ОБЬЕАИНЕННЫЙ ИНСТИТУТ
 ЯАEPHЫX
 ИССАЕАОВАНИЙ

AУБHA

$3081 / 2-76$

E4-9758
S.V.Akulinichev, L.A.Malov

ON GIANT QUADRUPOLE RESONANCES IN ODD-A DEFORMED NUCLEI

E4-9758

S.V.Akulinichev, L.A.Malov

ON GIANT QUADRUPOLE RESONANCES IN ODD-A DEFORMED NUCLEI

Submitted to "Письма в ЖЭТФ"

Акулиничев С.В., Малов Л.А.

Описяние гагантских квадрупольных резонансов в нечетных деформированных ядрах

В рамках полумикроскопической модели предложен способ описания электромагнитных переходов в широком диапезоне энергии для нечетных деформярованных ядер.

Приведены результаты расчетов для ${ }^{165} \mathrm{Ho},{ }^{155} \mathrm{Gd}$.
Работа выполнена в Лаборатории теоретическои фиэики ОИяИ.

Препринт Объединенного института ядерных исследований
Дубна 1976
Akulinichev S.V., Malov L.A.
On Giant Quadrupole Resonances in Odd-A
Deformed Nuclei
In the framework of the semimicroscopic model a metho is proposed for description of the electromagnetic transitions in a large energy range for odd-A deformed nuclei. Calculation results are given for ${ }^{165} \mathrm{Ho},{ }^{155} \mathrm{Gd}$.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research

The structure of odd-A nuclei at present is successfully described within the semimicroscopic model taking account of pairing and residual multipole-multipole, spin-multipole, spin-spin and other interactions (see, e.g., /1/ and references therein). Such an approach allows one to describe the energy and structure of lowlying states of odd-A deformed nuclei ${ }^{/ 2 /}$. However, at energies of several MeV a detailed study of each level makes no sense due to strong increase in the density of states and its complicated structure. Under these conditions, nuclei should be described by means of strength functions and other averaged characteristics $3,4 /$

To determine E2-transitions from the state i to states in the energy range near $\underset{E}{\mathcal{E}}$ one may introduce the strength function

$$
\begin{equation*}
b(E 2, \mathcal{E})=\left(I_{i} K_{i} \lambda \mu \mid I_{f} K_{f}\right)^{2} \sum_{f}\langle i| M(E 2)|f\rangle^{2} \rho\left(\eta_{f}-\xi\right), \tag{1}
\end{equation*}
$$

where ε is a searched energy, η_{f} - the energies of excited states, $\rho\left(\eta_{f}-(\sigma)=-\frac{1}{2 \pi} \frac{\Delta}{\left(\eta_{f}-G\right)^{2}-(\Delta / 2)^{2}}\right.$, $\pi(E 2)$ is the operator of the electric quadrupole transition.

We make use of the intrinsic wave functions which are the eigenfunctions of the Hamiltonian including the interaction of quasiparticles with isoscalar multipolemultipole phonons ${ }^{\text {p }}$. The phonons are calculated within the RPA (random phase approximation) and are taken in an odd-A nucleus the same as in a neighbouring eveneven nucleus. Therefore in the odd-A nucleus there are no free parameters. Due to normalization of the weighted function the integral of (1) over some energy range
equals approximately the reduced transition probability to states in that range. The result thus is almost independent of Δ that influences only the smoothness of the function $b(E 2, \stackrel{\boxed{G}}{ }$).

The use of the properties of analytic functions allows one to dispense with solving the eigenvalue problem of the excited states of a nucleus: one uses just the property that the sum of residues at poles of a function, analytic throughout but a finite number of points, equals zero. Expression (1) can be represented as a sum of residues of some complex function at single poles which are situated i on the real axis and are the roots of the energy secular equation for η_{f}. Hence $b\left(E 2, \xi^{\text {g }}\right.$) can be found by determining the sum of residues of the function at all remaining poles of the complex plane ${ }^{/ 5}$.

In the numerical calculations we utilize parameters of the Saxon-Woods potential and interaction constants following ref. ${ }^{/ 2 \%}$. The effective charge is taken zero, the averaging parameter $\Delta=0.15 \mathrm{MeV}$. Results shown in fig. 1 correspond to the transitions to levels with all

Fig. 1. The strength function of the E2-excitation for 165 Ho (dashed curves are individual strength functions for $\Delta K=0,1,2)$.

Fig. 2. The strength functions of E2-transitions to the ground state $K^{\pi}=3 / 2^{-}$in ${ }^{155} \mathrm{Gd}$ from levels $\mathrm{I}^{\pi} \mathrm{K}=1 / 2^{-} 1 / 2$.
admissible values of the total moment I_{f} for definite K_{f}. For ${ }^{165} \mathrm{Ho}$ we calculate the quadrupole resonance characteristics: the position of the center E res $=$ $=12.5 \mathrm{MeV}$ (it decreases with including the isovector part of interaction $/ 6 /$), the width $\Gamma_{\text {res }}=3.5 \mathrm{MeV}$, the reduced probability of excitation $B(E 2) \uparrow=0.14 e^{2}$ barn 2, the contribution to the energy weighted sum rule $\mathrm{EWSR}=25 \%$. Experimental results $/ 7 /: \mathrm{E}$ res $=(11.6 \pm 0.2) \mathrm{MeV}, \Gamma_{\text {res }}=$ $=3.6 \mathrm{MeV}, \mathrm{B}(\mathrm{E} 2) \uparrow=(0.15 \pm 0.03) \mathrm{e}^{2}$ barn 2, $\mathrm{EWSR}=$ $=(21 \pm 4) \%$. Three peaks observed experimentally at different scattering angles (see $/ 7 /$) correspond evidently to transitions with $\Delta K=0,1,2$.

It should be noted that the resonance in the odd-A nucleus differs slightly from that in the neighbouring even-even nucleus. The difference consists in an additional splitting of each peak.

The proposed calculation procedure of the strength function is convenient for studying both the giant resonance and the electromagnetic transitions around the
neutron binding energy. The experimental research of transitions in this energy range can be realized, e.g., through (n, γ) reactions.

From fig. 2 and the table it is clear that the same calculation produces the transition probabilities for individual states at low energies, and the transition probabilities for groups of states with definite K^{π} at intermediate and high energies.

We are grateful to Professor V.G.Soloviev for useful discussions.

REFERENCES

1. В.Г.Соловьев. Теория сложных ядер. Наука, М., 1971.
2. F.A.Gareev et al. Nucl.Phys., A171, 134/1971/; Ф.А.Гареев и др. ЭЧАЯ, 4, 357 /1973/.
3. О. Бор, Б.Моптельсон. Структура атомного ядра. Muр, M., 1971.
4. В.Г.Соловьев. Препринт ОИЯИ, Е4-8847, Дубна, 1975; Л.А.Малов, В.Г.Соловьев. Препринт ОИЯИ, P4-9652, Дубна, 1976.
5. С.В.Акулиничев, Л.А.Малов. Сообщение ОИяИ, Р4-9672, Дубна, 1976.
6. Г.Кырчев и др. Препринт ОИЯИ, Р4-9697, Дубна, 1976.
7. N.Marty et al. Nucl.Phys., A238, 93 /1975/.
8. T.Tveter, B.Herskind. Nucl.Phys., A134, $599 / 1969 /$.

Received by Publishing Department on May 3, 1976.

