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1 Introduction 
In the standard model (SM) of the electro-weak interactions the baryon B and lepton L 
numbers conservation is protected to all orders of perturbation theory by an accidental 
UJB X u!L symmetry existing at the level of renormalizable operators. In the minimal super
symmetric (SUSY) extension of the standard model (MSSM) [1) this symmetry is absent 
and the L and B violating processes are not forbidden. A conventional way of eliminating 
the phenomenologically dangerous L,B-violation in this case exploits a discrete symmetry 
known as R-parity (2), (3) which is imposed on the model. This is a mu1tiplicative Z2 

symmetry defined as Rp = ( -1 )3B+L+28 , where S, B and L are the spin, the baryon and 
the lepton quantum numbers. R-parity conservation has a distinctive phenomenology. It 
prevents lepton and baryon number violating processes, the superpartners are produced 
in associated production and the lightest SUSY particle is stable. The latter leads to the 
celebrated missing Er signature of the SUSY event in high energy detector and renders 
a cold dark matter particle candidate. Although desirable for many reasons the R-parity 
conservation has no ~ell motivated theoretical grounds. 

On the other hand relaxing the R-parity conservation we may get a new insight into the 
long standing problems of particle physics, in particular, to the neutrino mass problem. 
Remarkable, that in this framework neutrino can acquire the tree level supersymmetric 
mass via the mixi~g with the gauginos and higgsinos at the weak-scale [3), [4)-[7) .. This 
mechanism does not i~volv:e the physics at the large energy scales M;nt ~ 0(1012GeV) in 
contrast to the see-saw mechanism but relates the neutrino mass to the weak-scale physics 
accessible for the experimental searches. 

The R-parity can be broken ($,p) either explicitly [3) or spontaneously [8). The first 
option allows one to establish the most general phenomenological consequences ·of R-parity 
violation while a predictive power in this case is rather weak due to the large number of 
free parameters;· Spontaneous realization of $,p SUSY is· much· more predictive scheme 
leading to many interesting phenomenological consequences [9). However,' it represents 
a particular model of the R-parity violatidn. At present it is an open question which 
underlying high-energy scale physics stands behind the R-parity, protecting or violating it 
at the weak scale. · . . 

Many aspects of the $,p SUSY models in high and low energy processes had been 
investigated in the literature [3)-[14), [16)-[20). 

Recently, a growing interest to the supersymmetric models without R-parity was stim
ulated by the exciting news from the HERA experiments, reported the.anomaly in deep in
elastic e+p-scattering [15) which can be elegantly explained within these theoretical frame-
work in terms of the lepton 'number violating interactions. . 

Since the lepton numbe~ is not conserved without R-parity some low-energy exotic 
processes become possible. within the $,p MSSM. Among them th~ rie~trinoless nuclear 
double beta decay (Ovf3f3) is· known to be very sensitive· to the certain ·Jj(; interactions 
[18). Provided an unpreced~nted accuracy of the modern Ovf3f3~decay· experiments [21) 
this allows one to establish stringent constraints on the $,p SUSY [16)-[20). . . · 

In the present paper we consider the implications' of the bilinear lepton-Higgs $,p terms 
on Ovf3{3-decay. In the ge~eral case of the explicitly .broken· R-parity these terms are 
present in the superpotential and in the soft SUSY breaking potential. Previously the 
main attention was paid to the phenomenology of the trilinear $,p Yukawa couplings. It was 
widely believed that the bilinear $,pterms can be rotated away by a proper.field redefinition.· 
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However, it is not the case in the presence of the soft SUSY breaking interactions [6], [9). 
It was realized that the bilinear~ violation, generically leading to the non-zero vacuum 
expectation values (VEV) of the sneutrino fields and to the lepton-gaugino-higgsino and 
slepton-Higgs mixing, provides a number of interesting phenomenological issues [4}-[7], 
[11)-[13). 

In particular, this mixing generates the new effective lepton number violation operators 
which contribute to the nuclear Ov(3(3-decay. In what follows we derive these operators 
and analyze their net effect in the presence of the nuclear media. 

The paper is organized as follows. Basic ingredients of the ~ MSSM with the general 
setting of the explicit R-parity violation are ~hartly descril:ied in Section 2. In Section 
3 we discuss the bilinear ~ mechanism of t}{e nuclear Ov(3(3-decay. Here we analyze all 
the tree-level ~ MSSM contributions to the Ov(3(3-decay amplitude. We start with the 
quark level and derive the corresponding low energy effective Lagrangian. In Section 4 
we take into account the effect of nuclear structure and derive the corresponding nuclear 
matrix elements. Then we calculate their values within the renormalized Quasiparticle 
Random Phase Approximation (pn-RQRPA) [22). The pn-RQRPA is an extension of the 
pn-QRPA by taking into account the effects of the Pauli principle for the fermion pairs. 
In this approach the sensitivity of the nuclear matrix elemen_ts to the details of the nuclear 
Hamiltonian is reduced considerably. Using experimental lower bound on the 76Ge half-life 
we extract in Section 5 stringent constraints on the 1st generation lepton-Higgs mixing 
mass parameter and on the electron sneutrino VEV. We close our discussion with the short 
comments on some implications of these constraints for the other experiments. 

2 Minimal SUSY model with R-parity violation 

In order to set up our notations let us briefly recapitulate the main ingredients of the 
minimal SUSY standard model (MSSM) with explicit R-parity violation (~ MSSM). 

The .Rv violation is introduced into the theory through the superpotential and soft 
SUSY breaking sector. 

For the minimal MSSM field contents the most general gauge invariant form of the 
renormalizable superpotential reads 

W = Wn.+W$.· 

The Rp conserving part has the standard MSSM form 

Wn. = hLHtLEc + hvHtQDc + huH2QUC + p,H1H2. 

(1) 

(2) 

Here L, Q stand for lepton and quark doublet left-handed superfields while ec, uc, De for 
lqJton and up, down quark singlet superfields; H1 and H2 are the Higgs doublet superfields 
with a weak hypercharge Y = -1, +1, respectively. Summation over the generations is 
implied. 

The Rp violating part of the superpotential (1) can be ~ritten as [2), [3) 

W$. = A;j~.:L;LiE'fc + >.:;~.:L;QiD'k + p,;LiH2 + >.;j~U;cD'jD'k, (3) 

The coupling constants ).. (X') are antisymmetric in the first (last) two indiees. The first 
two terms violate lepton number while the last one violates baryon number conservation. 
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Another source of the R-parity violation is the soft supersymmetry breaking part of 
the scalar potential. It contains the ~-terms 

soft- ---c -,.---c _1/_c_c_c --
V$, = A;;~.;L;L;E~.: + A;;~.:L;QiDk + )..iii.:Ui DiDk+ p,;L;H2+ 

2 :.. ' t 
+mLHL;H1 + H.c. 

(4) 

The simultaneous presence of lepton and baryon number violating terms in Eqs. (3), (4) 
(unless the couplings are very small) would cause unsuppressed proton decay. Therefore;· 
either the lepton or the baryon number violating couplings can be present. There may 
exist in the theory an underlying discrete symmetry such as the B-parity [3), [23) which 
forbids dangerous combinations of these couplings. Henceforth we simply set X' = 5." = 0. 

The remaining R-parity conserving part of the soft SUSY breaking sector includes the 
scalar field interactions 

v~;tt = L m;l,hl2 + hLALHtLEC + hvAvHt{Jjjc_ (5) 
i=scalars 

-huAuH2QUc- p,BH1H2 + H.c. 

and the "soft" gaugino mass' terms 

1[ -- -~.:-k ] CaM = -2 M1BB + M2W W + M3gaga - H.c. (6) 

As usual, M3,2,1 denote the masses of the SU(3) x SU(2) x U(l) gauginos g, W, B while 
m; stand for the masses of the scalar fields. The gluino g soft mass M3 coincides in this 
framework with its physical mass denoted hereafter as m9 ~ M3. AL, An, Au and Bin 
Eq. (5) are trilinear and bilinear "soft" supersymmetry breaking parameters. All these 
quantities are free SUSY model parameters which due to the renormalization effect depend 
on the energy scale. 

In this paper we assume for simplicity the universal gaugino soft masses at the grand 
unification scale Maur- At the weak scale this leads to the following relations 

M1 = (5/3) tan B'fvM2, M2 ~ 0.3M3, (7) 

An impact of the R-parity violation on the low energy phenomenology is twofold. 
First, it leads the lepton number (LNV) and lepton flavor (LFV) violating interactions 
directly from the trilinear terms in W$.·. Second, bilinear terms in W$. and in v;:tt 
generate the non-zero vacuum expectation value for the sneutrino fields (ii;) i= 0 and cause 
neutrino-neutralino as well as electron-chargino mixing. The mixing brings in the riew 
LNV and LFV interactions in the physical mass eigenstate basis. Below we will specify 
those interactions which are relevant for the Ov(3(3-decay. 

The trilinear.terms of the R-parity breaking part of the superpotential W$, lead to the 
following IlL = 1 lepton-quark operators 

£>. = A;;~.:[ii;LCkPLej + ejLCkPLVi + e~.:nejPRV~ ;_ (i ++ j)) + 

+ A:jk(ii;L(ikPLdi + djd•kPLvi + d~.:ndjPRv~ - e;LdkPLUj 

uid~.:PLei - d~.:RiiiPReiJ + H.c. 

Here, as usual PL,R = (1 ~ /s)/2. 

3 

(8) 



The presence of the bilinear terms in the Eqs. (3),(4) leads to the terms in the scalar 
potential linear in the sneutrino fiel~s ii;. As_ a result, at the minimum of the potential 
(ii;) =/= q. Thus1 the MSSM ':.ert~ces Zvv and Wei/ create the gaugino-lepton mixing mass 
terms Zv(ii), We(v) (with W, Z being wino and zino fields). Combining this terms with 
the lepton-higgsino J.L;L;H1 mixing from the superpotential Eq. (3) we end up with 7 x 7 
neutral fermion and 5 x 5 charged fermion mass matrices (see Appendix A). The mass 
eigenstate fields can be written in the form 

~ ,T,I 
\lf (O)i = ::.;j '>' (O)j> w <±>• = .tl.t w(±Jj, 

with the weak eigenstate fields in two compon~nt notation 

\lf~) = (v;, -i>.', -i>-.3 , if~, fig), 

\lf~) = (e£, J.L£, r£, -i>._, ill), 
w'r (+) = (e!, J.L!. rt, -i>.+, Hi). 

(9) 

(10) 

(11) 

(12) 

Here v; are the neutrino fields, >.' and >.3 , ).._ are the U1v and SU2L gauginos, respectively 
while higgsinos are denoted as iiP,2, flt2 - The mixing matrices 3 and .6_± diagonalize 
the neutralino-neutrino and the chargino-charged lepton ma£?.s matrices respectively. The 
lightest mass eigenstates are identified with the physical neutrinos and the charged leptons. 
Remarkable, that as a result of the minimal field content and the gauge invariance the 
neutral fermion mass matrix Mo (A.4) before diagonalization has such a texture that its 
first three rows and the last one are linearly dependent and, as a result, two neutrino mass 
eigenstates are degenerate massless states. The third neutrino state acquires the tree level 
mass which approximate form is (see Appendix B) 

= ~ giM2 IAI2 
mv 3DetMx ' 

(13) 

It is natural to identify the massive neutrino state with the.tau neutrino vT while the 
two massless states with the Ve and vi" The Ve- Vp. mass degeneracy is. lifted by the 1-loop 
corrections as well as by the non-renormalizable terms in the superpotential giving to ve,p. 
the small non-equal masses [7]. As to the tau neutrino mass in Eq. (13) it is subject to 
the experimental constraint mvr S 23MeV [24]. Assuming no cancellation in Eq. (13) this 
leads to the upper bounds 

J.L; ::S 15GeV, (v;) ::S 7GeV. (14) 

at the typical sample values of the MSSM parameters J.L rv M2 rv Mw. Of course, these 
·bounds are only indicative and may essentially vary from point to point in the MSSM 
parameter space. 

The mvr constraints can be evaded assuming an approximate·alignment between two 
vectors a; = (JL;, J.L) and b; = ( (ii;), (Hp)) which leads to the cancellation in Eq. (13) since 

IAI2 = li.W lbl2 ~ (a. b) 2. This might be guaranteed by a special global symmetry [5] or 
by some dynamical reasons [4]. . 

Rotating the MSSM Lagrangian to the mass eigenstate basis one obtains the RPM 
generated lepton number violating interactions which bring many interesting implications 
for the low and high energy phenomenology. Below we are studying they contribution to 
the Ovf3{3"decay. 
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3 LH-induced Ov,8,8-decay. Quark level transitions 

We have analyzed all the possible tree level nmtributions to the Ov/3.8-decay amplitude 
which include the RPM interactions and the superpotential >., >.' couplings from Eq. {8). 
The leading diagrams arc presented in tlw Fig. 1. The diagrams in Fig.1(a.b) incorporate 
only the RPM generated vertices, and in Fig. l{c.d) these vertices are accompaniPd by 
one >.' type vertex (on the top of the diagrams). The diagram in Fig. 1{a) ha.~ in th~ 
intermediate state either neutrinos or netitralinos and two \V-bosons while the diagrams 
in Fig. 1{ c ,<I) neutrinos. squarks/selectron ami" one \V-boson. The diagram in Fig.l(b) 
is mediatPd by tlw gluino and double squark exchange. The diagram Fig. 1(a) with the 
neutrino !~xchange is the conventionall\Iajorana n(•utrino contribution to the Ov,th:i-deca~·. 
Recall that in the 1/ll' 1\ISSI\1 with the bilinear R-parity violation the neutrino Ill<l.~ses ami 
mixing angh~s an• deriwd at. the tree level in terms of Jl;, (v;) and the l\1SSI\I parameters 
(sec Appendix A). Therefore. this contribution inh(•rently pertains to this model. \\'e 
did not include in this list those diagrams which do not contain RPI\1 vertices. These 
diagrams constructed of the >., >.' couplings were previously analy;r,ed in Refs. [16]-[20]. 
All the other diagrams in this order of pertmbation theory have extra suppn•ssion factors 
and, therefore, can be neglected. The suppression factors originate from t.l)(' smallness 
of neutrino mass, when it appears in a positive power, from the bt gen<'l'ation left-right 
sfermion mixing proportional to ·m,.,c~,,,f Jll,.msl· and/or from the fennion-sfermion-higgsino 
couplings proportional to m,.,d, .. / !lin· with mu.d.c IH'ing the u,d quark and t.IH' Plectron 
masses respectively while 111susy denotes the typical SUSY breaking ma .. ~s scalP. 

Now let us specify those RPM generated operators which arc cncomttet'('(l in till' dia
grams in Fig. 1. They are 

r _ 92 . H/'-- 1•p . ·+ (1r.) 
LLff-- J2h:,.n 1, C"'f LXn d 

~ (rod-· P l t-· N"- P " - 'J"- P c - ;-p ,. ~- ) H +YL.92 'kv• Jl!.l h•'+'~-'kvk J{U.· u.,_-+i'k;Vk uc-,cL,+o.;u J!C r,: + .r: .. , 

The subscripts k, i denote generations. 
The first term is generated from the standard model ~V -c-v and the 1\ISSI\1 H ·- \ ±- \ 

interaction terms while the rest originates fromthe MSSM neutralino (chargino)-fennion
sfermion interactions X- q- ij, x±-q- r} (for the MSSI\1 Lagrangian see [1)). 

Note that the trilinear fermion-sfermion couplings in LU£ are not present among thl' 
superpotential trilinear>.,>.' terms in Eq. (8). 

The coefficients in Eqs. (15} dep"end on the mixing matrix elenwnts int.r()(htced in Eq. 

(9): 
:1 

/)~ 1 I 
"' \ - -· 0 \ - -· ~- -· L- ~lj.::.n+:l . .i + V ~-l.l-l.::.u+:t.:, + tr,.::.,+:~.t>- (Hi) 
j=l 

;ii; - ~~~1 3!-i + ~ (tan011 .3, .. , + 3H,) .5;,. 
v~ ~ 

J:lt -~ (t.atdJ11.3u + :l3kr.). 

;ii' 
I l" _ • I , 

-:~t.an, 11·::.u. ~=- J!.~~,. 

In what follows, for the derivation of the constraint~ on parameters (i•;} .. Jt; dtar;u·tl'rizin~ 

the bilinear $1' we employ the approximate analytical diagonali:.mt.ion ml'thod of 1 h1• Hl'f. 
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[12). It allows one to represent the mixing matrices in a convenient analytic form and ex
press the dependence of the coefficients in Eqs. (16) on the afore-mentioned $pparameters 
explicitly. In the leading order in small parameters JI;/Mz, (v;)/Mz we obtain 

lin ~;kN~k- .J2~f,N~2- ~f2N~3, (17) 

f3'k; 1 cL V(v)• 1 V(v)• ( (} c• • ) < ../2"11 ik - 2 1k tan W"i' + ~i2 ui!, 

f3i: ~v};>· (tanew~;, + 3G2), 

f3t 1 (} V(v)• • ( 1 L 
-3 tan w Jk ~Jl, = M"~ll· .,, v2 

The notations used in these formulas are explained in Appendix B. 
The MSSM gluino-quark-squark vertex in the diagram Fig. 1(b) is described by the 

Lagrangian term 

A(a) 

£9 = -v'2g3 ;ll ( ij0 PR[J(a)ij~- if' PL[J(a)q~) +h. c., (18) 

Here A(a) are 3 x 3 Gell-Mann matrices (a= 1, ... , 8). Sup~rscripts a, (3 denote the color 
indices. 

The diagrams in Fig.1 describe the $p SUSY induced quark transitions which pro
ceed in the nuclear media and trigger the nuclear Ov(3(3-decay. Our goal is to derive the 
corresponding half-life for a certain isotope assuming for simplicity that there is no other 
contributions to this nuclear process. In order to apply the standard approach [18), [20), 
[25) based on the non-relativistic impulse approximation one has to derive first the ef
fective low energy Lagrangian describing the basic Ov(3(3-quark transition dd--+ uuee in 
terms of the color singlet quark charged currents which can be embedded then into the 
corresponding hadronic (nucleon or pi-meson) currents inside a nucleus. One has also to 
separate the short and long ranged parts of the quark level transition operators since they 
are treated within this approach in different ways. It is understood that the short ranged 
parts involve only heavy particles in the intermediate states (x, x±, w, ij, e) while the long 
distance ones include the neutrino exchange. 

Integrating out the heavy fields from the diagrams in Fig. 1 and carrying out Fierz 
reshuffling we obtain the desired effective Lagrangian which allows one to reproduce the 
low energy contribution of these diagrams in the first or in the second order of perturbation 
theory. It takes the form 

LeJJ(x) = 
2
:-P [1]_g(J J- ~JI"' lpv) + 1Jx]l-'jl-'] (ePRec)- (19) 

v'2.GFA;11 · TJiki) · (vkPRec) J + GFV'i(e!~-' PLvk)~~) lw 

Here we introduced the color singlet quark currents 

J = u" PRdo, ]1-'" = U0a~-'" PRdo, jl-' = U0!~-'PLda, (20) 

The effective parameters TJ accumulating the dependence on the initial $p SUSY para
meters are defined as 

T/ij 
4 2(2 ( ) 4 1l'O's 92 m. . - ""' m. 2- m. 
---2--4- -- • TJx - L...J --. "'; = -. -, 

9 GFT(LJ mg i=l mx, . (mx) 
, . L ' - .. . , .. : •' 

. (21) 

6 .. ' 

u - u d 

d --~--c e 
w -.e 

d 3 __ ~--c: v, xo I -e 
w u d 

(a) (b) 

d __ _____,..d.---( : 
d e,u 

ii,e u,e 

v v 
e ·e-

w w 
d u d u 

(c) (d) 

Fig.l.: Feynman graphs contributing to neutrinoless double beta (Ov(3(3) de
cay for the case of the bilinear R-parity violation. (a) the Majorana neutrino or 
neutralino exchange with two accompanying W-bosons; (b) the gluino-squark
squark exchange; (c,d) the neutrino-squark/slepton exchange with one accom
panying W-boson. 
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TJiki) = _!!2_ (2 !3'/.; - {3~ b;, - {3'1; b;,) . 
2Qp m;;Li mdn muL 

Here m 9, mq and mx, are the gluino, squark and neutralino masses. 
In the $pMSSM we have for the neutrino mixing matrix element (see Appendix B) the 

following expression 

v;.~> = b,k cos(} - bak sin(} {22) 

with 

sinB = -AI/JAJ. (23) 

In Eq. (19) the first and the second terms teproduce the contribution of the gluino Fig. 
1 (b) and the neutralino Fig. 1(a) exchange graphs in the 1st order of perturbation theory 
while the third and the last terms reproduce the contribution of the neutrino exchange 
graphs in Fig. l(a) and Fig. 1(c,d) in the 2nd order of perturbation theory. -rote, that the 
last term in Eq.(19) is the ordinary lepton-number L conserving standard model interaction 
term. Since the Ov{3{3-decay requires the L-violation .6.£ = 2 the neutrinos in Fig. 1 (a) 
propagate in the Majorana lepton-number violating mode. In this case the source of the 
L-violation is given by the neutrino Majorana mass term. That is why the contribution 
corresponding to this diagram is proportional to the neutrino mass or, more precisely, to 
the average neutrino mass (mv) defined below. On the contrary, the neutrino exchange 
diagrams in Fig. 1 (c,d) are not proportional to (mv) and survive in the limit mv = 0 since 
the lepton-number violation.6.£ = 2 is produced by the interaction term vPRCC in Eq. (19) 
itself. Therefore, th~ neutrinos in diagrams Fig. 1 (c,d) propagate in the L-conserving 
Dirac mode. 

So far we concentrated on the Ov{3{3-transitions at the quark level described by the 
effective Lagrangian (19). The aim of this paper is the calculation of the amplitude for the 
nuclear Ov{3{3-decay taking into account nuclear structure. 

The next section deals with the derivation of the amplitude for the nuclear Ov{3{3-decay 
triggered by the quark transitions in Fig.l. 

4 Nuclear Ov{3{3-decay 

Let us write down the following formal expression for the amplitude of Ovj'if:l-decay 

< (A, Z + 2), 2e-JS- 1J(A, Z) >= (24) 

= <(A, Z + 2), 2e-JTexp(i j d4x£eJJ(x)]J(A, Z) > 

· where th~ effective Lagrangian Leff is given by Eq. (19). The nuclear structure is involved 
via the initial (A,Z) and the final (A, Z+2) nuclear states having the same atomic weight 
A, but different electric charges Z and Z+2. The standard framework for the calculation 
of this nuclear matrix element is the non-relativistic impulse approximation (NRIA) [25]. 

It is straightforward to derive the following formula for the amplitude of the o+ -+ o+ 
transition with two outgoing S-wave electrons 

Rov{3{3(o+ -+ o+) = Covf~e(l + "Ys)ec X (25) 

[ 
, {kl) {v) mp < mv > ] 

TJiiM!i + AmTJA v;.k MA + MN + ---Mv , 
< mx > me 
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The normalization factor is 

Cov = (G}2m.)/(8J21l-R). {26) 

Here, m, ami J..1 ~ 1.261 are the electron mass and the nucleon axial eoupling, R = r 0 A 113 

is the nuclear radius (ro = 1.1/m). 
The last term is the conventional 1\Iajorana neutrino mass contribution proportiona:J 

to the average neutrino mass. In the 1/{p 1\ISSI\l WP have 

{v) 2 _ ( {v))2 = ~ g~JI12 A2. 
(mv} = L mv, (v,i ) - lllvT VJ:l 3 Dctlll, I 

I 

(27) 

Here we neglected the small loop induced neutrino masses mv,. ~ mv,, ~ 0 and used Eq. 
(22). 

Let us specify the nuclear matrix dements involved in the formula for the Ov~:I.L:i-decay 
amplitude (25). They are 

Mii 

Mv 

MA 

MN 

2 

(
rn ) m, (1\l + 1\I -) _A ___!_ (;'J',!i T,y • 
rnp m,. 

2 

(j~) MJ-'. 1,- Mc:T.v· 

O:p [~MGT .. \+ MT.A]' 
rn,.R 3 

(rn.,•)
2 

111
'1' { (h-) 2 

MF,N- MGT.N }. 
m.P m,. f..1 

(28) 

Here mp and me stand for the proton and electron nwsses, fv ~ 1.0 is thl' \"<•ct.or mu·leon 
constants, mi= 0.85GcV to be defined below. The coefficient np = 1.75 is rdat.Pd to thl' 
nucleon matrix clement of the pseudoscalar current.. Its nunwrkal value calculated in t.IH· 
quark bag model we take from Ref. [18]. 

The partial nuclear matrix elements in t.lw closure approximation we writ.l' down in t.IH' 
form 

( R )"' MF,i = (OJl·l:r,;t'r1;t' F;(r,!J) :;- Jon. 
nfl1 a/1 

( 
R ).s, 

Mc:T,i = (OJ I LT,; r/ 9;(r .. b) :;- C7ul• JOt). 
ai=l' nb 

(29) 

( 
H ).s, 

MT,i = {OJ I L r,;tr,; T;(r .. t,) :;- S .. t. JOt}. 
u#-b 11b 

where i = ,ij, >., N, v. The exponent. takes the values Ji = {1. 0,1, 0}. We use t.hP shnrthaud 
notations 

F; 

gi 
{0, 0, FN(xA), h+(r· .. t.)}, 7i = {FA:r,),h·l"'(r,b). 0, 0}, 

{ F, (:r."), hu(r,!J), FN(:~:,,), h+(r .. b} }. 
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for the following form factor functions and neutrino potentials 

F1(x) [ 
17r 2rr( 2)] -x F ( ) :r (3 3 2) -x IX + n X - t: , N X = 

48 
+ X + :r t: , 

F2(x) [ 
3 + 3x + x2 

. ] 
CYI,- x2 +cx2"(J:+l) t:-x, 

h+(Tab) '!:_R (x' dq. q.P2(q2)jo(qr,~), 
1r lo q +A 

(31) 

hR(rab) 2 .R21oc 1 3"'2( 2)jo(1Jrab) 
-- r.q·!j'±' q ---, 
1r mp o q .t- A 

hT'(rab) 2 R
2 ~o= d :l;r,2( z)J2(1JTab) --- IJ·!j'J! q ---. 

7r3mp o q +A 

with q = lql being an absolute value of the 3-momentum transferred between the 'decaying 
nucleons. a 1" = -4.4·10-2 and a 2

" = 0.2 are the pion structure coefficients introduced and 
calculated in Ref. [20]. A ::::; lOMeV is the average excitation energy of the intermediate 
nuclear state. The spherical Bessel functions are defined in the standard way 

]o(x) = sinx 
X ' 

. sinx cosx 
JI(x) =-- --, 

x 2 x 
j2(x) = ~JI(x)- ]o(x). 

X 
(32) 

The nucleon form factor .P(q2) in Eqs. (31) takes into account the finite nucleon size. In 
our.numerical analysis we employ the conventional dipole parametrization 

.P(q2) = 1 + ~ 
( 

2 ) -2 

rn 11 
(33) 

with m;~ = 0.85GeV. We also defined in Eqs. (30)-(32): 

Sab 3(aa · Tab)(ab ·Tab)- a"· ab, aab =a a· ab 

Tnb (r(l- rb), Tab= lrabl, Tab= Tab/Tab, (34) 

XA' = 7nATab, X"= Tn1rTab, 

where ra is the coordinate of the "ath" nucleon. 
The following comments on the nuclear matrix element M 9 in Eq. (28) associated 

with the gluino graph Fig.l(b) arc in order. As discussed in Ref. [20] it consists of the 
two parts M 9 = M~N + M§N corresponding to the gluino graph contribution via the 
two-nucleon and the pion-exchange modes respectively. These two modes arise from the 
two possibilities of hadronization of the 1st terrn of the effective Lagrangian Lef 1 in Eq. 
( 19). One can place the four quark fields present in this term in the two initial neutrons 
and two final protons separately (2N-mode). Then nn -+ pp + 2e--transition is directly 
induced by the underlying quark subprocess dd -+ uu + 2e-. In this case the nucleon 
trdnsition is mediated by the exchange of a heavy particle which is the gluino [J with the 
mass rn9 2: lOOGeV. Therefore, the two decaying neutrons are required to come up very 
closely to each other what is suppressed by the nucleon repulsion. Another possibility is 
to incorporate quarks involved in the underlying 1/lP SUSY transition dd-+ uu + 2e- not 
into nucleom; but into two virtual pions or into one pion as well as into one initial neutron 
and ope final proton [20]. Now nn -+ pp + 2e- transition is mediated by the charged 
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) 

pion-exchange between the decaying nucleons (1rN-mode}. Since the interaction region 
extends to the distances "' 1/m,. this mode is not suppressed by the nucleon repulsion. 
An agditional enhancement of the 1rN-mode comes from the hadronization of the ~SUSY 
effective vertex operator il15d · il15d · ePRec replaced by its hadronic image 1r2 • ePRec. 
The enhancement occurs due to the coincidence of the pseudoscalar quark bilinears il!sd 
with 1r-meson field. As is shown in Ref. [20] the 1rN-mode absolutely dominates ov~r the. 
2N-mode. Therefore we neglected the subdominant 2N-mode part M~N in Eq. (28}: 

We calculate the nuclear matrix elements within the renormalized Quasiparticle Ranc 
dom Phase Approximation (pn-RQRPA) [22]. This nuclear structure method has been 
developed from the proton-neutron QRPA approach, which has been frequently used in 
the Ovj3j3-decay calculations. The pn-RQRPA is an extension of the pn-QRPA by incor
porating the Pauli exclusion principle ·for the fermion pairs. 

The limitation of the conventional pn-QRPA is traced to the quasiboson approxima
tion (QBA), which violates the Pauli exclusion principle. In the QBA one neglects the 
terms coming from the commutator of the two bifermion operators by replacing the exact 
expression for this commutator with its expectation value in the uncorrelated BCS ground 
state. In this way the QBA implies the two-quasiparticle operator to be a boson oper
ator. The QBA leads to too strong ground state correlations with increaSing strength of 
the residual interaction in the particle-particle channel what affects the calculated nuclear 
matrix elements severely. 

To overcome this problem the Pauli exclusion principle has to be incorporated into 
the formalism [22] in order to limit the number of quasipartiCle pairs in the correlated 
ground state. The commutator is not anymore boson like, but obtains corrections· to its 
bosonic behavior due to the fermioni,c constituents. The pn-RQRPA goes· beyond the 
QBA. The Pauli effect of fermion pairs is included in the pn-RQRPA via the renorm!i.lized 
QBA (RQBA} [22], i.e. by calculating the co~rmtator of two bifennion· ope~ators in 
the correlated RPA ground state. Now it is widely recognized that th~ QBA is a poor 
approximation and that the pn-RQRPA offers the advantages over pn-QRPA. Let us stress 
that there is no collapse of the pn-RQRPA solution for a physical value. of the nuclear 
force and that the nuclear matrix elements have been found significantly l~ss se~~itive to 
the increasing strength of particle-particle interaction in comparison with QRPA results. 
Thus, the pn-RQRPA provides significantly more reliable treatment of the nuclear many-
body problem for the description of the Ovj3j3 decay. · .r 

For numerical treatment of the Ovj3j3-decay matrix elements listed in Eqs. (30} within 
the pn-RQRPA we transform them by using the second quantization formalism to the form 
containing the two-body matrix elements in the relative coordinate. One obtains [26]:. 

< o12 >= :L 
pnp1n' 

J1rmimj3 

(_)in +jp' +J+:J ( 2.:J + 1} { ?p 
]n' 

in 
jp' ~}x 

< p,p'; .:TIJ(r12}rtr:i01d(ri2}1n, n'; .:T > x 

< Oj II [c;c,..,]J II J"m/ >< J"mJIJ"m; >< J"m; II [c;en]J II ot > . (35} 

0 12 represents the coordinate a,nd spin dependent part of the two body transition operator 
of the Ovj3j3-decay nuclear matrix elements in Eqs. (30}. The short~range correlations 
between the two interacting ·nucleons are taken into account by,. a correlation furiction · 

• ' • ·.' • :·; i • : ' •• ·' ' 

f(r} = 1- e-ar
2
(1- br2

} with CY = 1.1 fm2 and b = 0.68 fm2
• (36} 

i1 



The one-body transition densities and other details of the nuclear structure model are given 
in [22, 26). The calculated nuclear matrix elements for the Ov/3/3-decay of A=76 isotope 

Table 1: Nuclear matrix elements for the neutrinoless double beta decay 76Ge(o+) -t76 

Se(o+) within the pn-RQRPA. 

MGT,N MF,N MGT,v MF,v Mer,>. Mr,>. 

0.071 -0.025 2.6 -1.2 1.20 0.21 
··' 

MGT,g Mr,g Mg M:.. Mv MN 

-0.34 -0.089 -649 88 -3.4 -132 
I 

within the pn-RQRPA are presented in Table 1. The cons!dered single-particle model space 
has been the 12-level model space (the full 2- 41iw major oscillator shells) introduced in 
Ref.[26). The nuclear matrix elements listed in the Table 1 have been obtained for the 
9w = 1.0 where 9w is introduced to renormalize the particle-particle interaction strength 
of the nuclear Hamiltonian. 

According to . our numerical analysis, variations of the nuclear matrix elements 
M 9, M:.., MN and Mv do not exceed 15% and 30% respectively within the physical region 
of the nuclear structure parameters. 

Having all the quantities in the Ov/3/3-decay amplitude Eq. (25) specified we are ready 
to extract the limits on the lflv parameters from the non-observation of the Ov/3/3-decay. 

5 Ov/3{3-decay constraints on bilinear R-:-parity viola
tion 

Starting from the Eq. (25) we derive the half-life formula 

[T~!f.aco+ --+ o+)r1 
= GodMvi 21Af 

Here G01 is the phase space factor tabulated for various isotopes in Ref. [27). 
We introduced the dimensionless parameter 

(mv) mp ,, 
A= -- + WN + T/jj Wg + -"111 T/v W>., 

me < mx > 

{37) 

(38) 

where w; = M;f Mv with i = g, ..\, N. The first, second and third terms in this equation 
correspond to the contributions of the neutrino, neutralino and gluino graphs in Fig. 
1(a,b). Graphs in Fig. 1(c,d) contribute to the last term in Eq. (38). It is worthwhile 
noticing that at typical randomly sampled values of the MSSM parameters M 2 , p., tan{J the 
neutrino exchange contribution from Fig. 1{a) dominates over the other contributions. 
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The most ~tringent. experimental lower limit on the Ov(:l/3-decay half-life has been 
obtained for 76GP [21) 

TOv/3/i-eXp{O+ --+ o+) > 1.1 X 1Q2S years 
1/2 - 90% c.l. (39} 

\Vith th(• nuclear matrix elements calculated in the previous section this lower limit 
can be cast into the following upper bound 

IAf ~ 1.0 · w-(i. (40} 

This constraint represents a complPx exclusion condition placed by the non-obserYation of 
the Ov/1/:1-decay on the $7, MSSI\1 paraml'tPr space. ThP individual bounds on thP bilinear 
1/{p paramPtPrs /li, (vi) of our present concPrn dPpend on concretP SUSY modd settings 
which fix til<' values of Al2 ,p and tanp' in the left hand side of Eq. {40}. 

Typical constrains for the 1st generation 1/{1' parmnPters /1 I, (vi), I' I>.~ 
11

, (vi)>.~ 
1 
I can lH• 

obtained at the typical \Vcak scale vahws of til(' I\ I SSM parameters 1U
2 

= /1 = lODGe\' 
and tanj:l = 1. \Vc abo a.%tmw, as is commonly dmw in the similar casPs, thP absPnce of a 
significant cancellation between the terms in the )pft hand side of Eq. ( 40} dPfinPd in Eq. 
{38). Thus. we come up with the following constraints 

II' I I ~ 470KeV. 

l(vi)I ~ 840KeV, 

IJLI.\~ 11 1 ~ lOOcV. 

l(vi).\~ 11 1 ~ G5cV 

(41} 

(42) 

(43} 

(44} 

Recall that in our notations (z/1} =; (v,.). To our knowledge these stringent constraints for 
the 1st generation ~,parameters were not previously considered in the literature• t'Xcl'pt a 

parenthetic note in Ref. [3). One can find in the publishPd papers only thos<· const.raints 
which involve the combinations of the 1st and 2nd generation bilin<•nr $1' paramd.Prs [ 12] 
or contain only the 3rd generation ones [13]. 

To see how stringent are the obtained constraints we can compan· thl'!n with tiH' 
following one 

A~ II ~ 1.3. 1W'I (-IS) 

which is known a.~ a most stringent constraint on the R-parity violation [20]: This <·on
straint was previously obtained from the 01J/:If:lcdecay by taking into ac<·ount only tiH' 
superpotential trilinear couplings in Eq. ( 8}. Consider for comparison: tiH' dinwnsionless 
quantity 

, L/1 2 PI or (iii) 
" :::::: lh ' 

· Alsus1· (·Hi) 

with Msusv "-' lOOGeV being the typical SUSY breaking scale.: As follows from Eqs. (IS)
( 17) this dimensioniPss quantity sets the st.wngth of thl' RPJ\1 indm·<'d triliiH·ar f<'rmion
sfermion-fennion interaction :;imilarly to the <'oupling ..\ 11 1 in Eq. (8). This mak<·s rt'<L~on
able the comparison of the constraints placed on these couplings by the <'Xp<•rinH·nt.. ·From 
Eqs. (41)-(42) we get an estimation 

>.'·II ~ w~<i. (II) 
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This constraint looks more stringent (if such a comparison is legitimate) than that for >.11 1 

in Eq. (45). 
After all we conclude that the R-parity violation within the 1st generation is restricted 

by the Ov(3(3-decay to a very low level. Now this statement holds for the generic case of 
the lflv SUSY including both the superpotential trilinear couplings and the bilinear terms 
in the superpotential as well as in the soft supersymmetry breaking sector. 

This conclusion has some immediate phenomenological consequences for the other ex
periments, in particular for the accelerator ones. For instance, among the two body decay 
modes of the neutralinos 

x--+ e±w+,Jl±w+,T±w.,+, x--+ v"·~-'·rZ, (48) 

and similar processes open in the presence of the bilinear lflv terms one can now safely 
neglect the modes with electron or Ve· 

We can also generalize the arguments used in the 4tPSUSY interpretation of the HERA 
anomaly [15]. It is believed that this anomaly can be explained by the s-channel squark 
exchange qle -+ iii.-+ qje, xq;, x±q; between the initial quark-lepton state and the final 
state particles. The quark-lepton vertex qijc allowed in the lflv SUSY models receives the 
contributions both from the trilinear X couplings and from the trilinear operators induced 
by the bilinear terms via the lepton-gaugino-higgsino mixing. It is a common practice 
to neglect the 1st generation squarks in the above mentioned lflv SUSY explanation of 
the HERA anomaly. The argument is derived from the stringent constraint on the 1st 
generation >-~u coupling [20] shown in Eq. (45). However, it does not take into account 
the effect of the bilinear lflvoperators. Now, having at hand the new stringent limit on the 
1st generation bilinear R-parity violation in Eq. ( 41)-( 44) we can extend the validity of 
this argument to a general case of R-parity violation considered in the presf;nt paper. 

6 Conclusion 

In summary, we derived the contribution of the bilinear R-parity violating terms to the 
neutrinoless double beta decay. Alone with the analysis of the trilinear terms previously 
made in Refs. [16]-[20] this completes the derivation of all possible tree-level contributions 
to the Ov(3{3-decay within the lflv MSSM. 

From the non-observation of Ov(J(J-decay we obtained new stringent upper limits on 
the 1st generation R-parity violating parameters such as the lepton-Riggs mixing mass 
parameter /1I and the vacuum expectation value of the electron sneutrino (ve)· Then 

_ we discussed some implications of these constraints on the other experiments and, in 
particular, on those which are running or planned at accelerators. We conclude that the 
R-parity violating effects within the 1st generation, if exist, are very small and in most 
cases can be neglected in phenomenological analysis of observable effects. 

A special attention was paid to the effects of the nuclear structure in the Ov(J(J-decay. In 
the framework of the pn-QRPA approach we obtained the nuclear matrix elements which 
are stable with respect to the variation of the nuclear model parameters within the physical 
domain. Thus, we believe that our conclusions concerning the particle physics side of the 
Ov{i(i-decay do not suffer from the nuclear structure uncertainties. 

0' 
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1 Appendix A 

Below we present the mass matrices of the neutral and charged fermion sectors for the 
general case of the bilinear R-parity violation within the MSSM field contents. 

1.1 Neutral fermion mass matrix 

In the two component Weyl basis 
,T,IT 
"'(OJ = (v;, -i>..', -i>..3, ilf, H~), 

the mass term of the neutral fermions is 

!'(OJ - _ _!_,T,ITM .T,I H 
Lmass- 2 "'(OJ O"'(OJ + .. c;' 

The 7 x 7 mass matrix has the distinct see-saw structure 

Mo = ( ~T :x) · 

with 3 x 4 matrix 

( 

-Mzswcpiti Mzcwcpui 0 -111 ) 
m = -Mzswcpu2 Mzcwcpu2 0 -112 . 

-Mzswcpu3 Mzcwcpu3 0 -j13 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

originating from the lflv bilinear terms in the superpotential and the soft SUSY breaking 
sector. 

In Eq. (A.4) Mx is the usual 4 x 4 the MSSM neutralino mass matrix in the_ basis 
{ -i>..', -i>..3, fi1, ff2} 

( 

M1 0 
M _ 0 M2 

x- -Mzswcp Mzcwcp 
Mzswsp -Mzcwsp 

-Mzswcp Mzswsp ) 
Mzcwcp -Mzcwsp 

0 -jl . 

-jl 0 

Here u; = (v;)/(HI) and tan(J = (H2)/(H1 ) and sw = cosBw, cw 
sin(J, cp = cos(J.. • 

In the mass eigenstate basis defined as 

'~~<oJ; = S;;'ll{oJ;> . . . . . 

the 7 X 7 neutral fermion mass matriX Mo; in Eq.' (A.4) b~~oines,diagonal 

·(A.6) 

cosBw, sp = 

(A.7) 

S*MoSt=Diag{mv.,mx.}, c;}_;!i~.- i!(A.8) 

where mv, and mx, are the physical neutrino and neutralino masses. For the considered 
case of the tree level mass matrix the only one neutrino has·a rtonczero·mass mv;: = mv,· == 
0, mv:. # 0. -
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1.2 Charged fermion mass matrix 

The mass term of the charged fermion sector has the following form 

£.~ •• = -'li(~)M±'ll(+) + H.c. 

in the two component Weyl spinor basis 

\ll~) = (e£, J.L£, T£, -i.-\_, HI), 
.T.fi' ( + + + . \ H-+) 
'~'(+) = eL, J.LL, TL' -ZA+, 2 • 

The 5 x 5 charged fermion mass matrix is 

( 

M(l) E ) 
M± = E' Mx± , 

where Mx± is the MSSM chargino mass matrix 

( 
M v'2Mzcws{3 \_ 

Mx± = v'2Mzcwc{3 J.L J . 

(A.9) 

(A.lO) 

(A.ll) 

(A.12) 

(A.13) 

The sub-matrices E and E' lead to the chargino-leptori mixing. They are defined as 

and 

( 

v'2Mzcwc{3ul 
E = v'2Mzcwc{3u2 

-J2MzCWC[JU3 

J.ll ) 
J.l2 , 

J.l3 

(A.14) 

1 (0 0 0) ( E = - M(ll . M(l) . M(ll . , A.15) 
Ii ul 2i u, 3i u"-

where M(l) is the charged lepton mass matrix. In a good approximatiqn it can be treated 
as a diagonal matrix M(l} = Diag{ m~11 } with m~l) being the physical lepton masses. Also, 
one can safely neglect matrix E' compared to the other entries of the full mass matrix 
(A.12) taking into account smallness of the lepton masses. 

Rotation to the mass eigenstate basis 

W(±)i = ~~\l!C±)j> 

casts the mass matrix in Eq. (A.12) to a diagonal form 

(~-r M± {~+)t = Diag{m~1>,mx~}, 

where m!1
l and mx~ are the physical charged lepton and chargino masses. 

·2 Appendix B 

(A.16) 

(A.17) 

Here we give a short account on the results of the approximate diagonalization method 
used in oui: analysis. 
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2.1 Neutral fermion mixing matrix 

To leading order in the small expansion parameters~ defined below, an approximate form 
of the neutral fermion 7 x 7 mixing matrix ii1troduced in Eqs. (9), (A.7) is [12] 

=•- ( V(v)T(1 -. ~~e) -V(v)T~ ) 

- - N*~t N*(l- WO ' (B. I) 

Here 

/;;1 
~A~J.L .mA~J.L 

2 DetMx A,, /;;2 = -2 DetM'< A;, (B.2) 

Jl; 92(M1 + tan2 8w M2) sin# cos8wMz 
-+ A 
Jt 2 DetM, " 

/;;3 (B.3) 

92(M1 + tan2 8w M2) cos# cos8wMz 
D I 

A;, 
2 ct A , 

~i4 = (B.4) 

with i = I, 2, 3. The determinant of tlw l\1881\1 neutralino mass matrix (A.6) is 

DrtM>: = sin2{1MfvJ.L(Ah + tan2 8n·M2)- M1M2Jt 2
. (B.5) 

The 4 x 4 matrix N rotates the MSSM neutralino mass matrix A/, to the diagonal form 

N'.MxN1 = Diag{mxJ (B.6) 

where mx, are the physical neutralino masses. Thus, to leading order in t; the mixing 
within the neutralino sector is described as in the !\188M by 

x~, = N .. ,x:. (B.7) 

with x:, = ( -iX, -i.Aa, flp, HJ) being the weak basis. 
The 3 x 3 matrix v<vl rotates the RPM induced effective neutrino ma .. ~s matrix to the 

diagonal form 

I.· (")I 111, f f I . ( ") = /) i (/.If { ()' ()' Ill" } , (B.8) 

The tree level expression for this mass matrix can be found in Ref. [12]. Tlw on!~· non-zero 
neutrino mass is given by 

2 M 1 + tan
2 

8w M2IAI2. 
mv = 9~ 4 DrtM, 

where 

A; = /t(v;} - (HJ}JI.; , 

Let us show an explicit form of the neutrino mixing matrix 

( 

cos81:1 
, 1 ·<•'l = sin 8;za sin 813 

" ::nn81:1 

() 

cos 02:1 

sin fh1 
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-siufl1:1, ) . 
sin 82:1 cos 81:1 , 
l'OS (}1:1 ('OS 02:1 

(B.9) 

(B. 10) 

(lUI) 



where the mixing angles are expressed through the vector Ji. as follows: 

AI 
tanB13 = 

.jA~ + Af 
A2 

tanB2~ = A
3 

· 

The mixing within the neutrino sector to leading order in I; is described by 

. vk = v,;~J·v~ 

with v~ = (ve. vi', vT) being the weak basis. 

2.2 Charged fermion mixing matrix 
I 

(B.12) 

(B.13) 

To leading order in the small expansion parameters I;L and (l defined below, an approx
imate form of the charged fermion 5 x 5 mixing matrix introduced in Eqs. (9), (A.l6) 
reads 

~- • - ( VL(1- ~~L· t:LT) - VL~L· ) 
( ) - u·~LT U*(1-~~LT~L·) , (B.14) 

and 

t ( (1 _ .!~w ~;nrwt ~wvt ) 
(~ +) = -=~w vA R (1 - ~t:RT ~n· )Vt (B.15) 

Here 

L"- 92 A;, 
t:;J - y12 DetMx± 

~~· = /L; _ 92 sinfJ cosBw Mz _ 
P. /L DetMx± A,, 1 

(B.16) 

with i = 1, 2, 3 and 

~R" = M(l)t~L· (MJ)T. (B.17) 

This matrix is much smaller than ~L by the factor m1/Msusy, where m1 and MsusY are 
the lepton masses and the typical SUSY breaking scale Msusy "'lOOGeV. Thus the mixing 
between (et, P.t, rt) and ( -i..\+, Hi) described by the off diagonal blocks of the~+ in 
Eq. (B.15) is small and, therefore, neglected in our analysis. 

In Eqs. (B.14)-(B.15) the determinant of the MSSM chargino mass matrix is 

DetMx± = M2p.- sin2fJMa,. 

The other matrices are defined as follows: 

U* Mx± vt = Diag{mx;t}, 

VLM{llvA = Diag{m1.}, 

(B.18) 

(B.l9) 

with Mx± and M(IJ are the MSSM chargino and charg~d leptons mass matrices defined in 
Appendix A while m ± and m1- are the physical chargino and the charged lepton masses. xi • 
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<l>sccnep A., KoBaJieHKO C., illHMKOBf 
EHJIHHeiiHoe HapymeHHe R-'IeTHOCTH 
B 6e3HeiiTpHHHOM ,nBOHHOM 6eTa-p~cm 

06c~aeTCH !lJeHOMeHOJIOIIDI 3!lJ 
B03HHKaiOIUHX B cynepCHMMeTpH'IHbl 
3a C'IeT 6HJIHHeiiHoro B3aHMo,,neiiCTBHH 
UHaJie H B CeKTOpe MHfKOro HapymeHH 
3THX onepaTOpOB B 6e3HeiiTpHHHblll 
MaTpH'IHbie 3JieMeHTbl Bbi'IHCJIHIOTCH B I 
HbiX lPa3 KBa3H'IaCTHU, KOTOpoe )"'HTb 
H He KOJIJiallCHpyeT npH lPH3H'IeCKHX 3 

Ha STOll OCHOBe H3 3KCnepHMeHT 
orpaHH'IeHH.SI Ha MaCCOBblll napaMc 
HHTeHCHBHOCTb 6HJIHHeiiHOI'O B3aHMO 
a TaiOKe Ha 3Ha'IeHHe BaKYJMHOro O)!m 

Pa6oTa BblllOJIHeHa B na6opaTopm 

llpenpHHT Ofu.eJtHHeHHOfO HHCTHT 

Faessler A., Kovalenko S., Simkovic F 
Bilinear R-Parity Violation in Neutrinc 

We discuss some phenomenolo1 
operators emerging from the bilinear I 
and in the soft supersymmetry (SUS 
models without R-parity. The contrib1 

. double beta decay (Ov~~) is derived. 
The corresponding nuclear matrb 

malized quasiparticle random pha<;e ap 
of fermion pairs and does not collapse 
strength. . 

On this basis we extract from t 
on the I st generation ma'>s parametc 
coupling and on the electron sneutrino 
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