂy reca.pltulate
_the formalism of thermo-field dynamics (see, refs.[5-7, 18, 19]). ,

The extension of quantum field theory to finite temperature requires the field degrees
of freedom to be doubled. In TED, the doubling is achieved by-introducing an additional
tilde space. A tilde conjugate operator A is assigned to an operator A (acting in ordinary
space) through the tilde conjugation rules

(AB) = AB; (aA+bB)=a"A+0bB,

where ‘A and B represent ordinary operators and . and b are c-numbers. The asterisk
denotes the complex conjugation. The tilde operation commutes with hermitian conju-
gation and any tilde and non-tilde operators are assumed to commute or anticommute

‘with each other. A double application of tilde operation changes a sign of a fermionic

‘operator and saves it for a bosonic one. The whole Hilbert space of a heated system isa

direct product of ordinary and tilde spaces. A formal quantity playing a central role in
the present discussion is the so-called thermal Hamiltonian

H=H-H

The operator H serves to translate temperature dependent wave fnnctions along the time

- axis. It means that an "excitation spectrum” of a hot system (or, in other words, a set : '

of energies corresponding to the thermal equilibrium states) should be obtained by the
diagonalization of H. ‘ ) -

The temperature-dependent vacuum |Ug(T')) is the eigenvectolr’of H with eigenvalne 0
» H|To(T))=0. -
If one determines the thermal vacuum state as

[To(T

@ n
\/ r(exp(—H/T)) Z 1),
where E,,|n) and |A) are eigenvalues, eigenvectors and their tilde counterparts of the
. Hamiltonian H, respectively, the expectation value (Uo(T')|O{¥o(T')) will exactly. corre-

spond to the grand canonical ensemble average < O >> of a given observable O.

. In practice, it is impossible to find an exact. thermal vacuum for a full Hamiltonian

..of a'many-body:system. In setting up apprOXImate schemes, _the usual sta.rtlng pomt is

‘the thermal mean-field approximation. In this case, the thermal va.cuum |\Ilo( )) lS an

eigenvector of the uncorrelated thermal Hamiltonian

HMFIO(T)—(HMF—HMF lo( T))__Ze. ata; — & a)m( ))=0. (1)

The solutions of eq. 1 define the va.cuum IO(T)) for so-called thermal quasiparticles 8,8
.;ﬂi;f’«;iai;yi&?v . » R
- Bg = Tia; + y,-a}" T ‘ ’ » ‘ (2)
Bl (Th= - Bl0(T)) =

The coefficients z;, y; are dependent on the therma.l Ferm1 occupotlon 'Prol?o.biliti:es of the

states a}|0) (|0) is a vacuum for. a;) - e
SR 1 C e
L E= Y 1-fi i \/f, f- = m P A(3)

Transformation (2) is a unitary transformation’ and thus conserves the commutation re-

lations. It is often called the.therma.l Bogoliubov,tra.nsforma.tion. "

3. Thermal renormahzed RPA with the LMG- model

Now we apply the TFD formahsm to evalua.te the TRRPA equa.tlons for the LMG- model.
A more general consideration of the a.pp1ox1ma.tlon can be found in refs. {9, 18].

We use the version of the LMG- model ‘with an interaction actlng between a pair of
particles with parallel spins only. The model system consists of N fermions distributed

over two levels with degeneracy @ (Q = N). The energy of the lower and upper level is

—¢/2 and +¢/2, respectively. Thus, the Hamiltonian has the form -

H,o=eli— —v (JJ,J+ +JJ0), (4)
where. the operators of quasnspm J . and its components J+, J_, J. ‘are deﬁned as follows
Jl =3 (J+J—' + J—'J+)_+t J_Z )

‘-

1 ‘ : N s
J.=5 a+‘12p—alalp) » Ji = Q03,015 Jo= Je) oo
2 2p P .
p=1 p=1

Indices "1” and "2" label the lower and upper levels, respectively, index p‘ enumerate:

the sublevels: ® -



The thermal model Hamiltonian ’H,_ o 18 equal to H o~ - H LG At the first step,
we like to formulate the thermal Hartree — Fock approximation. To this aim, we make a
unitary transformation D from the initial particle operators af;,, a;, to the Hartree - Fock

quasiparticle operators o}, aip [20]

a}, = Daa}, + Dacd, ' | (5)

* - N
aip = D, + Dy

and then the thermal Bogoliubov transformation (2) from a,& to thermal quasiparticles.
At T = 0 one determines the matrix D (5) ifl such a way that the ground state energy
“of the system (i.e. the a.vefa.ge of H,,,, over the HF vacuum state) is minimized.
Now we determine both the D and {z,y} transformations together under the condi-
tion for the system to be in the thermal equilibrium at T = const. It means that we have
“ to find a minimum of the free energy F = E —~ TS — AN (see, e.g. [14]), where E is the
intrinsic energy of the heated system and S is the entropy.
In accordance with the TFD prescriptions, the energy E is equal to the expectation
value of H,;Ma(ﬂ*',ﬂ,ﬁ’r,ﬁ) over the thermal vacuum state |0(T)) (see Sect. 2) If the

ceeﬂicients D are parametrized as in {20]
Dyy = Dyp = cos,  Diz = —Dyy = expliip)sin 6
- one gets the following expression fer E=(0 (T)|H IO(T))
E= —(y2 ) [cos 20 — X"(%——) sin 220 cos 299]

~_where xpo is the effective coupling constant

_v@e-1
R Xo = € )
The entropy of the system is
5=-20% (y *lny; + 22 Inz;) . (6)
1=1,2

" After vafiation of F over 0, ¢, z;,y; and X taking into account the constraints =} +y7 = 1,
one finds two different solutions depending on the value of the effective coupling constant
xo and temperature T »

The first solution (the normal phase) exists if x(T') = xo(fi — f2) < 1. It corresponds
to the followihg values of variables: ’

0=0,p=0,¢e(T)=¢,2=0,

2The tilde a and o operators are connected by the complex conjugate transformation D,

S

In the nornal phase the thermal ground state energy is

fia=yl, =

20 f, —
E= (f2 = fi)
2
and the Hartree - Fock pe,rt- of the whole thermal Hamiltonian H does not depend ou
temperature
Huypr ==z (B - B) .
where A

) _
1
-1 Z JE D — )

The second solution (the deformed phase) exists when \(T)

.\O(fl - f2) > 1

corresponds to the values of variables
cos 20 =\(T). o =0. (T)=\(T). A=

and

1
U4 exp(Fe(T)/2T)°
The energy of the thermal “deformed™ ground state is

_ Q- /i) 1
b= (‘7” (T))

In this 1(51111( the thnmdl Hdmu - Fock llannltonmn appears 1o ])( 1(mptmllu( -

Si2'= !/f,z =

dependent L
Hup = (1) (/3 - [3) .

The value of the chemical potential A is always (q1ml to zero ‘due to the synmetry of the
LMG-system (two levels only).

Thus, we have derived the th(u'nal Hartree - l()(]\ llamllt(mmn for the LMG- model
in different regimes. 1t is worthwhile n()lmg., that (\])l( ssion {6) for the (nll()])\ dll(d(l\
implies that we deal with a heated system of inde pen(l(nt HF quaslpaltl(ks So. it is not
a big surprise that we get ‘the traditional Fermi - - Dirac fouuulao (3) for & and y By
the way, one met the same situation while (\allmtmg, the founulae of the thermal BCS
approximation within the TFD formalism [7, 21, 22).

After extracting the Hartree ™ Tock part of the Hamiltonian (-1) we take into account

the interaction of thermal quasiparticles. For further studies we need only that part of



'H’_"r which consists of the terms with an even numbers of both creation and annihilation

thermal quasiparticle operators (aud th( lher mal HF part of course). Namely,

VUi — fa)(1 + cos 20)

[(.4+_4+ + AA) — (Z+,Z+ + ZZ)] +

4
V(fi — f2)sin220 o
LIz fa)oin 2 [ata-A+a] .
where
Q Q
At =) 8181 =Y BLA,-
p=1 p=1

The following exact commutation rules are valid for the thermal biquasiparticle oper-
ators A A+, A and A*:

4] Q
[A A+] =N- Z BBy — Z B, [ =N = BLBu— Y .
p=1 p=1

In TRPA the biquasiparticle operators A and A% are supposed to be boson operators.
With the present definition it means that in TRPA the corresponding commutator relation
is [A, A*] = N. Now in accordance with the idea of ref.[10] (see, also [9, 18]) we suppose
that o

[4,4%] = [4,4%] ;JV(l;,)1~p2)zN(1-2p). (8)

The p; are c-numbers and can be treated as numbers of thermal quasiparticles in the
temperature - dependent ground state |¥o(7T)). This state is not any more the ther-
mal Hartree - Fock vacuum state, since we involve into consideration the quasiparticle
interaction, and will be defined later. Thus,

Wo(T)|N?|Wo(T)) = (\I'o(T)IN”I‘I'o(T)),

N(

where N is the operator of the number of thermal quasiparticles Nﬁ

Yooy Bt Bip -

The thermal Hamiltonian (7) can be diagonalized in the space of two one-phonon

) st::).tes constructed as bilinear forms of the thermal quaslpa.rtlcle operators

QHYAT)) = (114" = &14) [Vo(T))
QF1%o(T)) = ($2A* - 424 [%o(T)). (9)

We deﬁne the wave function |¥o(T')) as the thermal phonon vacuum, i.e. Q1,2|%o(7T)) = 0.

In contrast with the thermal Hartree - I'ock vacuum state this new thermal ground state

state.

allows for some l\mds of thermal quasnpartlcle correlations. Also, the role of the Pauli
prmc1ple in its structure is ta.ken into account in a better way tha.n in the TRPA vacuum

The states (9) have to be orthonormal, and ta.kmg account of eq. (8) the followrngl
constraints on the amplitudes y and & are derived:~ :

- = N =2)]

The system of equations for ¢;, ¢; and the phonon frequencies w; is derived by the .

1=1,2.

equation of motion method. It appears that only a positive value of w; and a negative
value of wy are allowed under a requirement that the wave functions QF|¥o(T)) and
Q¥ |Wo(T)) are vectors of the Hilbert space. The eigenvalue - eigenvector problem has the

following solution:

2

Camwm - [ex(T)(1-2p>ﬁ?ﬁ3@]z,

,/,2___§i‘f__- 4,2___8__“’__.
LT oNw(1—2p)" 7' 2Nw(1—2p)’

wy = —Ww, 1/)§= ?5 ¢§=¢31
where  (T) (1~ 2p)sin?20
- oy XL s

To evaluate the equa.tlon for p we need an expresswn for the thermal phonon vacuum

state. The latter can be derived from the thermal qua.srpa.rtlcle va.cuum state IO(T)) by

a unitary transformation

‘ 1 ¢ .
= S S + a4+ + i+
[%o(T) = VRIS = 5755 (a*a* + A*A )
By the use of sta.ndard techmques of the operator calculus [10] we get
1 8 w ' R
. 10
= N (10)

It is interesting to note that in the ther'modynarnic limit, i.e. as N> 00, p vanishes
and the TRRPA equations are reduced to the TRPA ones. = -

4. The grand canonical ensemble calculations with
the LM G- model SR N U ,.

Our goa.l is to compa.re the results of the approxrmatlons described in Section 3 with the
exact calculations for the grand canonical ensemble. " In this section, the procedure for

exact evaluatlon of the gra.nd canonical partition functlon of the LMG~ model is descrlbed



The operators of a quasispin and its projec‘t‘io’n‘s\‘J‘i and J. form fhe SU(2) algebra.
and the quasispin operator commutes with H,, . 'So the Hamiltonian matrix breaks up
into submatrices ;. of dimension 2J + 1. The LMG- Hamiltonian can be diagonalized
in each of these subspaces independently. The corresponding eigenvalues are denoted by
E],Ej,...Ef;;,. They can easily be calculated analytically (for small N) or numerically
(see, e.g- [23]). o ’

To calculate the grand canonical partition function besides the eigenvalues E]. one
needs degeneracies of the irreducible quasispin representations ©, for different particle

pumbers from the range 0-< N <. 2Q0.. To determine the latter, we use the results
“of tef. [15]. The whole number of the ensemble states, i.e., the whole number of the
eigenstates of the LMG- systems formed by two Q- degenerated levels with a number of
particles varying from 1 to 2} is equal to 222 A particular distribution of given number
" of particles over two degenerate levels can be characterized by numbers v, and v; where
v, is the number of sublevels occupied by particles on both the lower and upper levels
and 1, is the number of sublevels occupied on neither the lower nor the upper level. The
quasispin J of the state is determined by the distribution of the rest of particles over
.97 = ) — 1y — vy sublevels. The number 2(r + v4) is equal to the number of particles.
" The dimension of the subspace of states with v; .occupied and v, empty sublevels is
21 There exist Q1/(27)lvylv,! such distinct subspaces for fixed 7 and v,. Each of them
~.may be decomposed into irreducible subspaces with fixed quasispin values ©, (appearing
. -once), O, (appearing gf times), ©,_, (appearing gj times), e s ©,_i (appearing g]
times),... , ©r_fr (appearing 90 times). Here

L (e (27)!
9= Hor—R) - (k—D)l2r—k+ )

and [r] = 7, if 7 is integer, [r] = 7 —1/2 if 7 is half-integer.

Thus, the exact grand partition function of our LMG ensemble is

Q! . EI7% —2(t + )X
Z(T)=7. m?gk‘zexp [——'—:,(1‘—)] (1)

The expressions for average energy, quasispin z-projection and the total fermion number
with Z(T) (11) can be found in refs. [15, 24].

5. Results and discussion

The numerical calculations are performed for the LMG- system with N =10 and £ =1,
i.e. we adopt € as an energy unit.

© .Let us consider first the dependence of w on T (Fig. 1). It seems appropriate to
- . distinguish two cases: a) xo < 1; b) Xxo > 1. A key for understanding a displayed

behaviour of w('l) is that in the present version of the LMG - model heating effectively
weakens the mtom(uon of parhclm since at T # 0 the’ effective coupling constant \p is
multiplied by a Lhcrmal factor f; — f2 < 1; hence \((T) < xo and ¥(7T') vanishes when
T — oc. In the case d) thc LMG- system is in the normal phase at T = 0 and stays there
when 7' — oo. Then w =5 ¢ with increasing T ducto vanishing of the effective interaction.
A picture is more (tompll(tat,cd il Yo > 1. Then, the LMG- system is'in tlie deformed
phase at T=0. In t}iisftilxésc thie distance between Siﬁglc—particlc levels is proportional
to V(fy — f2) and goes ‘down when teinperature inereases. As a result, the energy w of
the excited state goes down as well. But near the point "1'" = Zlu ‘ltz—t: ~ 1.0. where
the temperature dependent effective coupling constant x(T) = 1, the rearrangement of
the Hartree  Fock field (i.e. the phase transition) occurs and at 7' > T, the LMG-
system appears to be already in the noryal phase. Note that within TRPA the energy w
vanishes at 7' = T’ whereas within TRRPA w stays finite. With a further increase in 7'
w starts to increase and again goes to ¢ when T — oo, As one can see in Fig. 1, within
TRRPA the phase transition appears at a slightly lower temperature than within TRPA.
The reason for this will be discussed later on. ‘There is a noticeable difference between
the TRRPA and TRPA results only near the critical temperature, and at much lower or
higher T both the approximations give close results. A temperature dependence of w on
T within TRPA was also studied in [12]. 'The results are in complete agreement with the
present ones. The same is true for-the THFA calculations of refs. [15, 17].

Now we discuss T'-dependencies of the intrinsic energy (/) and the average value of
quasispin z—projcctioh (J.) as well as a particle number variance AN

The exact values (H, o) aens (Jzdacs and ANy, have been caleulated with the grand
canonical partition function (11). The expressions‘for (1), (J.) and AN-in TRRPA are
obtained by evaluation of the expectation values of the corresponding operators over the
thermal vacuum state |Wp(7)). While cvaluating (H);,,.54 the thermal Hartree - Fock
ground state energy # lias to be taken into account as well
S = LA = 2) f:))(l —2p) [€ = ex(T) sin 220]

+ (S—w)FE('I') +w) (fz =N+
2w 20f: - fl)

The expression for (H)me,; can be derived from (12) if one puts p = 0. The THIA

.

(11 )TRRI'A =

(12)

ground state energy 12 of both the phases has l)('olf'(‘valua'tvd in Section 3.

The results of all lhr(‘(‘ldpproxnndh(ms t()g.,(‘ih('r wnh the exact one are displaved
in Fig.. 2. lhrov lypltal cases are shown: .1) a weak coupling case \g = 0.5: b) an
intermediate (()uphnb case Xy = 0.95; ¢) a strong coupling case o= -L0. At \y = 0.5
the results of TRRPA, 'TRPA and THFA are ve ry close to cacli other and to the exact

one though formdlly tli¢ TRRPA curve is closer to the exact result. More interesting is



the case b) (it has alrcady been discussed in. [24] At xo = 0.95 the system is close to
the phase transition point..Here, the advantdges of TRRPA appear to be most evident.
The difference between the approxxmatxons 1s notlceable when T < 0.3 - 0.5 and again
with the increase in T, results of different, . a.pprox1ma.t]0ns approach the exact oric. In the
case c) the LMG- system is in the deformed phasc at T = 0. Although the interaction
is strong, the results of TRRPA, TRPA and THFA do not deviate far from each other at
T<T,
quasiparticle correlations and the other approximations give only minor corrections to
THFA. But in the vicinity of 7,, TRRPA is again the best approximation.

One could already notice that if xo > l,‘“;;ill the threc approximations predict the

. 1t means that already THFA is good cnough to allow for the main part of thermal

phase transition in the system with the increase in T'. The transition between the two
phases manifests itself as a break point of the intrinsic energy (H) in THFA and TRRPA
and as a singular point of this function in TRPA. Obviously, the phase transition does
not occur in reality, i.e. in exact calculations. This is quite a typical situation when
approximate methods are applied to study finite many-body systems. TIIFA, TRPA and
TRRPA predict phase transitions of different characters; also a quality of the description
of a system evolution in the vicinity of a critical temperature is different. It is more
clearly scen in Fig. 3, where a dependence of a heat capacity C on T for the three valucs
of yo is displayed. The heat capacity is calculated as a partial derivative with respect
C =0 < H > [|0T. At any value of xo the exact

heat capacity as a function of T has quite a sharp maximum at T' ~ 0.5. At the weak

to T of the intrinsic energy (12):

interaction casc all the three approximations describe C(T) well. But in the cases b) and
) all the approximations demonstrate much sharper behaviour of C in the region of the
maximurmn. Moreover, in the case ¢) maxima of approximate functions are at noticeably
higher temperatures than that of exact one. Note also that C(T) calculated within TRPA
has a singular discontinuity at T = 7, whereas the THFA and TRRPA heat capacities
have jump discontinuities only. .

As it is seen in Fig. 2c, the phase transition in TRRPA occurs at slightly lower T
than in TRIPA and THFA. In these two approximations the phase transition is at the
same value 7', because the rearrangement of the Hartree — Fock field and the collapse of
the TRIPA collective state are at the same value of x(T'). Within TRRPA a picture of
the phasc transition is the following. In the vicinity of T, one can compare the values of
(I, 1004 calculated with the two different mean field configurations corresponding to two
phases. [t-appears that the value of (/),,,,, corresponding to the normal phase remains
calculated with the deformed mean field at T < T,

is the critical temperature of the phase transition in THFA). In other words,

lower than the value of (If)
(here T

er

THRPA

within TRRPA the normal phase of the LMG- system survives in a larger temperature
range than within TIHFA or TRPA. This fact is intimately connected with the behaviour

10

e 2

of the collective state energy as a function of the couplmg constant. One cannot calculate
(HYrppa at x(T) > X.r because the value of w is imaginary there. But within TRRPA
it is possible because w remains real and finite at any value of x(T)

The expectatlon value of the operator J, is proportlonal to the difference of the
numbers of particles on the lower and upper levels of the system Hence, with the increase
inT J. — 0. But the behavnour of J, appears to be dependent on xo. The expressmns
for J, for the dlﬂ'cre'lt phases have the followmg forms

Qf2 - fn)(1 2p)

eﬂ(l - 2p)
V(- 1)

(Normal phase)

(Jedrrrra = ‘
(Deformed phase)

Note that within THFA and TRPA the expression for {J;) appears to be the same. In
the deformed phase (J,) does not depend on temperature. This seems to be the result
f2 (and hence
— N;) decreases but at the same time the difference of the energies of the

of the two opposite tendencies. With the increase in T' the difference fi —
the value N,
single-particle levels decreases (see the corresponding expression for &(T') in Sect.3) and
this compensates the first effect. .

As one can see in Fig. 4, the results of different approximations in the normal phase
(the cases b) and c) are very close to each other as well as to the exact one. The largest
difference between them is ~10% at xo = 0.95 and T < 0:1. Nevertheless formally the
results of TRRPA are in better agreement with the exact ones than those of TRPA (and
THFA). The worst agreement with the exact result is for the strohg' coupling case (Fig. 4c).
First, in the deformed phase the exact curve manifests quite a non-tr1v1al dependence
of {J,)gcr on T, which can hardly be approximated by the constant predlcted by our
approximate methods. Moreover, at T > T,

er?

i.e. in the normal phase, the exact value
The absolute value

of the difference beiween the approximate and exact results is also the largest for the

(J:)cp EO€s to zero faster than the approximate one {J;);pppa -

strong coupling case. In spite of these discrepancies one can ‘make a concluslon about a
qualitative agreement between the exact-and approximate results in this case too.

The expression for the particle number variance ANygqp, is
ANpppp, = V2N fif2(1 — 2p) -

This expression is valid bothin the normal and deformed }')ha.se."While evaluating the
)IN?|Wo(T)),

where N is the particle number operator in the ordinary space. This matrix element was

above formula we face a difficulty to calculate the matrix element (Wo(T

expanded on the TRRPA phonon (9) basis. Then, in this expansion only the phonon

vacuum and two—phonon terms were taken into account [25]. The two-phonon terms give

11



a' correction of an order of ~ {2p. A cvoriltr'iblliidli\ of leilr—phonon and even more complex
terms seems to be small. o S : )

The results of calculatlons of AN are presented in an 5. In the cases of weak and
mtermedlate couplings the difference between exact and approxnmated results is neghg)ble
(2-3%), though formally the TRRPA curve is closer to the exact one. In the strong
coupling case the exact and approxnmat results differ noticeably only in the vicinity of
T.,. Here, TRRPA works evidently better than the other two approximations (their
results coincide with each other). From the expression for AN one can see that in TRPA
and THFA the particle number fluctuations haye only the thermal origin (we deal with
the grand canonical ensemble). At the same time, within TRRPA quantum fluctuations
exist as well. Note that quantum fluctuations sl1ghtly damp thermal ones. The reason
for this destructive interference of the two types of fluctuations seems to be the Pauli
pr1nc1ple The nonvanishing p values mean that the single-particle levels ‘are already
partlally occupied and this is an obstacle for their thermal feeding with the increase in
temperature. But the link between the quantum and thermal fluctuations appears to be
quite intimate because, when T — 0 the particle variance vanishes, i.e. the quantum

fluctuations disappear together with the thermal ones.

6. Concluding remarks

“The thermodynamlc properties of the Hamiltonian of the two-level model of Lipkin,
Meshkov and Glick have been calculated with the approximate methods of a many- -body
Ttheory at finite’ temperatures and compared with the exact grand canonical calculations.
"The equatlons of the approximate methods - TRRPA, TRPA and THFA - have been
'evaluated with the formalism of the thermo field dynamics. :
~On the whole, the TRRPA results are in better agreement with the exact ones than
the results of TRPA and THFA. This is most evident when the system is in the vicinity
"ofv the phase t’fé;nsition point. Actually, the exact calculations do not demonstrate the
phase“trensition"and its appearance is a result of the approximations. But among the
approximations studied in the present work the TRRPA curves agree with the exacl
.calculations near the point of rearrangement of the thermal Hartree - Fock field better
.-than the other ones. At the phase transition point the heat capacity has only a jump
: dlscbntinuity in TRRPA whereas it has a singular point (as well as (/I)) in TRPA. Though
_‘in THFA C(T) has also a jump discontinuity, TRRPA produces much better agreement
for the absolute values of (H) above the phase transition. ‘
The main reason for these TRRPA advantages is allowance for a nonvanishing numb( r
.of the thermal quasiparticles in the TRRPA thermal ground state. Due to this, the role
of the Pauli principle is taken into account more properly than in the standard TRPA.
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Fig. 1 The energy w of the lowest excited state as a function of 7 for two values of the
effective coupling constant xo = 0.95 and yo = 4.0. Notation: the TRRPA results
-- solid lines; the TRPA results  dashed lines.
0-
-1
2.
-34

<H>
1
(4]

Iig. 2 'The intrinsic energy (/) as a function of temperature 7" for three values of the
effective coupling ('Qnstanly'r}) xo = 0.5; b) vo = 0.95; ¢) vo = 10, The exact

results (the grand canonical ensermble ('.%xl('.ulations) ~open ('ir(‘l,("s: lh(-‘ THI results

~ short-dashed lines; the TRPA results long-dashed lines: the TRRPA results

solid lines.
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A B

Fig. 3 The heat capacity C as a function of temperature 7' for three values of the effective

coupling constant a) xo = 0.5; b) xo = 0.95; ¢) xo = 4.0. For notation, see Fig. 2.

07"

<Jz >

F‘i’g. 4 'l'vh(: average value of the quasispin projection (J,) as a function of temperature T
‘fo‘r’itlknr'ck(: values of the effective coupling constant a) xo = 0.5; b) xo = 0.95; ¢)

’ ‘ "Xo = 4.0. For notation, sce Fig. 2.
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¥

Fig. 5 The particle number variance AN as a function of temperature T. For notation,

-

see Fig. 2.
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As a rule, the p value is not large but it reaches the maximum near and at the phase
transition point (see (10) and Fig. 1), and this explains our results. Also, the shift of
the phase transition temperature in TRRPA as compared to TRPA (and THFA) seems
to be a quite interesting result. This shift pushes the maximum of the heat capacity in
the right direction (Fig. 4c). With increasing T and N, results of all the approximate
methods improve rapidly and at T > 3¢ the difference between exact and approximate
results is invisible.

The approach of Ken-ji Hara [10] that was extended to finite temperatures in the
present work is one of the simplest and well-kiown approximations going beyond RPA.
The RPA approach has known many other generalizations over the past decades. The
renormalized RPA proposed by Rowe [26] was already more elaborated than that of
ref [10]. Many other papers can be pointed out as well [27, 25, 28} and this list of
references is obviously not complete. Most of the improvements suggested in the cited
papers have not yet been considered for hot Fermi - systems with only a few exceptions
[18, 19, 28]. We suppose to continue our efforts in this direction. '

The authors acknowledge an important contribution of Dr. D.S. Kosov at the early
. stage of this work and are grateful to him for his interest and correspondence. The
comments of Prof. P.Schuck to the first version of this work are appreciated. The work
‘was partially supported by the Council of President of Russia on grants and support of
leading scientific school and RFBR (grant of RFBR 96-15-96729).
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