


1. »Introduction

It is known that Lotka-Volterra systems (LVS) of Ordinary first-order
Diffferentia.l Equations (ODE) are applied to describe some kinds of nonlin-
ear interactions in various branches of science. Historically, LVS appeared
to model interactions between interconnective biological species [1, 2], and

to study kinetics of chemical reactions [2]. Later, LVS have aroused consid- .

erable interest due to problems of the mode coupling of waves in physics of
lasers [3]. Interest in LVS was revived by the paper [4]. It was established
there that the fine structure of spectra of Langmuir waves in plasma is
described through a special VS with all the coefficients being equal to £1.
The next step was made by L.Brenig. He proved [5] that a large set of
QDE’S (the so-called generalized LVE) implied in various fields of physics
blf)logy, chemistry, and economics, can be reduced to LVE by quasimono-,
'mial transformations of the variables. Korzukhin,-as has bee}l reported in
.t;le book by Ebeling [6], proved the following theorem:

; v

dC;/dT = E(CI’CQ,...,CJ), z = 1127_”’f’

where C,-' is the concentration of the i-th reagent and F; is an arbitrary
polynomial.of non-negative integer power,

it is possible to build at least one asymptotically equivalent chemical re-
acting system.

Thus,' due to this fact, arbitrary nonlinearities are permissible within the
chemical kinetics.

. The formal reacting system by Lotka [2] is written as a system of chem-
ical arrow equations

A+X, 2 o2x,,

Xi+ X, =5 2X,, (1)
X, 2 F

and is described through Lotka’s system of ODE

. Xp = AX; - AX X,
.X’z = z\’l .¥2 - X 2.

—_
o
~—

where X, = Clkz‘/kg, Xy = Cokyfks, A=k Cy/ks. 7 = kst. It must be
remarked that this form of equations can be written under the assumption
Ca (a concentration of A) = const.
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Now we consider the three-component system of ODE

.fi:l = ar T3 — Y12, i
&y = Buwatyms, . @)
fk3 = —ar &3 /3;1}2.’1{3. ‘ S v

The syétem‘ (3) is a sbecial form of VS, which was inttoduced in (’)Lli"“’p‘a-
pers [7, 8]. Solutions and a detail investigations of (3) are given in'our

papers [8, 9, 10].' The peculiarity of (3) is the skew-symmetric matrix of

coefficients. As a result, diagonal terms are equal to zero and that is why
term"s pr'oportioxial to "X;Xi are absent. Besides, there are no linear terms
in the system (3). It means, from the chemical or formal kinetics point of
view, that the left-hand side of appropriate a.rréﬂ'v"eqiiz{‘tioné' cannot con-
tain terms like 2.X, where X ‘labels an arbitrary chiemical substance. - For
example, the reaction 2§ — T"—\{—ﬂ.sstipﬁldt.eé' in the corresponding’ differ-

ential equation a term proportional to C%, where S and T are substances

and Cs is a concentration of S in the common chemical notation.
Let us notice, that VS is.a subcase of equations LVS (1]

& = wiy, i=1.,N; wherey = Ar+ b 4)

if there exist such B; # 0, that fB;a;; = —Bja;i, but system (3) is its subcase
(B =1t =1,....,N;b= 0). Moreover, in turn, system (3) is the general

" case of VS with antisymmetric interaction matrix (see [9,10).-

We attempt to find some example of a chemical system that is described

* with in those differential equations. .

2. Conversion of formal kinetic

* The formal kinetics point of ,\'//'}i:ew is that an actual chemical process 1)
is described by a set of chemical equation formulae approximately which

in its turn that 2) produces a set of ordinary ‘differential equations. After

* solving these equations’ one can study some of-their properties and of real

chemical reaction, if he is lucky. '
_ The reverse way to deal with this problem is to obtain a set of chemical
equation formulae for a given set of differential equations, so that the
kinetic properties of a real chemical process are described in terms of the
properties of solutions of those differential equations. S
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One can say it’is not important,- if there are no chermical equation
exactly for these differential equations because real chemical phenomena
are described by the known formalism of chemical equations only approx-
imately. But from a theoretical point of view it is very important to know
that no finite set of chemical equations will be sufficient what ever de-
tailed the -description of the processes treat may not bc (but in tho same
formalism).

:We cannot give a 1egula1 rule how to get a Chemlcal equatlon from the
: dlfferentlal one. But if we can enumerate all sets of chemical oqnatrons in
some formal language (maybe some of the mcntloned sets of equations can
be found. meanmgless but later on thls \Vlll not, lea(l to consequen((‘s) we
hope that it will be, found in the course of enume1at10n ifa su1table answer
. exists.(using the direct kinetics couespondence rule to verify it). ‘So, one
needs now only to. fmmulate the e\act deﬁnltlon of thls enum( rable for mdl
class. '

‘3. Class definition .
Let us consider the class K of dynamical systems

(AD»PD»QD) ERCEE

where Ap ='{A;, Ag,. .} is an, alphabct that is, Lhe ﬁmte list of (hemlcal
'substances” ‘and variables of the same names, .

Pp = {P1,P3,...} is the finite list of schemes of chomlcal loacllons of
the form

ot
~—

“iPitanAr appAa + . ‘E“"ﬂnA.l;‘*.’ PiaAs A+ ..y (!

where all aij, Bij, k; are differrent symbols.
Qp = {Ql, Qz, Jis the list of ODE in the one-to-one correspondence
-to each. vauable of the alphabet AD of the f01m o

'dA"/(]t = ZP'EPD ki(ﬂji — OJ,) HAk€4D Aak'. -~ {6)

€

Any set of ”formal chemical equat10ns may be 1ound as a member
“of that class and .vice versa: some set of. dlffelentlal eqﬁatlons may be
- found: there. . The -equations are con51de1ed equal to cach Ot]l(’l if they
are identical after substitution of. some numbets or expwssmns mstcad of
symbols aij, Bij, ki.

Now one can formulate any problems, concerning the existence (or
nonexistence) of some schemes. so that the predeflined ODE satisfy ‘them

or may be converted into t.hos(;‘. : v
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4 The problem

The problem is the existence of a sy stem D-in the class I “such that
its component Qp has the form
QT S YT e .
N Byz+yyxe. e
wond o ”—‘0':.17.—A/j,;(yv.:; Co

o

5.. Solutlon

Ing g,(‘nelal the pl()l)l(‘m stated may I)(‘ um(‘sol\ (’(I or 1(‘801\ (ll in nonan\ e

! BE
sense. But this plol)]('m las a simple so]ullon ; ‘( L
ey ALyl ‘
Ly B B T I TP (8)
ko 5 .
4 — 2w,
where k; =7, ke = =3. k3 = a.
[y T4
6. Growth and dlSllltegI‘atIOIl
. ifl Sy T i '
The well - known case1s- . o4
_ CAp = {a), .
i PD—{P nx———»/)’l] o SR (9)

Ql)“—‘{Q\~l—’~(ﬂ—0) oo

HEB—-a)>0it Conesponds to “lO\\lh othon\lso to (hxml(‘nrnlion. :

A more goncml équation- R RN T
T = f(y), with:being Qlf',‘_('(')1,1t.i‘|1\|ous [(y) # () _ o : (10)
is ot the same I\md (lm‘ to the conversion«. ;. e ’
e = 7%'"% ' dn(l I\( f— n) = I ‘» '(11;)



. Let ‘1_1s t1jyeatm_the";case ‘

Ap = {r}.

Py :age K, A

PD= f.‘ o :
7 \P“,:.‘a"?] ki e

s Qo= {QetE = By ki - e

for some simultaneous processes of growth and clisintegra\tion.‘ ‘

The system (12) may have.some ctitical points (where the right part
of ODE equals to 0), i.e. stable, equilibrium points of the kind of a focus.
No other kind of critical points exists'in one-dimensional case.

. .- Any equation of the type

T ).

el/,\_s,e

g

) quals d set Of /(’l()(‘S
i1t
A

whose finite set of Cr'it'ic‘alé’ci);yints‘ (l\:'hcref(y)

Z?_—.l ki (i3 - G‘,‘);I_"f'"{yz (),‘

«

is of the same kind as (12) due to"the conversion satis{ying the equation

!‘n’:r ’ 'IU
oy ki(Bi—ag)r f(y)

glE L

7 Case of two substances
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,,m r».w \’fr;!,(

Let‘us treat the case

le = {’l 7/}
" Pp = {P:ajr+ oy — tha + fay), (13)
Op=1- Qi@ = k(fh — en)ey,
Qv ry = l\(52 — az)aciyt

,,_

lt is easdv seen that the mteglal curves of those ODE are
{, 5 ‘ i .?( ¢ J—-Zf g: +C H";": ‘ v . 4\

where C is5 an arbltlaly conmstanty F oL he .
. The set of cutlcal points of ODE mclude the union of coor (lmdle axes \,/
(z=00ry=0). !

PP ~~Pi:a,-1A‘1+a,-2A2‘+‘~. -—-ﬂzzA1+ﬂ.2Az+ e (18)

8 Llnear ODE’

- Let us consider’ such a subclass of the class of dynamlcal systems, whlch
has a;;'in (5) all equal to 0 or'1 only but only one coefficient ;. equal to
1 for ‘each equation P;..

‘It-is well known case of lmeal ODE‘s All sets of cutxcal pomts in that
case are lmear subspaces. ' : : -

9. Quadratic ODE’s

~ Let us consider such a subclass of the class of dynamical systems, which
has a;; in (5) all'equal to 0 or 1 only but no more than two coefficients «;;
equal to 1 for each equation P;. :

‘Itiis. the case of Lotl\a-Voltena systems (LVS) The reason for such a
constlam is that known correct kmetlc processes, have chemlcal equatlons
which may contain one, two or three substances in their left- hand side. In
other cases those equatlons must be deteuled w1th the aid of 1ntermed1ate_
substances ‘ A i

pthe s Ty s :;i“,

10 Qualltatlve klnetlcal con51derat10n.
Examples i

As is known foxmal reactxons are usually wrltten in: the form

TS
IR

where both the arrows have their ky, ko > 0 It isa 1estr1ct10n on the origi-
nal class of dynamical systems and the problem defined may be unsolvable.
‘In'a formal kinetical context this is meant that reactions are inter pleted
as revexslble quas1statlonary ones. Really, at each given instant both the
d1rect and reverse reactions occur.- This difference between reactions-men-
tioned above leads to a certaii‘difection of the course of reactich:until the
point of equilibrium’is reached.* Let us’suggest -existence of some corre-
spondence between equatlons (8)"and certain real‘chemical ‘reactions. In
that case we can say, that' those reactions can be described'only:in the
limit of ky;—0 (see eq. (14)). In other words, they must be asymptotically
non-reversible. o : EEEIET AN



In the case of Quark'physics the above scheme of reasoning may be
applied too. Let us now consider a "quark” gase composed of three sub-
systems with equal numbers of quarks coloured in; say, blie (b), green (g)
and yellow (y) colours, which is confined within a closed bag. At equal pro-,
portions of colours the system as a whole we shall assume to be colourless.
Let us call‘collisions of quarks of the same colour elastic collisions, and
collisions of quarks of different colours—inelastic. Further, let us define-the
following rule of colours transfer: a blue quark changes its colour to green
after a collision Witha green one, a green quark-to yellow after a collision

with a yellow one, and a yellow quark becomes blue after a collision with

a blue ope,.i\.e.ﬁ o

o bbg—gtg gtyouEY, yhbobED S )

Given this rule of colour transmission, when there are three quarks only’

in the bag any 1"q‘hdofmvc1ioicé of the first collision to take place inevitably
leads to'a causal chain of the processes (16); resulting in the coloured final
state.Indeed, e REAREI Bhs s

btgog4g gty—yty gty—oyty.  (16)

which corresponds to the following chain of changes of internal states inside
the bag: bgy — .99y — 9yy — Yyy-. Thus, the last. quark to enter "the
game” is the one to 5 win”. because’ his ‘antagonist is lost in the ™irst
combat”. EREE R S '

When in our “hadron” the number of quarks of each colour is Yvery
large” (that correspond to the current quarks representation in the quark
theory) and all three inelastic reactions run with the same inteusity,

“then the object can be regarded as colourless during periods of time that
are greater than the mean time of collision. Supposé now, that the ob-
ject is absolutely stable, so that we can’t:fix; the fluctuations of 1t colour
by ‘means of 'measuring ‘-r‘a.nd'(')n'l_ fpa.i_ntvingwo‘f. its decay _products statistics.
‘Then we cany on the same basis, construct.a mpdﬁelﬂwithout,'a;11y' elastic or
“inelastic collisions within the bag., In other words ,if the lréa;ct.'ioné within a
compound ‘system form.a closed cycle, vtvh‘en;_s,t;(j;tis‘tihcva.l, e‘qi_lizil‘ibi‘ium camiot,
“be distinguished from the absence of dynamical microscopic interactions.
. ~“The most part of the solutions of eqs (3)describes the statistical equi-
librium:in-a system’of three isolated phases., T hat is-why we cann:ojt;"té.lge

~initial conditions.with-one of the phases absent in.order to achieve an "equi-

~librium”- solution, -and the system, in "quark” terms, inevitably acquires
one of the two remaining colours. ‘

S

It should be pointed out, that the aperiodic solutions of the system (3)
posesses, by the following remarkable property. Namo]\ this is the déift
-of representative point on, the phase triangle into any of its corners-where
in the very vertex any two of three phases dis\gppéa’.r‘,k(’ty.]{mt tcdrréspbgnd
to colouring of the object in consideration). This state occurs in infinite
period of time. I VD RS CLEE SRS SR
~In the physics of real quarks such a situation is impossible due to an
additional condition: the exclusion principle for fertions’ which prohibits
the presence of two quarks with the same colour (and the same other
quantum numbers) within,a,common well (a given hadron), i.e..in the field
?f action of their generalized mean potential. Moreover, the essential point
in our context is that the quark-gluon quantum field t11e01'~\";f=oi"l)'iy(ls‘the

" “quark:quark interactions at'small distances in' general. which is called the

asymptotical. ultraviolet freedom of quark. -1

Lo
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. It is.shown in this paper that the Lotka;\’olVt,ér‘ra‘—ki‘l)l,d;/é__\'.;yt.kgn‘;of ODE
stipulates a formal chemical-kinetics system written down in a usual for-

. VR PR : 2 ]
3 mal’)s'ry_l‘l,tqu‘a.uQ\_\,”‘eq}\;‘z{n&tﬁ\ons. Qn an assumption of existence of some cor-
“respondence hetween equations (8) and certain real chemical reéactions we

can say that those reéactions can be described’only in'the limit:of kg —0 (see

_eq. (14)).and, in other words, they must be asymptotically nou-reversible.

.- We discuss a possible int\crp}{et,é{iion of the mathematical object (3) as a

) . 1 K ; . UL e, e
.+(multi)quark colourless one consisting of three painted interacting species

f)f quarks. The system (3) has éﬁygs"l‘)’e‘cia,l {fo:f;h_ ,SEQV‘S_.' ‘which was'introduced
in our papers [7, 8]. The peculiarity of (3) is thef'Ske'/\'\;-‘syln‘lﬁét1"i'ciﬁmtri.\' of

- coeflicients. Solutions and detailed investigations of (3) are given in papers

8, 9? 10]. But now we realize that a cl@s§iﬁcatioq,of\.‘splu_tkimjs eq. (3) must
be doné asa whole: It-will:be given in the next paper.. o
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Hy6osuk B.M., Tanbnepun A.T., Puxsuuxuii B.C.
CoO0TBETCTBHE MEX/Y XHMHYECKHMH CXeMaMi
H JHHaMHYeCKHMH cHcTeMamHu Jlotka—Bonsteppa

E4-97-417

Iokazano, uro cucrema OJ1Y tuna Jlotka—Bonsteppa
x=0axz-Yxy, y=Byz+yyx, z=—-azx-Bzy . 1)
06yciaBnHBacT HeKOTOpYHo hOpMATbHO-KHHETHYECKYI0 CHCTEMY B hopManH3Me CTPEMOYHBIX ypaBHeHHil,
HMEIOULYI0 BHIL . . .
x+y—=o2y, y+z-2o2z z+x292x, e
e k, =7, k, =-B, k3 = 0. Tlapa u3 cucreMbr OJY H cHCTeMBl CTPEJIOYHBIX YPaBHEHUH MPHHAIEXUT

BBEJCHHOMY B paboTe K1acCy AHHAMHYECKHX CHCTEM, ONpEIeiISeMblX aThaBUTOM NEPEMEHHBIX COCTOSHUS
H 33aKOHaMH JIBHXEHHH, 3alIHCaHHBIMH B (hopManTH3Max Kak cTpenoyHsix (AE), tak u nuddepeHuHansHex
(ODE) ypasHeHHHt B BHAE COOTBETCTBYIOUIMX cmHCKoB. OGCYXIaeTcs BO3MOXHOCTh MHTEpNpeTaluH
Maremariyeckoro ofnexta (1) Kak «MHOMOKBapKOBOro» Genoro (6ECUBETHOrO), COCTOSILETD H3 TpeX
COPTOB OKpalIEHHBIX B3aMMOICHCTBYIOIUMX KBAapKOB, MPHYEM TaKHM 00pa3oM, YTO HX [EpMaHEHTHOE

TPEeX4aCTHYHOC B3aHMOJICHCTBHE HE pacrmajacTcs Ha HBYXYaCTHYHbBIC B CHIY AHTUCHMMETPHYHOCTH
MaTpHLIbI B3aHMOXEHCTBHS.

PaGora BbinonxeHa B JlaGopatopHi BHICOKHX 3Heprui, B JIaGopaTOpHH TeOpeTHYECKOH (PH3HKH
uM.H.H.Boronio6oga, B JIaGopaTopHu BEIYMCIHTENBHOH TEXHHKH H aproMarn3auud OMSIH.

CoobeHue O6beIMHCHHOTO HHCTHTYTA SepHBIX HcctegoBanui. JlybHa, 1997

Dubovik V.M.. Galperin A.G., Richvitsky V.S.

E4-97-417
The Correspondence between Chemical Schemes
and Dynamical Lotka—Volterra Systems
It is shown that the Lotka—Volterra-kind system of ODE
x=oxz—yxy, y=Pyi+yyr, 1=—azx—Bzy 0)]

stipulates a formal chemical-kinetics syslcm wrmcn down in a uxual formalism of arrow equations as

A+V—~)2V y+z ——>22, Z+x——>2x : 2)
where k; =7, k, =B, ky=a. A couple of systems of ODE’s and arrow equations belong to the class X
of dynamical systems D = A, P, Q”) introduced in the present paper, i.e. dynamical systems that are
defined through their variables of state (so-called alphabet A,,) and laws of motion written down both
in the arrow equation (AE) formalism (a list of AE P,)), and the ODE one (a list of corresponding ODE's
Q,,). The problem is the existence of_ such a system D in the class X that its components Q,, could be

written down as AE’s. The correspondence between equations (1) and (2) give a simple solution of the
problem. We discuss a possible interpretation of the mathematical object (1) as a (multi) quark colourless
one consisting of three painted interacting species of quarks.

The investigation has been performed at the Laboratory of High Energies, at the Bogoliubov
Laboratory of Theoretical Physics, at the Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 1997




