


1. Introduction

In the standard model (SM) of the electro-weak interactions the baryon B and lepton L
nuinbers conservation is protected to all orders of perturbation theory by an accidental
Uy g x Uy symmetry existing at the level of renormalizable operators. In the minimal super-
symmetric (SUSY) extension of the standard model (MSSM) [1] this symmetry is absent
and the L and B violating processes are not forbidden. A conventional way of eliminating
the phenomenologicéxlly dangerous L,B-violation in this case exploits a discrete ’sym,metry
known as R-parity [2], [3] which is imposed on the model. This is a multiplicative Z;
symmetry defined as R, = (—1)3B+L+25 where S, B and L are the spin, the baryon and
the lepton quantum numbers. R-parity conservation has a distinctive phenomenology. It
prevents lepton and baryon number violating processes, the superpartners are produced
in associated production and the lightest SUSY particle is stable. The latter leads to the
celebrated missing Er signature of the SUSY event in high energy detector and renders
a cold dark matter particle candidate. Although desirable for many reasons the R-parity
conservation has no well motivated theoretical grounds.

On the other hand relaxing the R-parity conservation we may get a new insight into the
long standing problems. of particle physics, in particular, to the neutrino mass problem.
Remarkable, that in this framework neutrino can acquire the tree level supersymmetric
mass via the mixing with the gauginos and higgsinos at the weak-scale [3], [4]-{7]. . This
mechanism does not involve the physics at the large energy scales Min: ~ O(10*GeV) in
contrast to the see-saw mechanism but relates the neutrino mass to the weak-scale physics
accessible for the experimental searches. y

The R-parity can be broken (J£,) either explicitly (3] or spontaneously [8]. The first
option allows one to establish the most general phenomenological consequences of R-parity
violation while a predictive power in this case is rather weak due to the large number of
free parameters: Spontaneous realization of I, SUSY is’ much’ more predictive scheme
leading to many interesting phenomenological consequences [9]. ‘'However,' it represents
a particular model of: the R-parity violation. At present it is an open question which
underlying high-energy scale physics stands behind the R-parity, protecting or violating it
at the weak scale. - - " . . S ;

Many aspects of the K, SUSY models in high and low ‘energy processes had been
investigated in the literature [3]-[14], [16]-[20]. ' ;

" Recently, a growing interest to the supersymmetric models without R-parity was stim-
ulated by the exciting news from the HERA experiments, reported the anomaly in deep in-
elastic e*p-scattering [15] which can be elegantly explained within these theoretical frame-
work in terms of the lepton 'number violating interactions. S ’

Since the lepton number is not conserved without R-parity some low-energy exotic
processes become possiblé' within the RP"MSSM. Anfqng them' the ’r‘iel‘xtr’in.oless‘ nuclear
double beta decay (0vgBB) is’ known to be very sensitive to the certain Jt, interactions
[18]. ‘Provided an unprecedented accuracy of the modern OvBB-decay experiments [21]
this allows one to establish stringent constraints on the &, SUSY [16}-[20]. . o

In the present paper we consider the implications of the bilinear lepton-Higgs Rpterms
on Ov@f-decay. In the general case of the explicitly, broken R-parity these terms are
present in the superpotential-and in the soft SUSY breaking potential. Previously the
main attention was paid to the phenomenology of the trilinear RyYukawa couplings. It was
widely believed that the bilinear R terms can be rotated away by a proper field redefinition. -

LIS RS- HIR SN ¥ LRIy
§ BAcuBiK HOCasEosasEd |

! SUEIMCTSHA 4
TEHA

134

i



However, it is not the case in the presence of the soft SUSY breaking interactions [6], [9].
It was realized that the bilinear 8, violation, generically leading to the non-zero vacuum

expectation values (VEV) of the sneutrino fields and to the lepton-gaugino-higgsino and
?lgl])b[ox;iHiggs mixing, provides a number of interesting phenomenological issues [4]-[7],
11]-[13].

In pa;ticular, this mixing generates the new effective lepton number violation operators
which contribute to the nuclear Ov38-decay. In what follows we derive these operators
and analyze their net effect in the presence of the nuclear media.

: Thg paper is organized as follows. Basic ingredients of the R, MSSM with the general
setting of the explicit R-parity violation are shortly described in Section 2. In Section
3'we discuss the bilinear /£, mechanism of the nuclear OvBB-decay. Here we analyze all
the tree-level &, MSSM contributions to the Ov3f3-decay amplitude. We start with the
quark level and derive the corresponding low energy effective Lagrangian. In Section 4
we take into account the effect of nuclear structure and derive the corresponding nuclear
matrix elements. Then we calculate their values within the renormalized Quasiparticle
Random Phase Approximation (pn-RQRPA) [22]. The pn-RQRPA is an extension of the
pn-QRPA by taking into account the effects of the Pauli principle for the fermion pairs.
In this approach the sensitivity of the nuclear matrix elements to the details of the nuclear
Hamiltonian is reduced considerably. Using experimental lower bound on the 76Ge half-life
we extract in Section'5 stringent constraints on the 1st generation lepton-Higgs mixing
mass parameter and on the electron sneutrino VEV. We close our discussion with the short
comments on some implications of these constraints for the other experiments.

2 Minimal SUSY model with R-parity violation

In order to set up our notations let us briefly recapitulate the main ingredients of the.

minimal SUSY standard model (MSSM) with explicit R-parity violation (£ MSSM).

. /The R, violation is introduced into the theor i
: P y through the superpotential and sofi
SUSY breaking sector. pep and soft

For tl.le minimal MSSM field contents the most general gauge in;/ariant form of the
renormalizable superpotential reads

’ W =Wg, + Whg,. (1)
The R, conserving part has the standard MSSM form
Wr, = hi HLE® + hp H\QD® 4 hy HyQU® + pH, H,. (2)

Here L, (J stand for lepton and quark doublet left-handed superfields while E*, U¢, D¢ for
lepton and up, doun quark singlet superfields; Hy and H, are the Higgs doublet superfields

;N}tli.adwéak hypercharge ¥ = —1, +1, respectively. Summation over the generations is
mplied. 4 ’

;The R, violating part of the superpotential (1) can be written as {21, 3]
_ . W, = Aije Li L; B + N LiQ; Df + L Ha + N5 US DS D, (3)
;I‘he coupling constants A (") are antisymmetric in the first (last) two indices. The first
‘W‘o terms violate lepton number while the last one violates baryon number conservation.

~
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Another source of the R-parity violation is the soft supersymmetry breaking part of
the scalar potential. It contains the J&,-terms ‘

Vit = AgeLiL B + N Qs D + Ny Us DS Dik Lot )
‘ - 4miyLH +He.

The simultaneous presence of lepton and baryon number violating terms in Eqgs. (3), (4)
(unless the couplings are very small) would cause unsuppressed proton decay. Therefore;’
either the lepton or the baryon number violating couplings can be present. There:may
exist in the theory an underlying discrete symmetry such as the B-parity [3], [23] which
forbids dangerous combinations of these couplings. Henceforth we simply set X’ = A" = 0.
The remaining R-parity conserving part of the soft SUSY breaking sector includes the
scalar field interactions
vidt= S miéd® + ki ALHLLE® + hp ApH1 QD ~ (5)
i=scalars .

~hy AgH,QU® — uBH1H, + H.c.
and the "soft” gaugino mass terms
1 - - —_
Lom = — [M, BB + MW*W* + M,3°5°] — Hec. (6)

As usual, M3, denote the masses of the SU(3) x SU(2) x U(1) gauginos g, W, B while
m; stand for the masses of the scalar fields. The gluino § soft mass M3 coincides in this
framework with its physical mass denoted hereafter as mz = Ms. AL, Ap, Ay and Bin
Eq. (5) are trilinear and bilinear "soft” supersymmetry breaking parameters. All these
quantities are free SUSY model parameters which due to the renormalization effect depend

on the energy scale. .
In this paper we assume for simplicity the universal gaugino soft masses at the grand

unification scale Mgyr. At the weak scale this leads to the following relations
My = (5/3)tan 6%, My, - Mz = 0.3M3, o (7

An impact of the R-parity violation on the low energy phenomenoclogy is twofold.
First, it leads the lepton number (LNV) and lepton flavor (LFV) violating interactions
directly from the trilinear terms in Wy, Second, bilinear terms in Wp, and in V&‘;f t
generate the non-zero vacuum expectation value for the sneutrino fields (#) # 0 and cause
neutrino-neutralino as well as electron-chargino mixing. The mixing brings in the new
LNV and LFV interactions in the physical mass eigenstate basis. Below .we will specify
those interactions which are relevant for the Ov33-decay. )

The trilinear terms of the R-parity breaking part of the superpotential Wg, lead to the
following AL = 1 lepton-quark operators - ‘ ¥

Lx = Mj[iLécPrej + €08 PLvi + Exr€i PRV — (1 ¢ J)] + (®
A:jk[ﬁ;LdkPLdi + djLJkPLVi + dkRJjPRVf - éiLdkPLuj

- ﬁjLJkPLei—JkRﬁjPReﬂ + Hec.

+

Here, as usual PLg = (1F v5) /2.



The presence of the bilinear terms in the Eqgs. (3),(4) leads to-the terms in the scalar
potentlal linear in the sneutrino fields #;. As a result, at the minimum of the potential
(#%) # 0. Thus, the MSSM vertices Zvi and Web create the gaugino-lepton mixing mnass
terms Zv(7), We () (with W, Z being wino and zino fields). Combining this terms with
the lepton-higgsino 1; L; Hy mixing from the superpotential Eq. (3) we end up with 7 x 7
neutral fermion and 5 x-5 charged fermion mass matrices (see Appendix A). The mass
eigenstate fields can be written in the form

; Toi =54 Yoy Y = A5 Yy ©
with the weak eigenstate fields in two component notation
vE = (m, —iX, —ids, HY, H)), (10)
vy = (ex, pp, 7o, —iA-, HY), (1
‘II(+) = (ezy #Zv Tg: —i’\+1 H'j) ' (12)

Here v; are the neutrino fields, A’ and A3, A_ are the Uy and SU;y gauginos, respectively
while higgsinos are denoted as H?’z,Hffz. The mixing matrices = and A* diagonalize
the neutralino-neutrino and the chargino-charged lepton mass matrices respectively. The
lightest mass eigenstates are identified with the physical neutrinos and the charged leptons.
Remarkable, that as a result of the minimal field content and the gauge invariance the
ngutral fermion mass matrix My (A.4) before diagonalization has such a texture that its
first three rows and the last one are linearly dependent and, as a result, two neutrino mass
eigenstates are degenerate massless states. The third neutrino state acquires the tree level
mass which approximate form is (see Appendix B)

2 gle 1712 : -
=2 g
™ = 3 Dt (13)

It is natural to identify the massive neutrino state with the.tau neutrino v, while the
two massless states with the v, and v,. The v, — v, mass degeneracy is lifted by the 1-loop
corrections as well as by the non-renormalizable terms in the superpotential giving to v,
the small non-equal masses [7]. As to the tau neutrino mass in Eq. (13) it is subject to
the experimental constraint m,, < 23MeV [24]. Assuming no cancellation in Eq. (13) this
leads to the upper. bounds

m S 15GeV, (%) S TGeV. (14)

at the typical sample values of the MSSM parameters pp ~ M, ~ Mw. Of course, these
-bounds are only indicative and may essentially vary from point to point in the MSSM
parameter space.

. The m,, constraints can be evaded assuming an approximate alignment between two
,\(Ectors a; = (i, 1) and b; = ({&), (HY)) which leads to the cancellation in Eq. (13) since
A2 = |@2|B] - (a 5) This might be guaranteed by a spemal global symmetry [5] or
by some dynamical reasons [4].

Rotating the MSSM Lagrangian to the mass elgenstate basis one obtains the RPM
generated lepton number violating interactions which bring many interesting implications
for the low and high energy phenomenology Below we are studymg they Contrlbutlon to

the Ouﬂﬂ -decay.

3 LH-induced OvBB-decay. Quark level transitions

We have analyzed all the possible tree level contributions to the OvfBB-decay amplitude
which inctude the RPM interactions and the superpotential A, X' couplings from Eq. (8).
The leading diagrams arc presented in the Fig. 1. The diagrams in Fig.1(a.b) incorporate
only the RPM generated vertices, and in Fig. 1(c.d) these vertices are accompanied by
one X type vertex (on the top of the diagrams). The diagram in Fig. 1(a) has in the
intermediate state either neutrinos or netitralinos and two W-bosons while the diagrams
in Fig. 1(c,d) ncutrinos, squarks/selectron and one W-boson. The diagram in Fig.1(h)
is mediated by the gluino and double squark exchange. The diagram Fig. 1(a) with the
neutrino exchange is the conrventional Majorana ncutrino contribution to the Ovpd-decay.
Recall that in the R, MSSM with the bilinear R-parity violation the neutrino masses and
mixing angles are derived at the tree level in terms of g, (7;) and the MSSM parameters
(sce Appendix A). Therefore. this contribution inherently pertains to this model.  We
did not include in this list those diagrams which do not contain RPM vertices. These
diagrams constructed of the A, X' couplings were previously analyzed in Refs. [16]-[20].
All the other diagrams in this order of perturbation theory have extra suppression factors
and, thercfore, ¢an be neglected.  The suppression factors originate from the smallness
of neutrino mass, when it appears in a positive power, from the 1st generation left-right
sfermion mixing propor tional to Mayde /1\[-,"5) and/or from the fermion- sfermion-higgsino
couplings plopoltlonal to Made/ My with my g, being the u,d quark and the clectron
asses respectively while Mgy gy denotes the typic al SUSY breaking ass scale.

Now let us specify those RPM generated operators whicl are encomtered in the dia-
grams in Fig. 1. "‘hey are '

Loy =~
Ll \/2—
\/— 4 T U=~ e~ e = c = = ]

+ 2(}2 (ﬁkV_PR(L de +ﬁ -VkPItllr'x u,"y—l- HL-EVL'PRC”CL,’ + C“PR(" (1’:‘) + H .

The subscripts k, % denote gencrations.

The first term is generated from the standard model W—e—~v and the MSSM =y £y
interaction teris while the rest or 1gmatos from the MSSM neutralino ((lld.l gino)-fermion-
sfermion interactions x — g — §, Xt — ¢ — ¢ (for the MSSM Lagrangian sce {1]).

Note that the trilinear fermion-sferniion couplings in L7 are not pl(‘\(‘llt antong the
superpotential trilincar A, A’ terms in Eq. (8). »

The coeflicients in Egs. (15) depend on the nnxmg, matrix (‘lomouts introduced in Eq:

(9):

"m”',— E'Y‘ PI,Xn ’ ‘ (1‘))

3

Ky = z A u+s it \/_An—-n+m + A= ..+u. (16)
, I I - —
ﬂ“ = —7__; “_.[,, 5 (1»21.110"~.:;..| + =is) ‘iil-
l. —_ .
s = ~6 (tandy-Sey + 3=4s) .
d I = . I
S = —El.a.n()"-:k_‘, (= _?An'

In what follows, for the derivation of the constraints on p(u.uuotm\ (7). i characterizing
the bilinear 8, we cmploy the approxinmte analytical diagonalization method of the Ref.
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[12]. It allows one to represent the mixing matrices in a convenient analytic form and ex-
press the dependence of the coefficients in Eqs. (16) on the afore-mentioned R, parameters
explicitly. In the leading order in small parameters p.;/Mz, (5)/Mz we obtain

Kn = {elNap — \/56511\’;2 - EleNJe., (17)
1 v)x 1 v)x x *
B = EglL] ‘/tfc » 5‘/](1\.) (tanangl + §j2) da1,

u 1 v)x * *
By = gvj(k) (tanengl +3§j2) ,
1 S V)* o 1
B = gtanewvj(k) & (= ﬁﬁﬁ-
The notations used in these formulas are explained in Appendix B.
The MSSM gluino-quark-squark vertex in the diagram Fig. 1(b) is described by the
Lagrangian term
’ , 2@
L3 = V2022 (°Peg 7] - T°PLIWTR) + hoc, (18)

Here A® are 3 x 3 Gell-Mann matrices (a=1,..,8). Superscripts a, 8 denote the color
indices.

The diagrams in Fig.1 describe the R, SUSY induced quark transitions which pro-
ceed in the nuclear media and trigger the nuclear Ov33-decay. Our goal is to derive the
corresponding half-life for a certain isotope assuming for simplicity that there is no other
contributions to this nuclear process. In order to apply the standard approach (18], [20],
[25] based on the non-relativistic impulse approximation one has to derive first the ef-
fective low energy Lagrangian describing the basie Ovf33-quark transition dd —s uuee in
terms of the color singlet quark charged currents which can be embedded then into the
corresponding hadronic (nucleon or pi-meson) currents inside a nucleus. One has also to
. separate the short and long ranged parts of the quark level transition operators since they
are treated within this approach in different ways. It is understood that the short ranged
parts involve only heavy particles in the intermediate states (x, xt, W, §, &) while the long
distance ones include the neutrino exchange.

Integratirigout the heavy fields from the diagrams in Fig. 1 and carrying out Fierz
reshuffling we obtain the desired effective Lagrangian which allows one to reproduce the
low energy contribution of these diagrams in the first or in the second order of perturbation
theory. It takes.the form .

2

G 1_. _
Lopf@) = 5o 1T T = 3% )+ m "] (2Pae) - (19)

= VIGrXy 0V (BePre) I + eV Pt Vi .
Here we introduced the color singlet quark currents

J =@ Ppda, J* =0%0" Ppda, J* = 0°y* P da, (20)

The effective parameters 7 accumulating the dependence on the initial 2, SUSY para-
meters are defined as ’ :

dg

0 G, \mg)' T ™ = g

6.

dra, ¢3¢t (m \ im m
g = 9z 7 L ; T]X=z: pK,?E—*— 2 , (21)

<
=
o
1
U=l
-

u e. u
d 4 us ’
d P - ue: u, e-
: e
A% i Vv -
e e

Fig.1.: Feynman graphs contributing to neutrinoless doublfz beta (Oz/ﬁ@) de-
cay for the case of the bilinear R-parity violation. (a) the Ma_]orana .neutrmo or
neutralino exchange with two accompanying W-bosons; (b) the .glumo—squark—
squark exchange; (c,d) the neutrino-squark/slepton exchange with one accom-

panying W-boson.
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Here my, mg and m,, are the gluino, squark and neutralino masses.
In the B, MSSM we have for the neutrino mixing matrix element (see Appendix B) the
following expression

Vl(,:) = 01, cos 8 — 3 sin (22)
with
sinf = —A,/|A). _ (23)

In Eq. (19) the first and the second terms reproduce the contribution of the gluino Fig.
1 (b) and the neutralino Fig. 1(a) exchange graphs in the 1st order of perturbation theory
while the third and the last terms reproduce the contribution of the neutrino exchange
graphs in Fig. 1(a) and Fig. 1(c,d) in the 2nd order of perturbation theory. Note, that the
last term in Eq.(19) is the ordinary lepton-number L conserving standard model interaction
term. Since the Ov((-decay requires the L-violation AL = 2 the neutrinos in Fig. 1 (a)
propagate in the Majorana lepton-number violating mode. In this case the source of the
L-violation is given by the neutrino Majorana mass term. That is why the contribution
corresponding to this diagram is proportional to the neutrino mass or, more precisely, to
- the average neutrino mass (m,) defined below. On the contrary, the neutrino exchange
. diagrams in Fig. 1 (c,d) are not proportional to (m,) and survive in the limit m, = 0 since
 the lepton-number violation AL = 2 is produced by the interaction term 7Pge® in Eq. (19)
itself. Therefore, the neutrinos in diagrams Fig. ‘1 (c,d) propagate in the L-conserving
Dirac mode.

So far we concentrated on the OvBf-transitions at the quark level described by the
effective Lagrangian (19). The aim of this paper is the calculation of the amplitude for the
nuclear Qv S33-decay taking into account nuclear structure.

The next section deals with the derivation of the amplitude for the nuclear OvfGB-decay
triggered by the quark transitions in Fig.1.

4 Nuclear OvB33-decay

Let us write down the following formal expression for the amplitude of OvF3-decay
<(A,Z +2),2¢7|S ~1|(A, Z2) >= (24)
= <(A,Z+ 2),2€_|Te$p[i/d4$£5ff($)]|(A,Z) >

" where the effective Lagrangian L,;; is given by Eq. (19). The nuclear structure is involved
via the initial (A,Z) and the final (A, Z+2) nuclear states having the same atomic weight
A, but different electric charges Z and Z+2. The standard framework for the calculation
of this nuclear matrix element is the non-relativistic impulse approximation (NRIA) [25].

It is straightforward to derive the following formula for the amplitude of the 0+ — 0+
transition with two outgoing S-wave electrons

ROyﬂﬂ(O+ — 0+) = Couff‘é(l + ’75)(3C x (25)

<m, >
M + XSV M+ ——2 M Y2 M,
MgMa + Ay Ve Ma+ = M > N + — M, |,

The normalization factor is
Co, = (G%2m,)/(8V27R). (26)

Here, m,. and fi = 1.261 are the electron mass and the nucleon axial coupling, R = roAl/3
is the muelear radius (ro = 1.1fm).

The last terin is the conventional Majorana neutrino mass contribution proportional
to the average neutrino mass. In the &, NISSM we have ‘

. 2

w2 W\ _ 2 oM, o

{m,) = E, my, (Vh-" ) = ., (Vw ) = 3Detdl, AL (27

Here we neglected the small loop induced neutrino masses m,, = m,, =~ 0 and used Eq.

(22).
Let us specify the nuclear matrix clements involved in the formula for the Ovgo-decay
amplitude (25). They are )

2
M; = (ﬂl) s (Mgrg + Mrg) .
! My J e ) )
2
Mu = (;_L) Ml".l/_M(."l'.uv
A
cap [1 ]
_ 1, N 2
My - [ gMaora+ Mraj, (28)
me\ my A\
My = (D _{ 2} Mpn —-MG’I‘.N}-
my ) me b\ fa

Here m,, and m, stand for the proton and clectron masses, fi- = 1.0 is the vector nucleon
constants, mt= 0.85GeV- to be defined below. “The coefficient ap = 1.75 is related to the
nucleon matrix element of the pseudoscalar current. Its nmmerical value caleulated in the
quark bag model we take from Ref. [18].

The partial muclear matrix elements in the closure approximation we write down in the
form

&
Mus = OIS Frw) () l0d).
a#b Tab
R\*
Meri = (07| 2757 Gilra) (:) o 107), (29)
a#b @0
RA\%
Mus = O nw T () Su l07).
ath ab

where i = 7, A, N,v. The exponent takes the values §; = {1,0.1,0}. We use the shorthand
notations .

Fi {0,0, Fn(z), hi(rw)}, Ti= {Fz(:r'n):7l'l'l(1'4.b).0, 0}, (30)
gi = {Fl (:EI), hll(rulx)¢ FN(”"A)! h’+(ruh)};



for the following form factor functions and neutrino potentials

Fi(z) = [(11"+(12"(x—2)} . Fn(x) = —(3-+-31-+—r) o,

By(z) = [al"%m;_—jz +a*(x + 1)} e %,

hi(ray) = —R/ dg- q®*(q Z)JO(Z—T:‘:) -
hp(rw) = %% A dg - ¢**(q Z)Jo(ir"Al‘)
hr(Tab) _g%/ dq- P9 (q z)Jz(fj:)

with g = |q| being an absolute value of the 3-inomentum transferred between the decaying
nucleons. a'™ = —4.4-1072 and a® = 0.2 are the pion structure coefficients introduced and

calculated in Ref. [20]. A = 10MeV is the average excitation encrgy of the intermediate
nuclear state. The spherical Bessel functions are defined in the standard way
sinz sinz  cosc 3
jo(z) = o alz) = - ;o g2(z) = —h(x) — jo(z). 32
o) = 22, e = T8 - Gae) = Siaa) — jola) (32

The nucleon form factor ®(¢2) in Eqs. (31) takes into account the finite nucleon size. In
our .numerical analysis we employ the conventional dipole parametrization

q’\*
wat) = (142 @
m4
with my = 0.85GeV. We also defined in Eqgs. (30)-(32): -
. Say = 30, Ty)(o, Fo) — 0,0y, ow=0,0,
Tap = (Tu - Tb)y Tab = |Trzb|7 f‘ab = Tab/raby (34)
TA = MaTeh, Tq = MgTal, ‘

where r, is the coordinate of the "ath” nucleon.

The following comments on the nuclear matrix element M; in Eq. (28) associated
with the gluino graph Fig.1(b) are in order. As discussed in Ref. [20] it consists of the
two parts M MzN + M"N corresponding to the gluino graph contribution via the
two-nucleon and the pion- exchange modes respectively. These two modes arise from the
two possibilities of hadronization of the 1st term of the effective Lagrangian L.s; in Eq.
(19). One can place the four quark fields present in this term in the two initial neutrons
and two final protons separately (2N-mode). Then nn — pp + 2e~-transition is directly
induced by the underlying quark subprocess dd — uu + 2e~. In this case the nucleon
transition is mediated by the exchange of a heavy particle which is the gluino § with the
mass my; > 100GeV. Therefore, the two decaying neutrons are required to come up very
(losely to each other what is suppressed by the nucleon repulsion. Another possibility is
to incorporate quarks involved in the underlying R, SUSY transition dd — uu + 2e” not
into nucleons but into two virtual pions or into one pion as well as into one initial neutron
and one final proton [20]. Now nn — pp + 2~ transition is mediated by the charged
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pion-exchange between the decaying nucleons (7N-mode).  Since the interaction region
exteuds to the distances ~ 1/m;, this mode is not suppressed by the nucleon;repulsion.
An additional enhancement of the 7N-mode comes from the hadronization of the ,SUSY
effective vertex operator @ysd - @ysd - €Pre® replaced by its hadronic image n? - £Pge®.
The enhancement occurs due to the coincidence of the pseudoscalar quark bilinears @ysd
with 7-meson field. As is shown in Ref. [20] the #N-mode absolutely dominates over the .
2N-mode. Therefore we neglected the subdominant 2N-mode part Mg” in Eq. (28).

We calculate the nuclear matrix elements within the renormalized Quasiparticle Ran=
dom Phase Approximation (pn-RQRPA) {22]. This nuclear structure method has been
developed from the proton-neutron QRPA approach, which has been frequently used in
the Ovg(-decay calculations. The pn-RQRPA is an extension of the pn-QRPA by incor-
porating the Pauli exclusion prlnc1ple for the fermion pairs. .

The limitation of the conventional pn-QRPA is traced to the quasiboson approxima-
tion (QBA), which violates the Pauli exclusion principle. In the QBA one neglects the
terms coming from the commutator of the two bifermion operators by replacing the exact
expression for this commutator with its expectation value in the uncorrelated BCS ground
state. In this way the QBA implies the two-quasiparticle operator to be a boson oper-
ator. The QBA leads to too strong ground state correlations with increasing strength ‘of
the residual interaction in the particle-particle channel what affects the calculated nuclear
matrix elements severely.

To overcome this problem the Pauli exclusion principle has to be incorporated into
the formalism [22] in order to limit the number of quasiparticle pairs in the correlated
ground state. The commutator is not anymore boson like, but obtains corrections to its
bosonic behavior due to the fermionic constituents. The pn-RQRPA goes beyond the
QBA. The Pauli effect of fermion pairs is included in the pn-RQRPA via the renormallzed
QBA {(RQBA) [22], i.e. by calculating the commutator of two bifermion operators in
the correlated RPA ground state. Now it is widely recognized that thé QBA is'a’| poor
approximation and that the pn-RQRPA offers the advantages over pn-QRPA. Let us stress
that there is no collapse of the pn-RQRPA solution for a physical value:of the: nuclear
force and that the nuclear matrix elements have been found significantly less sensitive to
the increasing strength of particle-particle interaction in comparison with QRPA Tesults.
Thus, the pn-RQRPA provides significantly more reliable treatment of the nuclea.r many-
body problem for the description of the 0038 decay. T

For numerical treatment of the Ov33-decay matrix elements listed in Egs. (30) within
the pn-RQRPA we transform them by using the second quantization formalism to the form
containing the two-body matrix elements in the relative coordinate. One obtains [26]:

< Oy >= _\intig+J+T 27 +1 {JP .7'n }X
= T ) er+n{} = 7
I¥mimsJ

] < p)p B Jlf(rl2)7-1 Ol?f(rl2)'n Tl *7 > X
<of || [C;énl]] [P J™my >< J™my|J™mg >< J™my || [cFéa]s || OF > (35)

(2 represents the coordmate and spln dependent pa.rt of the two body transmon operator
of the OvB3p-decay nuclear matru( elements in Egs. (30). The short—range correlamons
between the two 1nteract1ng nucleons are taken 1nto account by a correlatlon functlon

fir)=1-¢°"(1-br%) with a=11fm® and b=0.68fm%.  (36)
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The one-body transition densities and other details of the nuclear structure model are given
in [22, 26]. The calculated nuclear matrix elements for the Qv33-decay of A=76 isotope

Table 1: Nuclear matrix elements for the neutrinoless double beta decay "Ge(0%) —7
Se(0*) within the pn-RQRPA.

Mern Men  Mery Mpe  Mera Mra

0.071 -0.025 2.6 -1.2 1.20 0.21

- v‘

Merg Mty M; M M, My

—034 -0.089 —649 88 -3.4 —132

within the pn-RQRPA are presented in Table 1. The considered single—pa.rticlfe model space
has been the 12-level model space (the full 2 — 4hw major oscillator shells) m'troduced in
Ref.[26].  The nuclear matrix elements listed in the Tabl.e 1 havc? befen obta%ned for the
gpp = 1.0 where gy, is introduced to renormalize the particle-particle interaction strength
of the nuclear Hamiltonian. ) .

According to ,our numerical analysis, variations of the m.lcl(?a.r matrlx. eleme.nts
Mg, My, My and M, do not exceed 15% and 30% respectively within the physical region
of the nuclear structure parameters. . ‘ ;

Having all the quantities in the Ov33-decay amplitude Eq. (25) specified we are ready
to extract the limits on the R, parameters from the non-observation of the OvG3-decay.

5 Ov@B-decay constraints on bilinear R-parity viola-
tion
Starting from the Eq. (25) we derive the half-life formula

[T%8(0+ = 01)] ™! = Gor|[ ML AP% (37)

1/2

Here Gy, is the phase space factor tabulated for various isotopes in Ref. [27].
We introduced the dimensionless parameter

A=(—%Z+;:-Zf;WN+TI§ wy + My T wa, (38)
where w; = M;/M, with i = §,A, N. The first, second and third terr'ns in this eguatif)n
correspond to the contributions of the neutrino, neutralino and gluino gr.aphs in Fl.g.
1(a,b).” Graphs in Fig. 1(c,d) contribute to the last term in Eq. (38). It is worthwhile
noticing that at typical randomly sampled values of the MSSM parameters Alz,.p, t&}nﬂ the
neutrino exchange contribution from Fig. 1(a) dominates over the other contributions.

12

The most stringent experimental lower limit on the Ov3f-decay half-lifc has been
obtained for Ge [21] ’ ) '

Ty " P+ 50%) > 1.1 x 109 years 90% c.l. - * (39)
With the nuclear matrix elements calculated in the previous section this lower limit
can be cast into the following upper bound

A} <1.0-107¢. ’ (40)

This constraint represents a complex exclusion condition placed by the nom-observation of
the OB 3-decay on the R, MSSM paramecter space. The individual bounds on the bilinear
Ry parameters g, (1) of our present concern depend on conerete SUSY model settings
which fix the values of My, o and tang in the left hand side of Eq. (40). o

Typical constrains fm: the 1st generation R, paramecters j,, (t1), 1 ALy (1)1))\',,, can be
obtained at the typical weak scale values of the MSSM parameters Al, = jy = 100Ge}
and tanf = 1. We also assume, as is commonly done in the similar cases, the absence of a
significant cancellation between the terms in the left hand side of Eq. (40) defined in Eq.
{38). Thus, we come up with the following constraints

li1| < 470KeV, (11)
[(71)] < 840KeV, (42)
‘I/Lx 11l € 100eV. C(43)
[(F)A ] < 55¢V ) (44)

Recall that in our notations (&) = (5.). To our knowledge these stringent constraints for
the 1st generation R, parameters were not previously considered in the literature ‘except a
parenthetic note in Ref. [3]. One can find in the published papers only those constraints
which involve the combinations of the Ist and 2nd generation bilinear R, parameters [12]
or contain only the 3rd generation oues [13].

To see how stringent are the obtained constraints we can compare -them with the
following one ' (

‘u < 1.3-1071 ‘ o as)

which is known as a most stringent constraint. on-the R-parity violation [20]. - This con-
straint was previously obtained - from the Ovff-decay by taking into account only the
superpotential trilinear couplings in Eq. {8). Consider for comparison'the dimensionless
quantity :

L 2 for (i) .
By v e N
with Msysy ~ 100GeV being the typical SUSY breaking scale., As follows from Eqgs. (15)-
(17) this dimensionless quantity sets the strength- of the RPM induced: trilinear formion-
sfermion-fermion interaction similarly to the coupling Aypy in Eq. (8). This makes reason-
able the comparison of the constraints placed on these couplings by the experiment. From
Eqgs. (41)-(42) we get an estimation - '

,\l,us 1079 to T : ’ : ’ )
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This constraint looks more stringent (if such a comparison is legitimmate) than that for A,
in Eq. (45). ’

After all we conclude that the R-parity violation within the 1st generation is restricted
by the OvfBB-decay to a very low level. Now this statement holds for the generic case of
the R, SUSY including both the superpotential trilinear couplings and the bilinear terms
in the superpotential as well as in the soft supersymmetry breaking sector.

This conclusion has some immediate phenonienological consequences for the other ex-
periments, in particular for the accelerator ones. For instance, among the two body decay
modes of the neutralinos

x — EWF EWF T WF, x — v Z, (48)

and similar processes open in the presence of the bilinear R, terms one can now safely
neglect the modes with electron or v..

We can also generalize the arguments used in the J2,SUSY interpretation of the HERA
anomaly [15]. It is believed that this anomaly can be explained by the s-channel squark
exchange qie = @7 — gje, xqi, xtq] between the initial quark-lepton state and the final
state particles. The quark-lepton vertex gge allowed in the R, SUSY models receives the
contributions both from the trilinear A’ couplings and from the trilinear operators induced
by the bilinear terms via the lepton-gaugino-higgsino mixing. It is a common practice
to neglect the 1st generation squarks in the above mentioned R, SUSY explanation of
the HERA anomaly. The argument is derived from the stringent constraint on the lst
generation X};, coupling [20] shown in Eq. (45). However, it does not take into account
the effect of the bilinear J£,operators. Now, having at hand the new stringent limit on the
1st generation bilinear R-parity violation in Eq. (41)-(44) we can extend the validity of
this argument to a general case of R-parity violation considered in the present paper.

6 CopcluSion

In summary, we derived the contribution of the bilinear R-parity violating terms to the
neutrinoless double beta decay. Alone with the analysis of the trilinear terms previously
made in Refs. [16]-[20] this completes the derivation of all possible tree-level contributions
to the OvfBf3-decay within the £, MSSM.

From the non-observation of OvB3-decay we obtained new stringent upper limits on
the 1st generation R-parity violating parameters such as the lepton-Higgs mixing mass
parameter p; and the vacuum expectation value of the electron sneutrino (7:). Then
_we discussed some implications of these constraints on the other experiments and, in
particular, on those which are running or planned at accelerators. We conclude that the

R-parity violating effects within the 1st generation, if exist, are very small and in most .

cases can be neglected in phenomenological analysis of observable effects.

A special attention was paid to the effects of the nuclear structure in the Qv 8-decay. In
the framework of the pn-QRPA approach we obtained the nuclear matrix elements which
are stable with respect to the variation of the nuclear model parameters within the physical
domain. Thus, we believe that our conclusions concerning the particle physics side of the
Ovfifi-decay do not suffer from the nuclear structure uncertainties.
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1 Appendix A

Below we present the mass matrices of the neutral and charged fermion sectors for the
general case of the bilinear R-parity violation within the MSSM field contents.

1.1 Neutral fermion mass matrix
In the two component Weyl basis
Ul = (w, —iX, —ids, HY, HY), (A1)
(A:2)
the mass term of the neutral fermions is
1 .
‘Cﬂ?ass = —§\pg)M0‘I’I(0) + H_.C;, ’ (A3)

The 7x 7 mass matrix has the distinct see-saw structure

[ 0 m
) "»
with 3 X 4 matrix ' : '

—Mzswcﬁ:ul Mzcwcéul 0 —H1
m= | —Mzswcguz Mzeweguz 0 —pp |. (A.5)
—Mzswcﬁu;; Mzcwcﬁu:; 0 —H3
originating from the R, bilinear terms in the superpotentlal and the soft SUSY brea.klng
sector.

In Eq. (A.4) M, is the usua.l 4 x 4 the MSSM neutrahno mass matrix in the bams
{ 7./\ -—’L/\3,H1,H2} fo . .

Ml 0o —MZSWCp 'MzSWSﬁ

’ 0 M. M. M ‘ :
M, = 2 zeweg ZCW B )
x ~Mzsweg Myeweg . 0 —~i (A.6)
Mzswssg —Mgzewsg*  —p 0

Here u; = (5)/(H)) and tanﬁ (H2)/(H\) and sw = cosfy," cw = cosby,, 'Sﬁ‘z
sinf, cg = cosf3..
In the mass eigenstate basis defined as -

, \I/(O)l = H;J‘I’(o)Jy - .. o e (A.7)
the 7 x 7 neutral fermion mass matrix My'in Eq (A.4) becomes dlagonal ' ‘
H‘MO-T = Dzag{m,,‘,mx,‘} . LY

* »‘ i J 53 K
where m,, and m,, are the physical neutrino and neutralino masses. For the cons1dered
case of the tree level mass matrlx the only one neutrmo has-a non—zero mass myl*— m.,, =
0, m,, #0. . .
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1.2 Charged fermion mass matrix

The mass term of the charged fermion sector has the following form

£, = —vTMa T, + He (A.9)

mass

in the two component Weyl spinor basis

vy = (er, ug, 77, —ir-, Hy), (A.10)
vhy = (ef, ub, T;, —iXy, HF). (A.11)

The 5 x 5 charged fermion mass matrix is

MO E
My = < E Mas ) (A.12)
where M+ is the MSSM chargino mass matrix
M \/§Mzcws;5
M+ = .
ot < ﬁMzCWCp 4 (A.l3)

The sub-matrices E and E’ lead to the chargino-lepton mixing. They are defined as

Ve2Mzeweguy

E=]| V2Mzewepuy pp |, (A.14)
\/EMZCWC,G'U-S 13 )
‘and
-0 0 0
E=— < Ml(?’ll-.‘ Mg)u" Méf)ui ) v ‘ (A.l5)

. where M® is the charged lepton mass matrix. In a good approximation it can be treated
as a diagonal matrix M® = Diag{m{®} with m{ being the physical lepton masses. Also,

~-one can safely neglect matrix E’ compared to the other entries of the full mass matrix
- (A.12) taking into account smallness of the lepton masses.

"' Rotation to the mass eigenstate basis

7 Tay = D5V 5 (A.16)

casts the mass matrix in Eq. (A.12) to a diagonal form
X ax (AN e 0] :
v (A ) My (A ) = Dzag{mi ’mxf}’ (A.17)

) ‘whefe ‘m,(') and ™+ are the physical 'éhargéd lepton and chargino masses. -
2 Appendix B

-ch're ‘we “give -a short account on the results of ‘the approximate diagonalization methoi
_ used in‘our analysis. )

5

16

2.1 Neutral fermion mixing matrix

To leading order in the small expansion parameters £ defined below, an approximate form
of the neutral fermion 7 x 7 mixing matrix introduced in Eqs. (9), (A.7) is [12]

WIT(] - Llegt —_ywT
== ( v S&.@ﬁg ) N,(V_ %éf) ) (B'l),
Here -
&a = %An iz = —%Ah | (B.2)
€y = % + 9: (M, + tzmzjlgl(\f}\)liin[i cos?“,Alei’ (B.3)
€u = _92(1\11 + tzulz;)‘;-)}(\jg}\)l(:)sﬁ cosfy, Mz A (B.4)

with i = 1,2,3. The deterinant of the MSSM ncutralino mass matrix (A.6) is
Det M, = sin2GM2,u(M, + tan? O My) — My Myl (B.5)
The 4 x 4 matrix N rotates the MSSM neutralino mass matrix A, to the diagonal form
N*M,Nt = Diag{my,} (B.G)

where my, are the physical neutralino masses. Thus, to leading order in € the mixing
within the neutralino sector is described as in the MSSM by

Xk = NunXl, (B.7)

with x/, = (—N, —iXs, H?, HY) being the weak basis.
The 3 x 3 matrix V®) rotates the RPM induced (%ffecth(t tleutrine mass matrix to the
diagonal forin

Pt megg VW) = Diag{0. 0. Y. » o b (BS)

The tree level expression for this mass matrix can be found in Ref.-[12].- The ouly non-zero.
neutrino mass is given by ’ ’

2 M, + tan? O M, I -|2

m, = ¢ B.9

2T Deth, (B.9)
where
A,’ = ,ll(l/"> - (H1>/l." , ) (““))
Let us show an explicit form of the neutrino mixing matrix

cos B3 0 —sinfyy . . E ‘ S .
,“'("): sinfyzsinfyy  costyy §i1}(92;;(;()591;, 1. B

S sinfly  sinfy cos@gcosbyy ) :
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where the mixing angles are expressed through the vector A as follows:

A
Al tan023 = -——2 . (BIZ)

tan 913 = T ee—,
NIYEWY As

The mixing within the neutrino sector to leading order in £ is described by

(w)* 1
LU= ‘/nk Vn

(B.13)

with v}, = (Ve, Y, v;) being the weak basis.

2.2 Charged fermion mixing matrix

To leading order in the small expansion parameters €7 and € defined below, an approx-
imate form of the charged fermion 5 x 5 mixing matrix introduced in Egs. (9). (A.16)

reads

Yo (vl e
(a7) ‘( U*eL” Ut(1—1ebTelry )° (B.14)
and
t_ [ (1= 3R eRNVE gryt )
A = 2 . (B.15)
(, ) ( VL (- R eRpt
Here
L _ g2 A L_ 9 sinﬂcosHWMzAh (B.16)
T V2 DetMy s T R T pt DetM,« 1
with i = 1,2,3 and
€f = pOteLs (MX;')T. (B.17)

This matrix is much smaller than £X by the factor my/Msysy, where m; and Mgygy are
the lepton masses and the typical SUSY breaking scale Msysy ~100GeV. Thus the mixing
between (e}, uf, 777) and (~idy, H;') described by the off diagonal blocks of the A* in
Eq. (B.15) is small and, therefore, neglected in our analysis.

In Eqgs. (B.14)-(B.15) the determinant of the MSSM chargino mass matrix is

DetM,+ = Myu — sin2fM{,. (B.18)
The other matrices are defined as follows:
UM,V = Diag{mxit}, (B.19)
ViMOV] = Diag{my,},

with M, and M® are the MSSM chargino and charged leptons mass matrices defined in

Appendix A while m,+ and m}i are the physical chargino and the charged lepton masses.

e
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