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1 Introduction 

The basic input to a nuclear shell model calculation consists of a set of single par

ticle energies and two body interaction matrix elements. There are two extreme 

approaches to generating this input. The first approach is to try and calculate the 

form of the operators from a theory based either on a perturbation approach, eg. the 

Brueckner-Hartree-Fock theory [1], or on some form of variational technique based 

upon a coupled cluster expansion [2, 3]. The second approach assumes that the 

matrix elements are considered merely as free parameters to be adjusted to fit the 

data on a number of neighbouring nuclei. This is exemplified by the work of Cohen 

and Kurath [4] and Wildenthal and his collaborators, Preedom and Wildenthal [5] 

(to be designated PW), Chung [6] and Chung et al [7] (to be designated CW) and 

Wildenthal [8]. Where the interaction of Cohen and Kurath was generated for the p

shell nuclei with 5 ::; A ~ 15, the PW interaction was designed for the lighter region 

of the sd-shell with 17 S: A S: 22, the work of CW ended with two A-independent 

hamiltonians one for the lower half of the sd-shell with 17 S: A S: 28 (to be desig

nated CWP) and the other for the upper half of the sd-shell with 28 S: AS: 39 (to,be 

designated CWH) and finally Wildenthal has postulated a simple mass dependence 

for the matrix elements, 

ME(A)fME(18) = (18/A)0
·
3 (1) 

from which a moderately successful description of all sci-shell nuclei can be obtained. 

Irvine et al [9] generated a simple mass dependent effective interaction by folding 

a_hamiltonian (for the rest frame of the nucleus) based on a good phenomenological 

bare nucleon-nucleon interaction (the Reid soft-core potential [10]) with a simple 

set of two body correlation functionS. This interaction gave a better description 

of all the p-shell nuclei than that of Cohen and Kurath besides making excellent 

predictions for the absolute binding energies of all nuclei in this region. Yazici and 

Irvine [11 J repeated this approach for the low mass sd-shell nuclei and, without 

adjusting a single parameter, demonstrated that their effective interaction matrix 

elements were in astonishing agreement with PW. Finally) we [12] extended the 
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work of Yazici and Irvine to the whole sd-shell and demonstrated that the 35 off

diagonal matrix elements of our interaction show no mass dependence and are in 

astonishing agreement with the fitted potentials of PW and CWP in the lower half 

of the sd-shell and with CWH in the upper half of the sd-shell while the 28 diagonal 

matrix elements can be brought into the same high level of agreement with the fitted 

matrix elements throughout the shell by a single, mass dependent energy shift. There 

was, in any case, an ambiguity in the choice of diagonal matrix elements connected 

with the choice of single particle energies. However, it was seen that our shifted 

diagonal matrix elements show a mass dependence very similar to that postulated 

by Wildenthal. In present work we shall examine our effective interaction matrix 

elements [12] and use it to determine the binding energies and energy spectra for the 

mru;s A = 18 nuclei with T = 0 and 1. The results of this shell model calculation 

will be compared with experiment [13] and with that obtained using Wildenthal's 

matrix elements. 

2 Formalism 

Our approach [12] to the problem of effective operators for shell model calculations 

involved two stages. In the first stage the bare operator must be formulated in the 

rest frame of the nucleus and can be written as 

ii = E(Pi;/M(A) + v.;) 
'I>J 

(2) 

where p;; is the relative momentum (!/y'2)(p;- p;), M(A) =Am is the total mass 

of the nucleus and Vii is taken to be the Reid soft-core potential. The second stage 

is to assume a set of trial variational wave functions 

WJ = Fif!J (3) 

where the <I> J are the usual shell model basis states and F is a correlcitici:h function 

designed to accommodate those correlations which cannot be described by the shell 

model configuration mixing. A complete set of effective shell model operators is 

then defined by 

o,JJ = p+(Jp (4) 

This in general is a ma:ny-body operator and it would be highly impractical to work 

thus it is usual to make_ a cluster expansion of Oef 1 to obtain a set of two body 
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effective operators 0~~)1 . In the case of the operator of equation (2) 

H i'l - J-'+ r'I!-' = " f'' ( 2 /'1(A) + V.· ·)J·' ej J - 2 2 - ~ _ tJ P;j H IJ ij 
>.,t>J 

(5) 

where F2 are two body correlation operators and >. is summed over two body chan

nels. 
From studies of the nuclear matter saturation problem [3] it is clear that the 

correlation operators must take three features into account:-

( a) The short-range exclusion effect produced by the repulsive core of the bare 

N-N interaction. The core has an extremely short range("" 0.4fm) and the wound 

that it induces in the nuclear wave function is a property of the potential rather than 

the particular environment that the nucleon finds itself in. Thus if fi~ is restricted 

to describing this short-range effect, leaving the shell model configuration mixing 

to account for longer-range correlations, two bonuses can be gained. Being short

rn.nged, any cluster expansion will rapidly converge and the two body approximation 

for H!~~ of equation (5) can be justified. Also the wound will be indepimdcnt of. 

mass, i.e. of the nucleus being considered. 

(b) The strong correlations induced by the tensor force component in \!ij. These 

correlations are of longer range and may be expected to exhibit mass dependence. 

(c) The effect of short-range N*(1232) isobar excitations. These correlation~ 

take us out of the nucleon space described by the Reid interaction but are essential 

if the nucleus is to have satisfactory saturation properties. However. tlw effect 

of isobar admixtures is small at normal nuclear densities and is only required at. 

higher densities to remove the Coester line paradox. Thus we can, for enC'rgy level 

calculations, ignore this feature as an approximation. 

Irvine et al [9] introduce~ the simple parametrization 

J;) = f(r;;)(l + a'(A)S;;) (G) 

where f(r;,) has the form 

f(r;;) = 1- exp[-fl(r;;- r 0 )
2

] (7) 

with ?"c = -0.25fm and {3 = 25fm-2 and represents the short-range'rcpulsion of 

(a). Sii is the usual tensor operator and the strength of tensor correlations of (b) 

is measured by a'( A), a'(A) "' 0 when A f 3 S1 -
3 D1 , We shall hereafter drop the 

label,\, The magnitude of a( A) was determined [9] by fitting it to the ground state 
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binding energies of 1 He and 160 calculated in the closed shell approximation with 

oscillator wave functions chosen to give the correct root mean square radii, and 

to a Hartree-:F'ock calculation for nuclear matter. The results was a monotonically 

decreasing function with a(4) = 0.1,a(16) = 0.08 and a(oo) = 0.06. In the p·shc\1 
analysis the interpolation between A = 4 and A = 16 was made by fitting the ground 

state binding energy of the most stable isobar for each value of A. 

Using the effective interaction of equation (5) with the correlation functions of 

equations (6) and (7) we have a mass dependent two body interaction 1 containing no 

free parameters with which to perform large basis shell model calculations. 

3 Results and discussions 

In calculating the two body matrix elements for a given mass number A there remain 
two parameters to be chosen namely: the oscillator parameter and the strength of the 

tensor correlations o:. It was seen {12] that large values of a and hw ( eg. a = 0.085, 
hw = 14 MeV) are more appropriate to the beginning of the sd-shell while smaller 

values of a and hw (eg. " = 0.07, nw = 10) give better fits to the upper end of 
the shell. An acceptable fit to the whole shell was obtained with 'average' values of 
a= 0.08 and hw = 11 MeV, provided we used the mass dependent energy ,shift 6.sd 

given in ref. [12]. 

A set of two body matrix elements of our interaction applicable throughout the 
whole sd·shell is presented in table (1) of ref. [12]. In order to test these matrix 
elements, shell model calculations are performed for two nucleons in the sd-shell. The 

single particle energies used with the two body matrix elements of our interaction 
are the experimental energies [16] from 170, namely: -4.15, -3.28 and 0.93 MeV for 

j = 5/2,1/2 and 3/2 respectively. Results for the energy spectra obtained for the 
mass A = 18 with T = 0 and 1 are displayed in figures 1 and 2 respectively. In 

these figures, the energy spectra of our calculation are compared with experiment 

and with that obtained when using Wildenthal's empirical matrix elements [8J. 
It is evident from above figures that a number of the low-lying experimental levels 

are not reproduced by our calculation. This is mainly because of the model space 
which we have chosen for our calculation. Our model space consists of a closed 160 
core with two active valence nucleons confined in the sd-shell. Thus our calculated 
levels for 18F and 180 are those whose wave functions are predominantly of 2p0h 
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Fig. 1. Positive-parity energy spectra 

for 18 F with (T = 0). The calculated 

spectrum (a) is compared with experi

ment (Exp) and with that obtained us· 

ing Wilden thai's matrix elements (b). 
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Fig. 2. Positive-parity energy spectra 

for 180 with (T = 1 ). The calculated 

spectrum (a) is compared with experi

ment (Exp) and with that obtained us

ing Wildenthal's matrix elements (c). In 

spectrum (b) we use Wildenthal's diag· 

onal matrix elements but with our off

diagonal mc{trix elements together with 

experimental single particle energies. 

(two-particle-no-hole) nature. In order to account for those observed levels of.A = 18 
nuclei- we have to cons!der the mixing of the (sd)2 configurations with deformed 4p2h 

states-. Hence it is not unexpected that these states are not reproduced well by our 

calculation nor by WildenthaPs calculation which is also based on a closed 160 core 
model space. 

The energy spectra of 18F nucleus- is presented in figure 1, which have been 
rather extensively studied in ref. [14, 15]. We note that Wildenthal, spectrum (b), 
included the lowest six states in his fit as these states are generally believed to 
be predominantly of. 2p0h nature. Our calculation, spectrum (a), has given these 
six levels and are well reproduced in comparison with experiment and with that . 
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obtained by using Wildenthal 's matrix elements. It is seen that our interaction 

gives less binding to this nucleus than experiment. Hence the difference between the 

ground state energies obtained from experiment and our interaction is about ·-0.6 

MeV. 
We now turn to the energy spectra of 180 nucleus which is presented in figure 

2. The experimental 3.63 MeV o+, 5.26 MeV 2+ and 7.12 MeV 4+ (where the 

experimental 4 + state is not shown in figure 2) of 180 arc well known to be members 

of a 4p2h band. Therefore, these s~ates are not reproduced well by our calculation, 

spectrum (a). We note that Wildenthal, spectrum (c), included only the lowest 

o+, 1.98 MeV 2+ and 3.55 MeV 4+ states in his fit. This is clearly a reasonable 

thing to do as these states are well known to be of 2p0h nature. It is obvious from 

the calculated spectrum that the level sequence of the low-lying states is correctly 

reproduced besides the lowest 2+ state is in good agreement with experiment. The 

lowest 4+ and the second 2+ states are lower than the experimental results by about 

0.8 and 0.6 MeV, respectively. The comparison between the spectra (a) and (c) gives 

an indication that Wildenthal's interaction is stronger than our interaction. This is 

demonstrated even more clearly by looking at the energies of the system with two 

valence nucleons relative to the ground state energy of the 160 core. For the ground 

state of 180 nucleus we obtain for this energy -11.37 and -12:17 MeV using ours and 

Wildenthal 's interactions respectively. Comparing this energy with the experimental 

value -12.18 MeV, we see that our interaction gives less binding than experiment or 

than Wildenthal's interaction by about -0.8 MeV. As we have mentioned before that 

our diagonal matrix elements have been shifted throughout the shell by a single mass 

dependent energy shift [12). Such a shift would not show up in the spectroscopy of 

any set of iSobars but would simply change the relative binding energies of different 

isobaric sets of states. Therefore, an improvement can be obtained for the ground 

state energies if we vary the energy shift within the limits set that would not impair 

our quality of fit to the fitted matrix elements of CW interaction by more than 

~X = 0.005 about its optimum values. Thus, for example, increasing the shift by 

-0.3 MeV, we see that the differences between the ground state energies obtained 

from experiment and our interaction are now reduced to about -0.3 and -0.5 MeV for 

18F and 180 nuclei respectively. Spectrum (a), of figure 2, can usefully be compared 

with spectrum (b) where Wildenthal's diagonal matrix elements are used but with 

our off-diagonal matrix elements. The differences are then due entirely to defects in 
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the diagonal matrix elements and these are clearly quite pronounced. In spectrum 

(b), we obtain energy -12.22 MeV for the ground state of 18 0 which is \"ery close 

to the experimental value. Finally, we would like to point out that '\·'ildenthal's 

interaction gives results are in better agreement with experiment than ours or any 

body else, with the exception of PW or CVV interactions because of their limited 

mass range of applicability. 
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XaMOYJIH A. E4-97-40 
PaclfeTJ,J B o6oJJolJC4HoH Mone;m wu1 »nep 
C M3CCOBI>IM 4HCHOM 18 H paMKaX Sd-060)JQlJCK 

3¢cfJeKTHBJJoe IIYKJIOH-JiyKnotmoe sJaHMOlleikTsHe wm pacLJCTos o6oJJOtiClJJIOi1 · 

~fO.UeJIH ·s paMKax sd-o6onolteK nonyYeuO·u3 noTeHuHana Peifna c M»rKHM KopoM, 

~sep•iyrLJM c liBYXLJacTWIIfblMH KoppemmHotulbiMH <JlyHKWUIMH,- KOTopL!e yliHTLJJ;~,a

l01' KOpOTKO.UeikTBYIOll:lCC CHJlhiiOC OTiafiUtBatme 11 TC1130p11biC KOMIIOIICI!Thl CIUI 
Peit.ua. C ::>THM IBaHMO).leikTBHCM paCCYHTaHbl ::>11epn111 CB51.3ll H CfiCKTpbl liH3KOJJe
)KallU1X cocT05:1HHH co 3uaqem1eM H3ocnmm T = 0 u I JIJI5:1 5:1.uep c MaccoshJM YIICJlOM 
18. Pe3yJibTaTbl o60JJOYCYHhlX pacLJeTOB neMOHCrpupyloT pa3yf..H!Oe cornacue c ::>Kc~ 
nepHMeiiTOM. 

Pa6oTa BbiiiOnHeHa s Jia6opaTopHH TeopeTwJecKoii cf:nnHKH HM. H.H.EoroJIKJ-
6osa OH5!H. 

Opcnpunr 06beJUnteHHoro IIHCnnyra .IIJICpHLIX IICCJJC:tommuii. Jly611a. 1997 

Hamoudi A. 
Shell Model Calculations for the Mass 18 Nuclei 
in the sd-Shell 

E4-97-40 

A simple effective nucleon-nucleon interaction for shell model calculations 
in the sd-shell is derived from the Reid soft-core potential folded· with two-body 
correlation functions which take account of the strong short-range ,repulsion 
and large tensor component in the Reid force. Calculations of binding energies 
and low-lying spectra are performed for the mass A = 18 with T = 0 and I nuclei 
using this interaction. The results of this shell model calculations show a reasonable 
agreement with experiment. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JlNR. 
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