


1  Introduction.

The Lotka-Volterra equations (LVE) are systems of ordinary nonlmeal
differential equations of the form

=, t=1,...,N; wherey:Am—{—b; (1)

The Volterra equations (VE) are a Specml case of the LVE [1 [ ], when there
exist such §; # 0, that o ‘ ,
Biai; ‘="—ﬂjaﬁ-' R (2)
In'the odd-dimensional case of the VE, the matrix A is degenerate. Initially
even-dimensional systems were studied with variables coupled in predator-
prey pairs, admitting classical Hamiltonian approach (see [2]) with non- -
degenerate symplectic structure. The classical approach, however, cannot
be applied in a straightforward way for odd-dimensional systems, and also
in even dimensions, when the equations for the central equilibrium point p

Ap=—b ) (3)

gives p; = 0 for at least one 7. In the biological implementations, the de-
pendent variables x; are regarded as real positive nuinbers, representing
- populations of species i, the components of the vector b are called linear
growth rates, or malthusian terms, and A is called the interactions ma-
trix, the diagonal terms describing self-interactions of species, and the off-
diagonal terms being responsible for interactions between different species.
The terms of interactions matrix A and the malthusian terms b are ar-
bitrary real numbers in the case of the general LVE. In the case of the
VE, the terms of the interactions matrix are not completely arbitrary, for
instance, the self-interaction (diagonal) terms are all equal to zero.

The Volterra lattice model, usually written as 4 4N, = N; (Niy1 — NiZy),
studied with the Hamiltonian methods in [3], known for close relations
to the Toda lattice model and the Korteweg-de Vries equation (see {16,
18, 20, 19]), and cited by Giimral and Nutku [8] as Faddeev-Takhtajan
system, turns into different subcases of (2) under different boundary con-
ditions. For example, the 3D case of periodic boundary conditions (22)
complies with the form of “ABC-matrix” (4), used in [5, 4, 8], while the .
conditions, used in {16], do not. Both are subcases of the general anti-
symmetric interactions matrix studied in [21], which, in turn, is a subcase

(B: = 1, Vi; b = 0) of the VE, and the latter are a subset (2) of the LVE
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(1). We classify the systems with multiple pairwise interactions, called
LVE in [17], as Volterra equations.

To make things clear, we use the definition of the LVE and the VI com-
plying with that given in [7, 11], the works that we cite most extensively.
But, in contradistinction with (7, 11], we do not assume the “natural”
z; > 0 conditions.

2 Bi-Hamiltonian structure.

The first example of a bi-Hamiltonian structure for an LVE system of a
special form was given by Nutku [4]. For the system studied earlier by
Grammatikos and others [5] with “ABC” interactions matrix:

0 C 1\ /A
A= 1 0 A 5b=]p | ; (4)
B 1 0 ‘v

on the conditions
ABC+1=0,v =B~ )AB
for the constants of motion

H, =ABlnz,—Blnz,+1Inzs; H; = ABzy+ 23 — Azg+vina; — plnag
‘ (5)

he has written Hamiltonian equations as
&t = JAVHy = JEV H (6)

with the antisymmetric Poisson structure matrices J; and J; which we rep-
resent here by corresponding vectors j; and j; so that j; = ((J;), —(J))*, -

(JE)IZ)T:

7 = (=223, -BC:vian, C$1$2)T k | (7)
: Je= ($11?21‘3,—C$1$3(-”C2 + V), C$1I2(Ail73 + ﬂ))?‘ s - (8)
satisfying the Jacobi identity. -
CJHr g =0 (9)
2 -

‘the conditions for the existence of the primary invariant type Il are (2N —

In the 3D case, the Jacobi identity lor the Poisson-structure matrix J.

represcuted by vector j. becomes
(jirot j)=0. o (10)

which is recognizably the condition of the theorem of Frobenius on the inte-
grability of Pfafl’s form, the fact being more than a mere coincidence, and
subsequently substantially used in [8].  However, the “ABC-matrix”, on
the terms of the constraints used, is a very special case of the interactions
matrix of a Volterra type. ‘ ' '

3 The primary invariants of Cair6 and Feix.

The invariants of motion for the LVE of the most general form were studied
in [6, 7] by means of the generalized Carleman embedding method. These
invariants come together with certain constraints and have been classi-
fied by Caird and Ieix [7] into the primary invariants’ of three types. the
sccondary invariants and those deduced by rescaling.. o

If and only if det(A) = 0, the primary invariant type 1

. ;\', : !’ : - ‘
I[:H;l‘?'fSt (11)
=1 : Sy ; '
exists with a; and s satisfying
ATo = 0. 5 = <(a. D). (12)

Defining the auxilliary matrix D and the vectors n and diag(A) according

to

dyy=ag —ajjpyn = (L1100 l)T. diag(A) :((1.11,(1.22,..-..n,\g\')'];. (13)

1)(N — 2)/2 equations .-
—[?ijk = (lij(ljk(lki + ([J,(IL](/,;\: 0 S ‘ (lhl)
together with the conditions | A -

by =by=...= by = by, i’-l‘la.t..is‘;gb”——f bgn. ( [



The form of the invariant type Il is

N
. !
IH:HfC,C"( $1+Z£—1£Il) , (16)
=1
where «; and s are found from the equations:
ATa = —diag(A), s = —bo(1 + (@,n). (17)

~ Considering the time dependence, Cairé and Feix state, that ¢ = 0 when
N is odd. This statement is based on the assumption  rank(A) = N
which does not appear among the conditions, but is used in the proof
of their theorem and becomes: not. valid, when det(A ) =.0. Here is the
example that makes this clear: o N

| 345\ /3 | |
‘ A=]|2 3 4 ;b= 3/ ] AT, = .”[?;3:1,‘3(——171 —ry— .‘1‘3)(’1"—3'. (18)
1 2 3 3 o ‘

The primary invariant type IIT of Cairé and 'Feix

I]u = Hl (1 + Z —11) st , (19)

exists on V(N —1)/2 conditions
’ agg

R,‘j=?

dij + %ﬁ-’d;,-.:' 0. (20)
el

For this invariant, @ and s are defined from

ATa = —diag(A), s = ~(a, b). (21)
There is a certain correspondence between invariants II and III in' the
neighbouring odd and even dimensions that Cairé and Feix have discov-
ered. However, for the primary' invariant III their statement is that s = 0

for even N. The controversial example for the latter statement is the same
as (18) with an addltlonal equatlon

3t

Ty = x4(—3 — 3r4) Ty =z :zr3;r4_1(1 + o+t as+ag)e”

We can see from the given examples, that the conditions s = 0 for the
primary invariants type II in the odd number of dimensions and type IIT in
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the even number of dimens‘ions,to be explicitly independent of the time are

not fulfilled automatically. Time-dependent cases exist for these invariants,
as well as for the corresponding secondary invariants [7], containing only a
subset of species in the linear polynomial part of the invariant expression.

Considering the classical Volterra invariant, Cairé and Feix use a pro-
cedure of obtaining a limit of invariant III when the. dlagonal terms of
the interaction matrix tend to zero. They have managed to obtain it for '

N =2, but in the case of the “ABC-matrix” (5) their result for the Volterra

invariant is Hy, which is not correct, since the expression-for the Volterra
invariant should contain the coordinates of the central equilibrium point,
or.stable population levels; thus the correct expression should be H;. This
is a consequence of the fact, that the generahzed Carleman ansatz does
not contam logarithmic terms addltlvely to the hnear ones. - ’

4 Bi-Hamiltonian technique versus. rescal-
. ing. R L i : L R

Giimral and Nutku [8] studied the Poisson structures of dynamical systems
with three degrees of freedom from the point of view of the theorem of
Frobenius on the integrability of Pfaff’s equation, Among the others, they
used the same “ABC-matrix” example (4) and Faddeev- Talxhtajan system
closed modulo 3. ;

0 17<1
A= -1 0 1];b=0 (2
L ']:" —1 O. £ .. . B B N B -

as its particular case. Although the bi- Hamﬂtoman structures for.. the
LVE given in [8] are the same as-in [4], the general considerations on
the forms of the bi-Hamiltonian structures are important. Namely, the
Poisson structures mclude in_general, the terms of the order from 0 to 3
in the powers of z;. The Porsson 1- forms, corlespondlng to the Poisson
st1uctu1es ‘should be compatlble S0 a conformal factor should be tised to
add two of them. In a certain case, the equatlons of motion can be written
in a mamfestly ‘bi-Hamiltonian form through the exterior _product of ‘the
gradlents of two Hamlltonlans It was also pointed out in (8], that a'ratio
of components of Poisson ‘structure functions’ obeys a partral dlfferentlal
equation, which could be quite a manageable one. An analogous 1dea was
used also in [9, 10].



~In [9] a representative set of three-dimensional autonomous systems
was studied,” the LVE being the last and the most’ difficult case. The
procedure implemented therein, included rescaling of the vector field and
using the Jacobi identities for the Poisson structure matrix as partial dif-
ferential equations to obtain one of its components. The idea was that
every particular solution of these equations should identically satisfy both
the Hamiltonian form of the rescaled equations and the Jacobi identities.
However, to find a particular solutionin the case of the LVE with primary
invariant I as the Hamiltonian funCtién an additional Constr'a‘int o

d32(a23a11 - 013021) = d31 (023012 - 013022) o 3(23)

was 1rnposed In [10] the same 1dea was used but two constramts were im-
posed. The common feature of both the works [9, 10] is that no numerical
examples are given, so the question arises, whether the solutions obtained
are consistent with:the 1n1t1a1 systems. On our part, we have found that
the formulae from [10] do not reproduce the malthusian terms b for s = 0.
The Poisson structure functions obtained in [9] are also not applicable if
s = 0, though the constraint (23) and the two constraints imposed in [10]
‘are satisfied with matrices (32) iven 1n section 6. The correct Poisson
structures in th1s case we glve 1n sectlon 7

5 Hamiltonian structures by Plank.

Plank studied gene1ahzed Hamlltonlan structures in the LVE [11] using
time-independent constants of motion as Hamiltonian functions and
‘quadratic’Poisson structure functions P

Ja =‘-Cit-'v'$z, TR e (28)

where c,l are the matnx elements of a constant skew symmetnc matux
C. TQ the_ usual 1terns of the deﬁnltlon of, the genelahzed Ham1ltoman
system: () T = JVH is the vector ﬁeld W1th smooth 1eal valued P01s-
,:son structure matrix J and Ham]ltoman functxon H defined on an open
subset G of R¥, and (11) the Jac0b1 1dent1tles fo1 the. sl\ew symmotuc J
are satlsﬁed” he added, the thud item “(111) The matux of linearization
‘at every ﬁxed point can be \vutten as a product of a symmotnc ancl a
skew-symmetric matrices.” :

The forms for Hamiltonian functions Plank deduced from explicitly
solved case N=2:

Zﬂ — pilnx;); - (29)

N - N
H(z) =[] (1 +ZB,¢,), B, #0; ' (26)

=1 I=1_ .
H(z) =[] «f -(E By, Bi #0; (27)
=1 ) :
Ea, Ina; + @21’—1ﬂ, By = 0. (28)
k

All the forms (25-28) are explicitly independent of the time. The quantities
B; and p; in the expression (25) for the Volterra invariant are the same that
enter in its conditions of existence (2),(3). Since the expressions (26) and
(27) are the time-independent versions of Cairé and Feix’s invariants IIT -
and 11, respectively, the coefficients B; are proportional to the coefficients in
the expressions (19) and (16) while the a; are obtained from the equations
(21) and (17), respectively, in which s is to be set to zero. Cairé and Ieix
(12] regard the constant of motion of the form (28) as a limiting case. of
their primary invariant type III. The following exanmiple shows that this
limit is not so simple, if at all possible, to obtain:

) 3 ~l 1 T 1—wy— a3
A=| -3 -1 =2 | ;b= 1 | i H(x)=In— .
0 2 1 _ ' a3 T \

(29)
because the equations for a (21) give a; = a3 for Zy7; in the contrast with
oy =1, a3 = —2 in the example. Although the conditions of existence of
the invariant type III are satisfied automatically in this case. the coefficient
a11/by goes to infinity in the limit, when by tends to zero while a;; tends to
3. So, it is impossible to obtain the algebraic expression of H(x) in (29) as
the limit of a type ITI invariant. It is more natural to derive the invariant
expression (28) from the Volterra invariant of a related system, which is
the result of the transformation z, — 1/1L, x; — /u,‘v’l # k and differs
from certain VE by a common factor 2 in the right-hand sides. When the
invariants (26) and (28) are used as Hamiltonian functions, as we shall see
in the following sections, they imply second Poisson structure matrices of

-~1



different algebraic forms, as well as different measure preserving density

functions, so they shou]d be thought of as separate invariants.

However, all the Plank’s theorems, with the exception of that on thc
Volterra invariant, in case N > 2 are not valid on the part of the proof
that the first part of the definition of a Hamiltonian system is satisfied.
Calculatmg the Hamiltonian vector field & = JVH , the author [11] gets

the correct expressions

N .
;= g(.?:)a:;(bi + Zaijitj), ) (30)

i=1
where g(z) = 1 for (25), g(z) = [IN, 2 for (26, 27), g(x) = xf' for

- (28). The proofs of the mentioned Plank’s theorems end with the following
similar words: “Since the factor g(z) is positive in the first orthant, it can
be dropped:without altering the phase portrait of the differential equation.
Q.E.D.” - All-these words are true except for the last 3 letters “Q.E.D.”,
because the definition point (i) demands the differential equation itself to
be written in the Hamiltonian form, not the phase portrait. So, Plank has
~ discovered, or; rather, constructed Hamiltonian systems with quadratic
Poisson structure matrices, having the same phase portrait as certain LVE
in the first orthant. For the genuine LVE another form of Poisson structure
matrices should be used with Plank’s Hamiltonian functions:

|
Jit = —/—
g(x)

In three dimensions, the Jacobi identities with this form of Poisson struc-
ture matrices are satisfied. When N = 4, additional constraints mise from
the closure of the Jacobi identities: a = b = 0 when det(C
det(C) = det(A) = 0. Of course, when N > 4, still more a(l(lltlonal con-
straints will appear. However, the open subset G in which the Ham]ltoman
system should be defined, may be extended now, in certain’ cases, to the
entlre of RN, excludmg the subspaces z; = 0.

ci)a:ir,. N . (31)

6 = Degeneracies wﬂith 3D Plank’s structures.
The puzzling absence of the'a.lia,logue of Cairé and Feix’s primary invariant

type 1 among Plank’s Hamiltonian functions can be explained comparing
Nutku’s example (8), with cubic terms, and Plank’s ansatz (24), without

8

N e

) # 0, or’

N

cubic terms in the Poisson structure matrices. But, in fact, all-the Plank’s
Hamiltonian functions (26), (27), (28) imply the degeneracy of interactions
matrices in three dimensions, which is easily proved by stralghtforward
calculations of the vector fields through. JVH. The following formulae
(32), (33) are the results of such calculations. Defining v as the vector
dual to the matrix C and introducing By = 1 for (26) and Bo = 0, for (27),
we have for the cases of Hamiltonian functions (26), (27): -

. )\11.31‘ o (M F)B (M —m)Bs Y R A
A= (M =7)B A2 B, (A2 + 71)33 s b = Bo ./\2‘ ) (32)_»
(Ag + ’)’2)31 (/\3 - ’)’I)BQ /\3B3 R ‘ “ : /\3 -

where A = Ca = [@,7]. In the same notations, for the case of Hamiltonian
function (28), with k = 1 we have:

M ' 7332 o —yeB; \ /0
A=1 A v3B, (m+7%)Bs |sb=| wmBo-|. (33)
A3 ~m+m)B: —mBs ) ) \

The determinants of these matrices are - . : (
det(A) = B1B2Bs(n,7)(A,7) = 0 S (39)

for (32) and :
S det(A) = By Bs(n,y)(\,7) =0 | : (35)
for (33). They are identical to zero because (A,7)'= ([@,7],7) = 0. This
means, that primary invariants type I should exist in both cases. Moteover,
7 is a solution of equations for this invariant with s = 0. The corresponding
equations in Plank’s form are AT~y = 0; (7,b) = 0 for the constant of
motion - ‘ S 7
K(z) =] (36)
. S =l o . o .
Any solution 5 of these equations may be added to a in the equations
(12), (17), when s = 0, so, a and ~ are not uniquely defined. However;
A.is defined uniquely. The equations (12), when s = 0, coincide with
Plank’s conditions for the LVE to be volume preserving with density func-

- tion [IX;z%~'. When N = 3, the degeneracy of the matrices (32), (33)

implies, that- these density functions are also d'eﬁned“nlbt uniquely. So,
some normalization may be used. -When (n,7) # 0, the normal form of
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a; can be defined as the limit of the solution of the corresponding linear
nondegenelate system, when (X, ) tends to zero. This normal form obeys
the relation o = —(y + [\, n])/(n,7) for (32), which is consistent with the
forrn of the Morse function for (22). The corlespondmg relation for (33)

is o = —[A,n]/(n,7). Note, that the exact expressions fl om [7] make use -

of a different normalization.

It should be noted, that the LVE of the form (33) are volume preserv mg
with the density function zy%25 23", owing to the fact that (—1,0,0)T
obviously a particular solution of (19) with s = 0. The existence of the
'correspondlng measure preserving density can be established for Hamilto-
nian versions of the invariant (28) in hlgher dimensions also, which Plank
has not mentloned

"7 The “manifestly bi-Hamiltonian” equa-
tions. |

With the invariant (36), we can write, using Giimral and Nutku’s expres- .

sion, the “manifestly bi-Hamiltonian form” of the equatlons of motion of
the system as

_ & =m(z)[VH, VK], (37)
so that s
: Jju =m(z)VEK, and jix = —m(x)VH, (38)

where the scalar function m(z) is defined from (37) using a component of
the vector field: :

m(z) = [, 2} 7" for (26), (27)'

and (39)
m(z) = 21 [13, 2 ™ for (28).
Along this line; we get the correct form of Poisson structure matrices
with Plank’s Hamiltonian functions, in dual representation:
3 . . o
Ji = m(z) H z] (’713323’3,723«‘13?3,7311&1’2)T (40)

i=1

which is equivalent to (31), containing quadratic terms due to their origin
from VI. The Poisson structure matrices for time-independent case. of
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the invariant Z; of Cairé and Feix contain only ‘cubic terms when this -
invariant exists together with Plank’s Hamiltonian function (27), and with
Hamiltonian functions (26), (28) the quadratic terms are included also. In
the dual representation, the expressions for the Poisson structure matrices
corresponding to the invariants (26) and (27) are: O

1 3 (01[/’4— 31(01)12?3 3 ,
IK = - H 27" | (a2l + Bema)ayzs | with L = Bo+ E‘B;.r,, (41)
=1 (a3l + Bsxs)rizs J° =1

and for the invariant (28)

[

‘ 3 S (0‘1_1’1 — By — Baxa — 33~1’3)i321*3 X
jl\' = — H .’l?;-% (02;131 -+ B2;‘L‘2)(E1.173 . v (42)
,l;::l (031,‘1 +B3T3)T1’12 s

Remmdmg of the statements.we have made at the end of the se(‘tlon 4,

we note here, that the constraint (23) used in [9] is satisfied identically,

while the additional constraints imposed in (10] are satisfied for interac-
tions matrlces (3") \\hen 81 B, = B3 \Vhlle chec]\mg the \ahd]t\ of
the stlucturc functions f10m these t\\o papers, one should take care of the
proper nmmahzatlon then the 1esult is, that they mploduce the appro-
priate. vector fields with the, invariant (11) as the’ IIannltoman functlonj
when s =0, only if b = 0. ‘Our formulae include the case b # 0 for s = 0.

In genelal coordinates and time rescaling plocedm(, used in [9, 10}, alters
the structure of the phase space, so it can destloy the coucqpondencc be-
tween. the Hamlltoman and the Poisson: blacl\ets in otllel words, it is not
al\vays a valid transfounatlon, analogous of canomcal tlansfounatlons in
the classical Hamiltonian ‘method. It should be note(l that the loganthmlc
form of the invariant K (%) could be used in the bi-Hamiltonian' formula-
tion(37) instead of (36). If this is done, then the functions 1/m(r) (39)
become equal to density functions, with w]nch the equations are volume
preserving. '

8' Non-degenerate 3D interactions matri-
ces.. . e b

The degenelacy of mtelactlons matuces (32) in thc case of Plank’s Hamil- -
tonian function (26) is implied in tlncc-d]menslonal case: by the condi-
tions of the corresponding theorem Ca'= b; aq = Bi(b; + ¢;i). But in the
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case of Plank’s theorem for the Hamiltonian function (27) the conditions
b =.0; ATa'= —diag(A); Bidix = —Bidii do not imply the degeneracy of
A: In the latter case, if a row €(B), By, B3) is added to each row of a de-
generate interactions matrix A, the corresponding matrix 1) (13) remains
the same. The determinant of the new interactions matrix A is nonzero,
thus, the invariant K'(x) ceases to exist for the new system. The phe-
nomenon appearlng in such a case is clear from the following example with
e=1,b=0: '

(-2 1 0 1 03 .
A= 1 0 <1 ]oa=[4 -1 2|, (43)
-1 2 ' 3 —2“. b5}
with the constant of motion -
,,,,,, (@) = Ml s ey - 4 300) ()

in common with both ‘the systems It is'a IIannltoman functlon of the type
("6) for A, but it is not for the new system witli' the interactions matrix A,
s1nce the values of the components of the vector field comcx(l(‘ for these tivo
matrlces only in the invariant plane P : 37; — 22+ 323 = 0 of the 111va11ant
In, deﬁned in [7] Thus, the condltlons of Plank’s theorem for this case
are not sufﬁment to 1cploducc evon the phase ponla]t of the (hffclentlal
equatlon :

However, all the l\nown examples of Halnlltonlan structures for LVE
up- to thls moment, have been of. dcgenerate 1nte1actlons matuces in the
case N = 3. Here follows an example with a non- degenmate 1ntelact10ns
matrlx W1th bi- Hamlltonlan stluctule of L1e—P01sson form:

o -« ,3 Ty Tl o
A= a = y3b=0 © (45)
a f -y : ‘
Hl = 1l(ﬁﬂlz = ’713) Hy = m(aws =q). (46)
1 _‘”’2 1 ﬂ12—79¢3 ’ _
oy =——=| aty—7x3 |;JH, == Jead) ST (4T)
7 LT ; 7 A

The equatlons (45) were derlved by Blenlg [13] from the equatlons of asym-
metric top and resonant three-wave interaction system. The Hamiltonian
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functions (46) could be thought of as secondary invariants of Cairé and
Feix, since Plank’s Hamiltonian-function of the type (27) must have all
the coefficients B; #-0.in the linear polynomial expression. The Poisson
structures (47) are not.equal to those glven in [8] for Euler’s top, but are
of the same linear type. :

9 Co"nclusions’.'

The conditions of Plank’s theorems on. the Hamlltoman systems for the.
LVE w1th Hamiltonian functions of the types (26), ("1) (28) are not suﬂi-
cient to reproduce the vector field’ of the LVE w1th the quadratic P01sson
structure matrix (24). For (27), the conditions are not sufficient to repro-
duce even the phase portrait of the LVE (43). A modified P01sson structure
matllx (31) should be used, an additional constraint (let(A) =0is 1mplled
in the 3D case of the Hamlltonlan functron (27) L

- In the 3D case, the interactions matrices (32), (33) are 1dentlcally de-
generate 1mply1ng the existence of the second Hannltonlan functlon (36)
and allowing for the Poisson structure matrices to be obtalned using the
gradlents of the two Hamlltomans The parametuc representatlons (3")
(33) . served us-as the source for COIIthVelSIal examples, Wthh show that
Plank’s Ham11toman functlon (28) is not a hmltlng case of ‘the pumaly
invariant 1IL This helps to reahze that the generahzed Catleman ansatz,

~used in [6 7], is not sufficient to obtain the constants of motlon in whlch

both the linear and the logauthm]c terms appear.

In three dimensions, Lie-Poisson type structures may appear in the
cases when secondary linear polynom1al invariants of Caird and Feix exist.
In the given example (45), the interactions matrix is nondegenelate

Plank’s conditions for the absence of time dependence of the constants
of motion are more exact, than that of Cairé and Feix. The existence of a
sufficient number of time independent constant s of motion is important,as
it makes possible to apply directly bi-Hamiltonian [8] or, more generally,
multi-Hamiltonian [14, 15]: formulation; thus.the complete integrability
might be proved more easily. Up to this moment, the maximum:number
of analytically estabhshed functlonally 1ndependent constants of motion,
has been N +1 symmetric functions of odd powers for 2V + 1 dimensions,
givén by Ttoh [22] for the VE without the malthusian'terms. Darianou’s
integrals of motion for the Volterra lattice model [16] containing both
odd and even powers, are not functionally independent. The most useful
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feature of Cairé and Feix’s secondary invariants, appearing due to some
special symmetries of the terms of interactions matrices, is, that there may
exist several invariats of the same order in the powers of variables, which
is demonstrated in the example (46). The methods used in [m., 16] do not
show such a possibility, because the symmetries of the systems studied in
this papers are of another special type.

" On the other hand, for the more comlicated case of the general LVE,
the subcase s > 0 leading Cairé and Feix to the ‘asymptotic reduction of
the dimension of the phase space by one for the cases of the invariant type
11 from even to odd number of d1rnens1ons and of the invariant type I
from odd to even number of d]mensmns renlams valid, but the e\amples
of s #.0, that we have given, make us suppose, that such 1educt10ns can
take place in other cases also. Howevel, since the asymptotic reduction
can occur only afte1 the infinite time interval, it could not he accompanmd
in reahty with a’ time 1escalmg7 so the 1ecluct1011 of the dimensions by
two, which has been suggested in [7], cannot take placo withoit addltlonal
model assumptlons which should allow to pe1f01m the tlansltmn acmss the
balrler of the 1nﬁn1te time.- ' : s

With. the exceptlon of the case of the’ Volteu'a m\'arlan’r the couect
forms of Powson stlucture matuces include the product of certain powers
of dependent vanables which' give their contubutxons to the left-hand sides
of the Jacobl 1dent1t1es 1rnp1y1ng some additional constraints when N> 3.
For mstance in the case of N =4, e1the1 both the Poisson striicture matrix
and the interactions matnx are degenemte or tlle Hanultoman funrtlon is
linear.

"The’ autho1s thank V.P. Gerdt, O.M. I\hudaveldlan ‘1.V. Komarov,
A. N Leznov, and P VVlntelnxtz for dlscuss1on and A B Shal)al fm a
useful remall\ :
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Dy6osuk B.M., Tanenepun A.T., Puxpuuxnit B.C., Crennes C.K. E4-97-416
YCI0BHA CYLUECTBOBAHHA NEPBbIX HHTETPATIOB

W raMIIbTOHOBBI CTPYKTYpPH YpasHeHuil Jlotka—Bonbteppa.

KoMMeHTapHil K HeasHo onyOianukoBasHbiM paforam

YTOYHSIOTCA YC/IOBHS CYIECTBOBAHHS MePBBIX MHTCTPATIOB M FaMHIbTOHOBBIX CTPYKTYD JUIS YPas-
nennii Jlotka—Bonbreppa (JIB), chopMynupoBatnbie HeaBHO PAIOM aBTOpOB. B 4acTHOCTH, B MaTpHLe
MYaCCOHOBOH CTPYKTYpHI, NMpeiioxeHHoi [LnaHkoM s He 3aBHCSIMX OT BPEMEHH TaMMWILTOHHAHOB,
OTCYTCTBYeT BaXHMii KOH(OPMHBII MHOXHTEb, B CWy YETO YCIOBHS psja TeOpeM He ABISIOTCH
[OCTATOYHBIMH [US 3aMUCH YPABHEHUIT IBHXEUHS B raMUIbTOHOBOI opme. B cnyuae 3D npencrasnenue
IMnaxHka ans MaTpHUB yacCOHOBOH CTPYKTYPbL NPHBOIUT K BHIPOXICHHIO MATPHLB B3AHMOACHCTBHI M
K CYIECTBOBAHMIO BpeMsHe3aBUCHMoro uHBapHanTa Kapo—®Makca thnma I, 4To nenaet BO3MOXHOIM
GuraMuabTOHOBY hopMynupoBKy. C 1pyroil CTOPOHBI, yacCOHOBEI CTPYKTYPBI, NOCTPOEHHBIE U1 BHIPOX-
JOEHHOH MaTpHUbI B3aMMONCHCTBHI NMPH HATHYMH JIMIIG OOHOH KOHCTAHTH! NABHXCHHS, HE MO3BOJIAIOT
BOCHPOH3BECTH JIMHEHHBIE (MATBTYCOBH) WicHH! ypaBHenuil JIB, xorna 3Ta KOHCTAaHTA HE 3aBUCHT SBHO
ot BpeMeHH. Peaynprathi paGoThi ocHOBaHbl Ha mapaMetpusauuu 3D ypaewenuit JIB, BuiTexaoumieii H3
raMHJIbTOHOBO# (GOPMYIHPOBKH ¢ HCMOIb30BaHHEM MoaudHLpoBalHoro npeactasnenns [lnaska.

Pa6ota srmonnena B JlaGopatopun BhicOKHX 3Hepruii, B JIaGopaTopHu TeopeTHYECKOH (DH3NKH
uM.H.H.Boronobosa, B JlabopaTopui BEIYHCIHTEIBHOH TEXHHKH M asroMaTH3aund OMSIH.

[penpuut O6HLEMMHEHHOTO HHCTHTYTA SEpHBIX Hccnenosanuil. JlyGua, 1997

Dubovik V.M., Galperin A.G., Richvitsky V.S., Slepnyov S.K. - E4-97-416
The Conditions of Existence of First Integrals

and Hamiltonian Structures of the Lotka—Volterra Equations.

Comment on Some of the Recent Papers

The conditions of existence of first integrals (partial integrability) and Hamiltonian structures
(possible complete integrability) of the Lotka—Volterra equations have been analyzed recently by many
authors. In some cases, these conditions should be stated more correctly. In particular, an important
conformal factor is not present in the Poisson structure matrix, suggested by Plank for time-independent
Hamiltonian functions, for which reason the conditions of some of the theorems formulated by the
mentioned author are not sufficient to write the equations of motion in the Hamiltonian form. In 3D
case, Plank’s ansatz for the Poisson structure matrix implies the degeneracy of the interactions matrix
and the existence of the time-independent version of the invariant of Cairo and Feix’s type I, thus the
bi-Hamiltonian formulation becomes possible. On the other hand, the attempts to construct Poisson
structures for degenerate interactions matrices, when only one constant of motion is present, which were
made in two of the papers, do not give the possibility to reproduce the linear (malthusian) terms in the
Lotka—Volterra equations, when this constant of motion is explicitly independent of the time. Our
statements are based on the parametrization of 3D Lotka—Volterra equations, implied by Hamiltonian
formulation with improved Plank’s ansatz. .

The investigation has been performed at the Laboratory of High Energies, at the Bogoliubov
Laboratory of Theoretical Physics, at the Laboratory of Computing Techniques and Automation, JINR.
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