


1. INTRODUCTION

The cold ternary fission is a rearrangement process of a large group of nucleons
frbrﬁ the ground state of the initialt nucleus/ to the ground state of the three final
fragments. Like in the case of spontaneous and thermal-induced fission a ternary
component of a few tenths of percent is present also in the cold fission process [1-3].

In order to determine the configuration and the dynamics of the fissioning
nucleus at scission, the experimental data for the light charged particle (LCP)
emitted in the fragmentation process are analyzed and compared with the theoretical
results obtained via trajectory calculations. In the past a la.rgé number of studies
were devoted to the trajectory calculation, specially for o-particles in the point
charge approximation and without the account of nuclear forces. The alphas were
considered to be emitted from the neck region [4-9]. Thére» have been also some
authors who considered the finite size and the deformation effects [10-12] and showed
that these geometrlca.l factors are influencing sen51t1vely the a.ngula.r distributions
of the LCP.

However in all these approaches to the ternary sponta.ﬁeous fission the problem
of choosing the initial parameters of the trajectory calculations is complicated by the
fact that various theories give different predictions. Since only the energies and the
angles of the three particles can be experimentally determined, solving the equations
of motion backward in time will not provide a full information on the .geometric a;_nd.
dynamic characteristics of the fissioning system at the moment of the LCP-emission.
The only possibility is to probe various combinations of assumed initial conditions
and then compute the trajectories for comparison with the: available experimental.
data.  'In the‘hotrternar‘y fission the initial conditions z;,re so numerous that in

order to encompass as much as possible combinations, Monte-Carlo techniques were




employed [11,12].

’ For the cold ternary fission the initial COIldlthIlS are better known [3,14].. First of
all the fragment deformations are those of the1r ground states. This fact prompted
us to calculate the ﬁnal Cha.l‘a.CteI‘lSthS of the LCP emltted in the cold ﬁs51on of
BICt for different mass spllttlngs, and see how the static deformations and the
finite size are modifying the outcome of the trajectory calculation. Using forces,
cornputed through a double folded integration of the Coulomb interaction between
two quadrupole deformed heavy ions, we derived the equations of motion tor the
three-body problem, and solved them numerically . The solution of this set of

equatlons prov1ded the final angle of the LCP with respect to the fission axis and

1ts kinetic energy. We compared our calculations with the pomt -like trajectory and

 some experlmental consequences were discussed.

II. DETERMINATION OF THE INI’I“IAL CONDITIONS

-Usually, in trajectory calculations for the spontaneous fission different choices
are taken for the initial kinetic energies of the fragments emitted in the process.
For-example -the initial kinetic energy of the two main fragments and of the «
ernitted in the spontaneous ternary fission should be around 0.5 MeV according to
the statistical theory and the equipartition principle [7,8]. On the contrary, in the
dynamical theory of fission {13] the nascent fragments at scission are predicted to
be moving: with appreciable kinetic energy (20-50 MeV). The initial velocities of
the heavy fragments-are considered to have non-zero components only along the z-
axis.- The initial velocity of the light fragment v(0) is related to the initial velocity
of the heavy fragment vy(0) in-such a way that the total momentum of the two

ﬁssion«fragments_ is-zero along the z-axis; i.e. v(0) = »%%vH(O). This reasonable

assumption will be applied by us also.

Therefore we have to ‘determine the following 'initial conditions :- a) The tih
distance d; b) the kinetic energies of .the two main fragments EHO-’ Eio and the
kinetic energy of the LCP Ercp; c) the initial ’geometric conﬁguration of the LCP,
i.e. the position between the fragments and the angle 8%.p between the direction .
of motion of the LCP and the axis joining the two main fragments; d) The shape of
the fragments. ‘

The determination of these qnantit‘ies in the ternary cold fission ‘will be
facilitated, up to a certain cxtent,‘by the peculiar characteristic of the process, i.e.
the fragments are emitted with total kinetic energy TKE close to the corresponding
ternary decay energy Q;. In order to achieve such large TKE vallies: the three final
fragments should have very compact shapes at the scission point and deforinations
close to those of their ground 'states,fsimilar“to'the‘ case of the cold binary
fragmentations. One may next suppose that the shapes of the fraﬁgmentswill not be
modified when the fragments move away in the Coulomb field of each other. Thus,
the problem of the fragments shape in the initial configuration is easily established
for the cold fission. ' | “ o o B

In order to determine the kinetic energies of the two main fragments we make
use of the considerations derlved from the deformed cluster model that we emplm ed
in previous- papers for tlle study of the ternary cold fission [14]. In this deformed
cluster model the barrier between heavy fragments (for binary fission) and the barrier
between the LCP and the heavier fragments.(for ternary fission) can be calculated
quite accur;at:el‘yﬁduer to the fact that the touchingrconﬁgurations a,rc.sil,ualvcd inside
of the barriers.t For the two fragments; the ex‘it point from the potential barrier is dt a
tip distance,d around 3 fm, as can be scen in Figure l,bfor the case :2‘_,"8@111 — %Mo

+ '4Xe. This barrier is much thinner than the barrier-between the LCP and.the



heavier fragments, and thus in our model first the two heawer fragments penetrate
the potentxal barrier between them and later on the LCP is emltted Consequently
the méss distributions of the heav1er fragments are very similar to those of the cold
, bmary ﬁsswn of an initial nucleus leading to the same heavy fragments, i.e. 28Cm
1f the LCP is an « [15], or ?*?Pu if the LCP is '"Be [14]. The decay energy for such
a bmary fragmentation will be Qry = Q; — Qch, where (. is the ternary decay
energy of 22Cf and Qrcp is 6.22 MeV for « “and 8.71 MeV for 1°Be.

On ground of the cold fission characteristics mentioned above one may conjecture
that at thf; exit point (second turning point) of the two heavier fragments, their
p?tential energy is equal to Qry and their kinetic energy is equal to zero. When the
f‘\r‘agmentsmove apart, i.e. their tip distance increases, their kinetic energy increases
too. In order to estimate the total kinetic energy of the fragments we have to find
out ?‘,t‘ which tip distance the release.of the LCP is likely to occur and compute at

that point the potential energy, i.e.

"TKE(d)=TKEL+TKEy= Qru — Vou(d) L (1)

_-Using the conservation of linear momentum invoked above we have
b A
TKE,="2TKEy ‘ : (2)
AL

aﬁntl the individual kinetic energies in terms of the total kinetic énergy read

A;
TKE;= ——TKE
A+ AL

Now we tiirn to the problem of determining the tip distance d. It is reasonable to
suppose that d should correspond to the configuration at which the LCP is released.
In Figres2a and 2b'we plotted the ternary potential seen by the LCP (in this case’
a'n'k'd) in the field of the two heavy fragments. As we shall see later the LCP should’

stay between the two heavy fragments in a position which should avoid its absorbtion

=1 H) 3).

by any of the fragments. We see in Figure 2a, that for tip distances up to 7 fm, the
« is facing a thick barrier in the transversal direction. Eventually as the distance
between the fragments increases the pocket in which the « is located becomes more

and more shallower untill it disapears around d = 8 fm. Therefore one may conclude

from these qualitative arguments that the initial tip distance between the two main .

fragments should not be larger than that corresponding to the disappearence of the
LCP pocket. On the other hand for tip distances smaller than 6 fm the emission
of the « is strongly hindered by a thick barrier even for a rather high Zero energy’
E® > 3MeV (see Fig.3).

If we choose d = 8 fm for the example considered in Figure 1, then we get for
the total kinetic energy of the two main fragments T K E=46.21 MeV which is much
larger than the corresponding kinetic energy in the spontaneous fission. qu d=26
fm the kinetic energy will drop to T K E=28.78 MeV. Repeating this calculation for
other mass,splittings we conclude that the kinetic energy of the main fragments is
ranging in the broad interval 25 - 50 MeV, but as we shall see bellow it is correlated
to the kinetic energy of the emitted alfa particle through the tip distance.

We are left now with the determination of the LCP gepmetrical and dynamical
initial characteristics. For that we invoke a receipt proposed by Boneh et al. [5] which
consider as a possible choice for the LCP position, the point of minimum potential
energy (the saddle point of the p_otential energy surface). If the heavy-fragments

would have to interact with the LCP. via point-like Coulomb forces, this electrostatic

saddle point would be determined by Zy/Ray = Zi|R%;, where. Roi(t = L, H) is .

the-distance between the LCP and. the main fragment i. It is readily seenfrom
Figure 2a,b that in the case of our deformation dependent cluster qugl, where the
nuclear forces are introduced via the M3Y potential, this saddle point corresponds to

the position where the combined Coulomb and nuclear forces exerted by the heavy
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fragments on the LCP cancel each other and the potential surface wili have a relative

‘minima at this point. To establish more precisely the location of this electro-nuclear

saddle point, we use the multipolar decomposition for the M3Y potential [16], and

-the above condition translates to

5 VI an) _ -~ 0V £99( Ras) W
S aH T ORa
which is a generalization of the point—like’u‘Coulomb equilibrum condition. In the
laboratory frame of reference, we choose the z-axis as the initial fissioning axis of
the two heavier fragments, with the origin at the tip of the left (heavy.) fragment.

Then the location of the electrostatic saddle point is given analitically by the formula

d+ap+ay )
—a

1+\/ZL/ZH t k ’ (5)

za(d) =

where a; (i = L, H) aré the major axes of the quadrupole deformed main fragments.

“For the pair considered in Fig.1-3, z,(d) ~0.58d using the point-like Coulomb forces

‘and’0.51d in our model where nuclear forces are included too.

- As we already noted above the potential ‘energy of the LCP positioned at the
‘electro-nuclear saddle point will have a minimum in the y-direction. It is clear that
,t‘he“LCP can have no component of its velocity along the z-axis since this would

; »fresult ina possible absorbtion of the LCP by the deep potential wells of the two

heavier fragments instead of being emitted !. The only possibility fork the LCP- to

survive the descent of the decaying system from scission to the release point is to

. have a momenta directed only along the y-axis. . As can be inferred from Figure

12 the locus of the saddle point is on the bottom of the potential well. Taking

R T ot S B . . :
In the case we would employ forces with repulsive nuclear core the LCP will be once

" again prevented to move in the z-direction.

sections of the potential surface along the y-axis at z corresponding to the saddle
point, the resulting potential slice will look similar to a one-dimensional harmonic
potential well (see Figure 3). When the tip distance increases, the well becomes more
annd more shallower untill it vanishes completely. Following an idea from [11] we,
will approximate the potential Vi cp with an harmonic potential in the y-direction,

centered at the saddle-point

i 1
Viep = Vioddle + 50112 (6)

2

where Vigagre = Viep(z = ZsaddierY = 0)and C = ﬂ’u:z 0 is the stifness. It can be
v=

shown after some algebra that the elastic constant value is given by the expression

, 1 MWaon(Rai)|  AA+1) V:\o,\(Rai)) _
¢= ( - =5 (7)
_;H R?n &3 aRai o 2 Rai
where R,; is the dlsta.nce from the fr agment ito thc LCP (a) on the z-axis :
D
A

Ry = /— aH e
; 1 + 1 + ZL ‘
where D is the mter—fragment dlstance From he1e we get an e@tlmatlon for the initial

kinetic energy of the LCP supposing that it can be identified wnth the zero—enmg\'

in the harmonic potential well, i.e. o

Eiop = ;12-72 ¢ (9)

. micp
Consequently, a degree of uncertamty in the mltlal I\metlc eucrgy ocellrs also for
the LCP. For increasing tip distancc the kinetic energy of the LCP d(‘crcabm Ou(‘
might suppose that in the range 6 - 8 fln for the tip distance, the LCP has the

p0551b111ty to escape by tunnelmg or by thc dxsappearence of thc barrier. lurihvr

the velocity correspondmg to tlns l\metlc enclgy, va = ,/%&ﬂ- will havc a nonzero

component only with 1c<pe(‘t to thc Ij-aMS accondmg to the dbOV(’ (hqcusmon



III. TRAJECTORY EQUATIONS -

‘In‘ order to write down the equations of motion we have to‘establish the geometry
of the system not only at the beginning but also long after the release of the LCP. The
forces being central, and the initial velocities are in-plane the problem is simplified
b); a two-dimensional approximation. There will be required six coordinates and six
velocities, which are governed by a system Of twelve first order ordinary differential
equations. In Fig. 4, we see the three fragments and the forces acting between them,
just after the release of the LCP. Contrary to other works we take into account the
forces exerted by the LCP on the fragments. After deriving the initial conditions in
the previous section, taking into account the nuclear forces in the calculation of the
barriers, we proceed now to the calculation of the trajectories by considering only
the Coulomb forces. Since the kinetic energies of the fragments are rather high, this
approximation is good even in the point-charge approximation.

‘In previous papers [3,14,17] we used a double folding potential for the heavy-ion
intera_ction. Presently we shall consider only the Coulomb part of this interaction,
betrf'ecn two lons, i.e. |

_ p1(r1)pa(r2)
Vo(R) = [dr, [ dry L (10)

where p)(5)(7) are the charge ground-state one-body densities of the fragments. The

one—body dens1t1es are taken as Fermi dlStI‘lbuthﬂS in the intrinsic frame for axial-

symmetrlc nuclel

p(r) = —“e?_T (11)
- v l4+e =
with R(U) (1 + Xa>26.Y20(0,0)). In what follows we consider that the

symmetry axes of the fragments are lying in the same plane. Using the formalism

presented in [16], the interaction between two heavy ions with orientation wy,w, of

their intrinsic symmetry axes with respect to the fixed frame, reads.:

V(Ry2) = Z V‘:\;‘IQS(RI;,)P,(‘1 (coswy) Py (coswy) Py (cosRy2) (12)
A1,A2,A3,4 .
where
,\W(Ru) = '\‘—A"'\’/\ A C'\"\"\°Cﬁ"};"}:’FAl;\zz\s(Rlz) (13)

with P;‘ (cosw;) and Py *(coswy) being the associated Legendre polynomials which
descrlbe the relative orientation of the two fragments whereas P,\s(cos le) descrlbes
the orientation of the axis joining the two nuclei w1th respect to the laboratory
frame. In the present study the LCP is spherical and thus the interaction between

the LCP and one heavy fragment i(=L, H) will get a'simplified form
V(Ra) = vagf Rai)Pr(cos 0:) . (14)

The followmg approx1mat10n can be applled for the two heavy fragments : Since
their relative orlentatlon does not change s1gn1ﬁcantly at the beglnnlng of the
quasnclassncal motlon one can neglect the relatlve orlentatlon of the heavy fragments
V(Reu)= Y. VoS (Ria)Py(cosfry), . - (15)
AthzAs
| The force acting hetween a pair of fragment.s can ’bre n/ritten:

Fy=-VV(Ry). -~ - (16

.
*

The force actlng between the two heavy fragments is glven by:

000 (p
Fry=-—e;: Z (—QKJMEL—H)P,\3 (cos @) cos¢ — MPAS (cos ¢) sin ¢)

Arhzhs OR Rew /

B ov R =V R
- ’ey,\;/\ (——’%’-\MP,\,(coscﬁ) sm¢ -—R(—E?—)Pl (cos¢) cosd)) (17)
1A243 -\ 70 : : ’ : . -



, "Whemas the forces exerted by the fragments on the LCP read: "

ooorp. Voo‘o'Ra ]
FHa= €z Z %ﬁ(——H)PA(COS ¥1) cos iy — Z —’\—QI—Z’L(—H)P,{ (cos %) sin 1!’1)
A>0 aH A>2 oH

,a‘,ooo Ra ) .. OOORQ
- ey (/\Z)%— /\aoRz\a(H H)-P,\(cos‘l/)l)sm 1+ g%lﬁ (cosp) cospy | (18)

o ORa fye RaL

000 . Vv 000 Ra .
Fra=e; (Z a—Vi\o—’\(—RL)P,\ (cos1pz) cos g — Z -——’\—g—’\—(——LlP,{ (cos ;) sin 1/)2)

5 174 Ra 000 Ra
i < ey </\z>% ?——’\—;ﬁulP (cos pg) sin 2 + /\z); —_I\—Q—R/\Q(L—L)P/\l (cos 2) CO\S 1!’2) . (19)

The equations of motion of the three nuclei are:

Mprp= Frg— Fp,
Myrg = —Fry — Fy,

ma';a - FLa + FHa N (20)

Here we assumed that the two heavy fragments have the same multipolarity in
deformations. In this paper we consider only quadi‘upole deformations.

. The above system was solved numerically employing the 1soda package for
nrdinary differential equat»ions, ‘with automatic method switching for stiff and
nonstiff problems {18].

In Figure 5 a, b, c we presented the trajectory of the three fragments for the two
’ext‘reme’initial‘ condl;tions (with high and V;Iith low kinetic energies of the heanier
: _‘fragments) in\ a sequence of 10 time steps. The time scale is divided into increments
of At - 1.8x 10722, In figure 5a we display the trajectories of one of the most
asymmetric splittings, recorded in experiment, i.e. '*2Nd + o2y, Since in this case
the a feels.a stronger repulsion from the heavy fragment, it will be deflected at a
large; angle in the direction of the light fragment. In the case of the splittting 11Xe

+ 1%Nd this deflection will be less pronounced (Fig.5b) and for the more equilibrated

S » 10

splitting, i.e. 132Nd + ''9Pd, the a will Be only slightly d‘_eﬂécnted (Figure 5c). We
thus observe that in all the cases the a-particle is deflected in the diréction of the
light fragment, but with a larger angle when the initial kinetic energy of the heavier
fragments‘ is higher. This fact should be attributed to the low energy of the a (<-
1MeV) which makes it to feel for a longer time the repulsion coming from the heavy
fragment. In Table I we present the final kinetic energyﬂE‘{ and the asymptotic
angle 0/ for the thiree splittings mentioned above when we employ point-like and
size dependent forces. In aI.I cases we observe the decreasing of E/ with increasing
tip distance d.” The mcan of these two c'ner‘g.i’esAis not far from the value of (Ei)
= 16.0 £0.2 MeV which is the most probable a-particle energy prédict‘ed by the
trajectory calculation for the hot fission. Thus, the phenomenon of a-'particlekencrgy
amplification in the cold fission seems to follow the same pabt’te’rn li}\;e in‘norrnai
fission. This effect should be attributed énlely to the plledo'rninant effvent- of t‘}llé
Coulomb field and less to deformatlon or finite size eflects. Tt should alqo be 1emarl\ed
the near constancy of the final LCP kinetic energy for dxffereut mass spllttmgs at the
same tip dlstance, a fact already remarkod long time ago in spontareous fission [6]
In what concerns the angles at which a—particlesare emitted their dépcnldellce on
the mass splitting is obvious. Deviations from the axis perpendicular to the fission
axis increase with the mass ratio. The difference observed between tle two sets of
data points to an impprtant inﬁnencg of tI}e:gegnlgtrical factors, \\_!hi’cl'l,llo‘\»vcver does
nd@ alter the general trends of the process. ‘

Naturally one might’next aék i‘f tlle cxperinlental status of the problemn allows
the comparlson witlh the 1csults prcscnted in tlus papor Up to now tllcr( ‘are 10
special data on cold ﬁssmn a\allablc since from the O\permcntal qlde it.would mean
to set a trigger on neutronlcss cvcnts wluch is very difficult to attam in practice.

There are available data on thc alpha (and other particles) spectra, as a function

11



of the total exc1tat10n energy, reaclnng TXE = 10 MeV wrthm the experimental
accuracy performed by the Darmstadt group with the DIOGENI:S setup, and in a
more recent work at the MPI Heidelberg [19]. These data does not contain special
effects in the alpha spectra, when the cold ﬁssxon regime is approached, except that

the mean energy increases nearly linearly with decreasing TXE. This would mean

that 1f the linear dependency would be extrapolated to TXE = 0 MeV, i.e. when

4

R

the scission configuration tends to become compact, like in our model, the average
kmetlc energy of the o will approach the value 17.5 MeV [19,20]. According to
the calculations presented in this work a range between 12 MeV to 20 MeV should

be expected for the final kinetic energy if we consider that the a particle occupies

the lowest states in the pocket formed from the interaction with the two heavier

fragments. Therefore the expériment doesn’t show a distinctive a kinetic energy

distribution for cold fission, a fact which is in agreement with the calculations we

presented in this paper. In order to estabhsh more precisely (E,) we should carry
out Monte—Carlo calculations. The fact that the experimental value is slightly higher
than in hot fission (15.9 MeV) is a sign that the « is emitted earlier in cold fission,

according to the uncertainty relation for energy AFE - At ~ h.

IV. FINAL REMARKS

"We presented a receipt to determine the initial conditions ‘for trajectory
calculations in the ternary cold fission of %*2Cf. Compared to the case when
the fregments are emitted with high excitation energy, the initial conditions are
restricted to a narrower range of values as a consequence of the peculiarities of the

prodcess, mainly the compact shape of the fragments.

In our model the a-particle cannot be emitted at a tip distance larger than 8

12

fm, because as we showed for such a distance the « particle is no longer under the
influence of the attractive nuclear forces, and on:the other hand we disregard tip
distances smaller than 6 fm because the LCP wavepacket filling the lowest state in
the potential well has a small pr"obab‘ility to tunnel through the thick transversal .
barrier.

The location of the LCP was ﬁxed at the electro-nuclear saddle point, which is
also model-dependent. Due to the finite size and the deformations of the fragments
this location will be shifted with respect to the location of the electrostatic saddle
point, and consequently the outcome of ‘the trajectory calculation will be altered to
a certain extent. |

The initial kinetic energy of the LCP was considered to coincide with the lowest
level occupied in a one-dimensional harmonic potential well oriented perpendicularly
to the fission axis. This energy is decreasing with the tip distance.

As have been pointed by Halpern [6], there is no reason to believe that the third-
particle ejection rates should be independent of the initial angular momentum. In'
our case the spin of the parent-nucleus (**2Cf) being zero' the angular momentum
rmparted to the fragments and their relative angular rnomentum is mamly due to
the creation of a molecular conﬁguratlon at the scission point [22]. In the model
presented in this paper we didn’t took into account the influence of collective
molecular excitations, like bending or wriggling, nor the torques exerted between the
fragments during the quasiclassical moti~on. The inclusions of these supplementary
degrees of freedom could alter the initial configuration. This would be an interesting
topic for a future investigation of the scission configuration in ternary cold ﬁssion.‘
Moreover the evolution from scission to the release point of the LCP should be done
in a dynamical way, i.e. writing equations of motion not only for the translational

and rotational degrees of motion but also for the dynamical change of deformation,

13



because one might suppose that even if the trinuclear system is almost cold the
smé,ll excitation energy present in the reaction will induce a B-polarization of the

fragments [21}.
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TABLES

TABLE 1. The tip distance d, the initial kinetic energy, E9, the final kinetic energy .

Ef and the asymptotic angle 8. of the a, with point-like and with finite size Coulomb

‘forces -
* Splitting d(fm)  E2 (MeV)  EI MeV) 8L Ef (MeV) 6L
-+ Point-like forces Finite-size forces -
6 2.71 20.10 80.83 21.36 77.86
92K r+156Nd - 7 1.72 . 15.84 7877 16.91 75.70
8 0.85 11.25 75.42 12.10 73.14
; 6 2.68 19.87 85.03 . 20.96 ©  83.29
lbﬂwo#“xe 7 1.70 15.57 83.77 16.44 82.08
| | 8 S 0.82 110.82 81.63 1147 - 80.32
6 2.85 20.29 88.17 20.86  86.99°
16pd41328y: 7 1.84 15.86 87.69 16.31 86.27 -
8 . 096 11.53 85.68 11.19 86.93
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Fig. 1. The barrier between the two heavier fragments.
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