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Radiation of Charge Uniformly Moving in Medium

We analyze how the frequency dependence of the dielectric permittivity affects
the electromagnetic field radiated by a point charge uniformly moving in medium.
It turns out that a moving charge radiates at every velocity. We study the space
distribution of the electromagnetic field and show that its oscillations are due to the
time-dependent medium polarization induced by the moving charge. Spectral
distributions of the radiated energy and the photon number are givén. Consequences
arising from the choice of polarization different from the usual one are discussed.
The analysis of the Kramers—Kronig dispersion relations for the treated problems
is given. :
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1 Introduction

The goal of this consideration is to evaluate the electromagnetic field (EMF) arising from
the uniform motion of a charge in the nonmagnetic medium described by the frequency-
dependent one-pole electric permittivity
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wi,
=14 —E
€(w) + P

(1.1)
This parametrization is a suitable parametrization between the static case w = 0, €(w) =
€0 = 1 + w? /w? and the high-frequency limit w = 00, €(w) = 0 when medium oscillators
do not have enough time to be excited.

The radiation produced by fast electrons moving in medium was observed by P.A.
Cherenkov in 1934 [1]. Tamm and Frank [2] considered the motion of a point charge
in' medium with a constant electric permittivity. They showed that the charge should
radiate when its velocity exceeds the light velocity in modium, For the frequency inde-
pendent electric permittivity the electromagnetic strengths have é-type singularities on
the surface of the so-called Cherenkov (or Mach) cone [3-6]. This leads to the divergence
of the quantities involving the product of electromagnetic strengths. In particular, this
is true for the flux of EMF. To avoid this difficulty Tamm and Frank made the Fourier
transformation of the EMF and integrated thé_ energy flux up to some maximal frequency
wy- . '

However, Eq.(1.1) is a standard parametrization describing a lot of optical phenomena
[7]. Tt is valid when the wavelength of the electromagnetic field is much larger than
the distance between the particles of medium on which the light scatters. The typical
atomic dimensions are of the order a =~ fi/mca, a = e€?/fic. This gives A = ¢c/w >> a
or w << mclafh =~ 5-10'"%sec”!. The typical atomic frequencies are of the order
wy = mc?[ha® ~ 10'®sec™. Thus, the integration region extends well beyond wy. For
w >> wy, €(w) = 1, that is, atomic electrons have no enough time to be excited.
Following the book [8] and review [9] we extrapolate parametrization (1.1) to all w.
This means that we disregard the excitation of nuclear levels and discrete structure of
scatterers.

So, we intend to consider the effects arising from the charge motion in medium with
€(w) given by (1.1). This was done by E. Fermi in 1940 [10]. He showed that a charged
particle moving uniformly in medium with permittivity (1.1) should radiate at every
velocity. He also showed that energy losses as a function of the charge velocity are
less than those predicted by the Bohr theory [11]. However, Fermi did not evaluate
the electromagnetic strengths for various charge velocities and did not show how the
transition takes place from the subluminal regime to the superluminal one.

The Fermi theory was extended to the case of many poles case by Sternheimer [12]
who obtained satisfactory agreement with experimental data. Another development of
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the Fermi theory is its quantum generalization [13-15).

In this consideration we restrict ourselves to the classical theory of the Vav1lov-
Cherenkov radiation with electric permittivity given by (1.1). It is suggested that uniform
motion of a particle'is maintained by some external force the origin of which is not of
interest for us.

The plan of our exposition is as follows.

In section 2, the necessary mathematical formulas are presented.

In section 3, we evaluate electromagnetic potentials and field strengths for a charge
moving uniformly in a dielectric with e(w) given by (1.1). We observe the appearance of
oscillations of the electromagnetic field inside the Cherenkov cone for the charge velocity
above some critical value v, : .

In section 4, we evaluate the energy flux and the number of radiated photons as a function
of the charge velocity. . Their spectral distributions are also given.. It turns out that for
v > v, all frequencies contribute to the energy. and photon number spectra, while for
v < 7, the range of available frequencies diminishes. In the same section, we demonstrate
how the e_nergy flux is distributed' over thesurfa'ce of a cylinder coaxial with the charge
trajectory. Again, oscillations inside the Cherenkov cone are observed for v > v..

In section 5, we formulate the fesults obtained in the polarization language. It turns
out that it is the medium polarization 1nduced by the electromagnetlc field of a moving
charge that gives rise to the above-mentioned oscillations of EMF.

Another choice of polarization and its physical consequences are discussed in section 6.
The a.naly31s of the Kra.mers—Kronlg dlspersmn relations for the treated problem and
short resume of the results obta.med are given in sections 7 and 8.

2 Mathematlcal prellmlnarles

Consider a p01nt charge e unlformly moving in a non—magnetlc medium with a velocity
v directed along the 2 axis. Its charge and current densities are given by '

p(71) = ed(z)d(y)8(z — vt), j»=vp.
" Their Fourier transforms are v ‘

plk,w) = / (7, t) expli(k7 — wi)]d*Fdt = 2med(w — kD),  jo(F,w) = vp(E,w).
In the (E, w) space the electromagnetic potentials are given by (see, e.g., {16]) -
4m p(E,w)
€ K- %z-e’

Here €(w) is the electric perm1tt1v1ty of medium. Its frequency dependence is chosen in
a standard form (1.1). In the usual lnterpretatlon wy, and wp are the plasma frequency

@(E) A,(Ew)=4wﬁM V=v/c, - {2.)

2

wi = 4rN.e*/m ( N, is the number of electrons per unit of volume, m is the electron
mass) and some resonance frequency. Quantum-mechanically, it can be associated with
the energy excitation of the lowest atomic level. Our subsequent exposition does not
depend on this particular interpretation of wy, and wp. The static limit of e(w) is
w2
eo—e(w—O)—1+—
w§
¢(w) has poles at w = twy. Being positive for w? < w? it jumps from 4oc to —oc when
one passes the point w? = wi. €(w) has zero at w? = w? + w? and tends to unity for
w — oc. It is seen that ’
w)=1- —2——1—— T\ 2.2)
wh + w? —w?
has zero at w? = w§ and a pole at w? = w? = wi + w?. In the 7, ¢ representation O(7, t)
and A(,1) are given by

kdk

€. [dw
O(F.1) = — lw(l zfv) 2
(7%) w / . t_——'z a _1826).]0(/»/)).
kdk

m.’g(kﬂ). ‘ (2.3)

First, we take integral over k. For this we use the Table integral (see, e.g., [17])

A7) = i/du;ciw(t—z/u)
’ e

T kdk - . ,
/ Exy 71 gz o(kp) = Ko(py), (2.4)

where in the rlght hand side the value of square root \/ correspondmg to its positive

real part should be taken.

3 Electromagnetic potentials and ﬁeld strengths

We now define domains where 1 — 3% > 0 and 1 - Bl <.
For 8 < (3. one has: .
1 - %> 0 for w? < w? and w? > w} and 1 - FZe < 0 for w2 < w? < Wi,
For 8 > 3. one gets: 1 — % > 0 for w? > w} and l—ﬁze<()for()<w < wi.
Here 3. = ¢, '/2, we = (Jwd — Fy20%.
Sometimes in physical literature another representation of the dielectric permittivity
is used (known as the Lorentz-Lorenz or Clausius-Mossotti formula, see, e.g., [18]):

r _ 1+ 2a(w)/3 . wi
CTTewm WEgoo



It is generally believed that €(w) describes optical properties of media for which e(w)
only slightly differs from unity (e.g., gases), whereas €'{w) desribes more general media
(liquids, solids, ete.).

For w? ¢ w} /3 one always has 1 — % > 0, which means the absence of radiation by
the uniformly moving charge (see below)

Let now w3 > w?/3. ,
Then, for B £ B, (B2 =1— w}/(wd+ 2w}/3) one has :

ﬂze > 0 for w? <w0—-—w — Py Lz_;nd for w? > wf - twi;

— 3% < 0 for w — Lw? — B2y%w? < w? <wi - 1wl

,On the other hand, for § > g%

1- 3% >0 for w?>wk- 1wz and

1-p% <0for Q< w? <wi—3uwi.”

We see that qualitative behaviour of ¢ and ¢’ is almost the same. The sole exception is
that for. wg < w}/3 there is no solution corresponding to 1 — #%' < 0. This permits us
to limit ourselves to the € representation.in form (1.1).

As it was admitted in [9 ], the inclusion of w dependences in € and ¢ makes unnecessary
the consideration of retardation effects. The very fact that the light velocity in medium
¢n is less than the light velocity in vacuum ¢ means that oscillators of medium react on
the initial electromagnetic field with some delay (see section 5, for details). The deviation
of ¢, from ¢ is due to the deviation of € from unity‘ For the ‘incoming plane wave and
frequency—lndependent w- this was clearly demonstrated in refs. [19,20]. At first glance it
seems that ¢, will be greater than c for € < 1. However, a more accurate analysis shows
[8] that the group velocity of light in medium is always less than c.

" “Now we satisfy the condition Rey/T = B% > 0. It is fulfilled automatically if 1 — A% >
0. In this case the argument of the Kj function is !—!}—\/1——‘,[_376— where there square root
means its arithmetic value.

Now let 1 — % <.0.

First, we consider the case when w has the imaginary part:
w}

———— > 0.
Ao t+ip T

(w)=1+
The positivity of p leads-to poles of e(w) lying only in the upper complex w half-plane.
This is needed to satisfy the causality condition (for details see [21]). Sometimes in
physical literature [22] it is stated that the causality condition is fulfilled if the poles of
€(w) lie in the lower w half-plane. This is due to a different definition of the Fourier
transforms corresponding to different signs of w of the exponentials occurring in (2.3).
We write out explicit expressions for electromagnetic potentials and field strengths:

e oodw io € 7 ia
o= — TE Ko(kp), Az = W_C_‘Z.Q dwe KO(kp);

m
—o0

o0 o0
Hy=pD,= < [ dweokKi(kp), F,=-% [ Lekk(kp),
7rc_°o 7l"U_°0 €

. o0 . [o ]

== [ dow(1- %)e*‘*’mkm, D = =5 [ dww(1 - e Ko(kp). (3.1).
- -0

Here @ = w(t — z2/v), k% = (1 — B%)w?/v?. Again, k in Eq.(3.1) means the value of

Vi corresponding to Rek > 0. .

These expressions were obtained by Fermi [10]. Their drawback is that modified Bessel

functions K are complex even for real € (when 1 —~ % < 0). We intend now to present

Egs. (3.1} in a manifestly real form. This greatly simplifies calculations.

We present 1 — (% in the form

1 - f% = a+ib= va?+ t¥(cos ¢ + isin ¢) (3.2)

where
wi —w?

12,2 wp
W= 7P

(OEPO R

a ; b
——, sing=-—eoo .
Va? + p? ¢ Va? + 2
Now we take square root of 1 — 3%. The positivity of Rey/T — §% defines it uniquely:

V1= B2 = (a® + b%)*(cos % + isin %),

a=1-p%—p%}

cos ¢ =

¢ 1 P
cos — + /2 bt /2
2= A0 e e At e 69
Thus, the argument of K functions entering into (3.1) is
pl%l(a2 + b¥)Y4(cos g + isin g) . (3.4)

Although the integrands in (3.1) are complex, the integrals defining electromagnetic
potentials and strengths are real (see Appendix). This is due to the fact that e(—w) =
€(w)-

Now we take the limit p — O+. Let in this limit 1 — §% > 0. Then,
a>0,b—0, cos?— 1, sin? — 0 and /T = % coincides with its arithmetic value.
Now let 1 — % < 0. Then, a <0, b — 0, cos$ — 0, sing — b/[b and I— 2% =
iy/I1 — B%] sign(w). (it was taken into accountthat p > 0). This shows that K functions
entering into the right-hand side of Eq. (3.1) reduce to

Katiol i1~ o)) = -2 L [T e,



ol i) = <SPl T = )

for w > 0 and
Ko-ipl T =) = TPl T = e,
LN ey _§H§1>(pl;i’\/|1 =)

for w < 0.

Now we are able to write out electromagnetic potentials and field strengths in a manifestly
real form. For 8 < f3. one finds

W, o wo
% f dw e [dw,
B(F, 1) = 7—(%(0/+/)—€~ cos aKp + Eu,/ T(sm aJy — cos alNp),
wo e
2 We oo e wo
A, (7t) = —e(/+/)dw cos aKp + —/dw(sinq]o — cos alNp) (3.5).
mel 4 el

We ] wo
Hy(7,t) = j—;(/+/)wdw\/]1 - B2e|cosaK, + —c%/wdw\/ll — B2€|(sin aJ), — cos aNy),

wo

/ /) 1- ———)wdwsmaKo - —/(1 -~ e—llp)wdw(Nosina + Jycosa),

28 /+/)dw l—ﬂzelcosaKl + = /dw V|1 ~ B2e|(sinad; — cos V).

On the other hand, for § > e
wo

o]
dw
®(r,t) = 2 / @—cos aKg + E/—(sin aJy — cos alNg),
TvJ € v €
wo 0
' 26 o3 e wo
A (M) = g /dw cos aKy+ E/dw(sin aJy — cosalVy). (3.6)

Hy(7t) = P wdwi/|1 — (€| cos aKy + — /wdw\/ 11 —ﬂz |(sin @ J, — cos alNy),

wo
1 .
E, = _2,%/(1 — —)wdwsm aKy — 2 /(1 - F)wdw(NO sin a + Jp cos ),
e
wo 0

[o o] wo
2e w e w T e B
E, = m/dw:d\l — Fe|cosaK, + ﬁ(’/dw?\/{l B2%|(sin aJ; — cosalNy).
Wo

Here & = w(t — z/v). The argument of all the Bessel functions is /|1 — B%¢|pw/v.
\We observe that integrals containing usual (J, N) and modified (K) Bessel functions are
taken over space regions where 1 — 3% < 0 and 1 — % > 0, resp.
Consider the limit cases of these expessions.
For wy, = 0 we obtain: ¢ = 1,6, = L,w = wy,
2e 1
o= — (LucosaK = A, =30, y=1/y1-3
g o) = (s —wir g A= =Y
i.e. we get the field of a charge uniformly moving in vacuum.
Let v — 0. Then, w, = wy and '
2 T wz pw e 1
= — [ dwcos(—)Ko(— —_— A,
meo J (c) U(c eoVE+ 2
i.e., we obtain the field of a charge resting in medium.
wijwg —

Let wy — oc, wy, = 0C,, but wy/we is finite. Then, we = woy/l — 32?2
oc, €(w) — € and

oo

2e pw ; 1 ‘
= - =— . A= Je®
® p— O/d.u cos aKU( /1 - B 60) [(_/ Tt A . = Peg
for 8 < . and
3= oodw(sin  Jy—cos alNg) = Ze ! O(vt—z—p/v,), A, = Oe®
= ves / QdJdy ¢/ — €0 {(Z _ ’l)t)Z — p"/'*/fl]l/l Z=p/ V), Az = 0€

for 8 > fe. Here v, = 1/4/|1 = 82|, B. = v/¢n, tn = ¢/ /e0.

Thus, we arrive at the charge motion in medium with a constant electric permittivity
€ = €.

It should be stressed that the integration over the whole range of w is absolutely needed
to obtain correct limit expressions and to guarantee the reversibility of the Fourier trans-
forination. .

. The distributions of the magnetic vector potential A, and field stfengths as a function
of z on the surface of a cylinder C, of the radius p (Fig. 1) are shown in Figs. 2 - 7. 1f
the dependence € of w were neglected (¢(w) = ¢o), then for # > G the electromagnetic
field would be confined to the interior of the Cherenkov cone with the solution angle
20, sinf, = B,/B (Fig. 1). This means that on the surface of C, the electromagnetic
field should be zero for —z, < z < 00, 2, = pcotl, = \/;‘L?— 1. What can we learn from
figures 2-7 7 For a small charge velocity (8 < 0.4) the magnetic field coincides with that
of the charge moving inside medium with the constant € = . For 0 slightly less than

8. (B = 0.6) oscillations appear for negative values of z. Their amplitude grows as 3
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increases. For 8= 03, we see é. lafge'peak at z = 0 and smaller ones in the region z < 0.
For 8 > B, there is a large maximum at z = 2. and smaller ones in the region z < z.. The
period of these oscillations approximately coincides with that of the medium polarization
T, ~ 2wvfP.Jwe (see section 5). Figures 2-7 demonstrate how the EMF is distributed
over the surface of the cylinder C, at a fixed moment of time ¢. As all electromagnetic
strengths depend on z and t via z—vt, the periodic dependence on time (with the period
273, /wy) should be observed at a fixed spatial point.
It is seen that despite the w dependence of ¢, the critical velocity 8. = 1/,/& still has
a physical meaning. Indeed, for § > 3, the magnetic vector potential and field strength
are very small outside the Mach cone (z > z.) exhibiting oscillations inside it (z < z).
For § < B. the Mach cone disappears.- The EMF being relatively small differs from zero
everywhere. '

The magnetic vector potential presented in Figs. 2-4 can be compared with its non-
oscillating behaviour for the the frequency-independent € = ¢:

_ Jéj o
A= - f e RO T L )

We turn again to Eqgs. (3.5) and (3.6). The Fourier components of ® and E have
a pole at w = wy = Jwl+w? This leads to the divergence of integrals defining ®
and E. It would be tempting to approximate these integrals by their principal values.
We illustrate this using @ as an example (see Eq.(3.1)). ‘Consider a closed contour C

consisting of three real intervals ((—oo, —wy — 8), (—~wp + 6,wg —8), (wo + 6,00)), of

two semi-circles C; and C; of the radius § with their centers at z = —wp and z = wy,
resp. and of a semi-circle Cr of the infinite radius. All semi-circles C}, C, and Cp, lie in
the upper half-plane. The integral

dw .
/ e Ky kp)

taken over the closed contour C equals zero if the function Ky has no singularities inside
C. The same integral taken over Cg is also 0 for ¢ — z/v > 0 due to the exponential
factor e'®. Therefore,

~wp—6  wo—{

+/ /+/ [y &eaKykp) =o0.

—wo+d wo+4d 1 C2

In the limit § — 0 one gets

V.P. /he“’K (kp) = / /—-e“’Kg (kp) =
C;

= ~2w~e(t—z/v) sinws(t — z/v) Ky (pl I)

Then, for the electric potential one gets

§=- fﬂe(t—z/u )sinws(t = /) Kolp ]‘"3'). (3.7)

We see that the principal value of the treated integral does not describe the Cherenkov
cone. Probably, this is due to singularities (poles and branch points) of the modified
Bessel function in the upper w half-plane. When evaluating (3.7) we did not take them
into account. .

The radiation field (described by the integrals in (3.5) and (3.6) containing usual
Bessel functions) can be handled by the WKB method. We follow closely Tamm’s paper
[23] (see also review [24]). For this we change J, and N, functions by their asymptotic

2 vr vm
J(z) ~ \/:cos(z — -5 —), N(z) ~ \/:sm(:c -5 —;I)

Hy= c‘/m /dw\/— fre—1)Ycos(f + = 1
=2 [ o= 1) eos(f + ),
_.S /7_;21; /dw%\/a(ﬁze — 1) cos(f + %) . (3.8)

Here f = w(t ~— z/v) ~ /B% — 1pw/v. The argument of cosine is a rapidly oscillating
function of w. The main contribution to the integrals comes from stationary points at
which df /dw = 0 Or, explicitly,

(vt - ;)\/ﬂze —1=p[f*~1+ mui?—_%;]. : (3.9)

This equation defines w as a function of p, 2. Let this w be wi(p,z). Then the WKB

values:

Then,

method gives

2e w .
) _— 1.. (ﬂzfl - 1)1/4 SlIlfl,
vplful
2e
E,=—-— 2¢; — 1)Y4sin £,
= e P~ D sin
2e [[wr oo 3/
= — - €6 —1 sin 3.10
v (e = D sin (3.10)
for fi > 0 and
2e
Hy=~= (B — 1)V cos fi,

Uplfll



2
b= = —u—“——(ﬂzel — 1)1/4 cos f1,

ver \ vpl fil
=2 [ (B2, — 1)** cos fi (3.11)
ver Y vpl fi

for fl < 0. Here "
f‘ = f(wl)a €6 = é(wl)s fl = wlu:wr

The electromagnetic strengths are maximal if

wy (vt — 2) — puny/ B2 — 1= (m+ %)m} (3.12)

w (vt — z) — pw1y/ % — 1 = mnv (3.13)

for f; < 0. Here m = 0, +1, £2 etc.The combined solution of (3.9} and (3.12),(3.13)
defines the set of trajectories where electromagnetic strengths are maximal. Equations
(3.9)-(3.13) were obtained by Tamm (23 . We apply them to the particular e(w). given
by Eq.(1.1). The trajectories of field strength maxima for selected v and m are shown in
Figs. 8-10. The number of a particular curve means m. We observe that inclination of

for f1 > 0 and

curves increases as [ approaches .

4 The energy flux and the number of photons

We evaluate now the energy flux per unit length through the surface of a cylinder C,
(Fig.1) coaxial with the z axis for the total time of motion. It is given by

+oo
C,z_ 5 c
W = 21p / Spdt, Sy = (B x )y = ~-E.Hy. (4.1)
Substituting E, and Hy from (3.5) and (3.6) and taking into account that

oo jeo)
/ dtsinwtcosw't =0, / dtsinwtsinw't = 7{6(w — w') — 6(w + )
“o )
o
/ dt coswt cosw't = w[§(w — w') + 6w + )],
-
we get for energy losses per unit length
1

e?
B2e>1

10

Or. explicitly.

W= futatt - 2 =~ L -5 (13)
- ‘ — = - 1 — .
@) YT 92 g N T
for 3 < 3, and
2 “o 2 2 1 2 2
4 1 e wi, 1 w W
V= » )= [T Lot + 28 4.
1 = wdw(1 652) c,)[ 5 ([32 1)+23" n( +’-’i)] (4.4)

for 4 > 3.

We observe that only those terms in (3.5) and (3.6) which contain the usual Bessel
functions (J, and N,) and which correspond to 1 — f% < 0 contribute to the radial
cnergy flux. This permits us to escape troubles with the above-mentioned pole of ¢!
(at wy = \/:fi:wj) which appears only in terms with modified Bessel functions in the
region where 1 — 3% > 0. . '
Another way to escape these troubles is to evaluate EMF for an arbitrary value of the
parameter p defining the imaginary part e(w)‘ and then let p go to zero. It was shown in
the Appendix that this procedure leads to the same Egs. (3.5),(3.6),(4.2),(4.3) and (4.4).

Similar expressiofis were obtained by E. Fermi [10]. The validity of Eq.(4.2) is also
confirmed by the results obtained by Sternheimer [12] (whose equations pass into (4.2)
in the Hmit p - 0) and Ginzburg [25]..

For 8 — 0 the energy losses W tend to 0, while for # — 1 (it is just this limit that was
considered by Tamm and Frank [2]) they tend to the finite value e—Z—:“j* In(l + fgl)

In Fig. 11, we present the dimensionless quantity F = W/(e*wj/c?) as a function of the
particle velocity 8. 'fge numbers at curves mean .. Vertical lines with arrows divide a
curve by two parts corresponding to the energy losses with velocities 4 < §. and 4 > 5,
and lying to the left and right of vertical lines, resp. We see that the charge nniformly
moving in medium radiates at every velocity.

The dimmensionless spectral distributions f(w) = w(w)/(e*wo/c?} of the energy loss
W = Tw(w)dw are shown in Fig. 12. The numbers of particular curves mean 3. It is

0
seen that for 8 > B all w from the interval 0 < w < wy contribute to the energy losses.
For 8 < B. the interval of permissible w diminishes : we < w < wy:

The total number of photons emitted per unit length is given by

2 P 1 2 w? , o w ,
. e e W — Wy wry, Wy + wo Wy — W,
N=-— dw(l - 7) = —;{ =3 —In ——
he 5 efd he?t g2y 20wy ws — wo ws + we
”
for 3 < 4, and
h -~ Mo
2 wo ) ' 2 ‘
[ € Wy wy Wy + Ly

y 1
N = -w—/ lw(l — —-- e e —— L In{ ———= !
i J e s eﬂz) he?* [g2y? * 253%wsy H(UJ;; - wo)’

11



for g > B.. It is seen that N grows from 0 for 3 = 0 up to

e wp ., wituwo

f‘w2 2ﬂ2w3 w3 — wo)
for § =1. In Fig. 13, we present the dimensionless quantity N/{e*wp/hc*) as a function
of the particle velocity 5. The numbers of curves mean .. The vertical lines with arrows
divide curve into two parts corresponding to the photon numbers emitted by the charge
with velocities 8 < g, and 8 > B, and lying to the left and right of vertical lines, resp.
We see that an uniformly moving charge emits photons at every velocity.

The spectral distribution n(w) of the photon number emitted per unit of length defined

as N = ch(w)dw is given by
e? 1
n{w) = );El—(l - Eﬁ) |
For 8 < fB, n{w) changes from 0 at w = w, up to n(w) = €*/kic? at w = wy. For 8 > B,
n(w) changes from (1 — o) 8t w=w up to e?/Ac? at w = wp.

The dimensionless spectral distributions n(w)/(e?/hc?) of the photon number are
shown in Fig. 14. The numbers of particuiar curve mean . It is seen that for § > g, all
w from the interval 0 < w < wp contribute to the number of emitted photons. For 8 < g,
the interval of permissible w diminishes : w. < w < wy, i.e., only high-enér’é;y photons
contribute.

The distributions of the radial energy flux S, as a function of z on the surface of the
cylinder C, of the radius p (Fig. 1) are shown in Figs. 15-17. It is seen that despite the
w dependence of ¢ the critical velocity . = 1/,/€ still has a physical meaning. Indeed,
for # > f3. the electromagnetic energy flux is very small outside the;Mach cone exhibiting
oscillations inside it. For. 8 < f, the radial flux diminishes and becomes negligible for
B <04 ,

For the frequency-independent ¢ = ¢y the energy flux is confined to the surface
of the Mach cone. Electromagnetic strengths inside the Mach cone fall as r=2 at large
distances and, therefore, do not conribute to the radial flux.

5 Digression on the polarization

Another, more physical way to obtain EMF of a charge uniformly moving in medium is
to start with the Maxwell equations

_ " o 14 - 1= -
divD = 4wp, diwB =0, curlE= ———B, curlH = —D + 4—7rj - (5.1).

As the medlum is non-magnetic, B = H. The second a.nd third Maxwell equatlons are

satisfied if we put Q*
. — - - - [V
H=VxA, E=—VCI>—EA.

12

We rewrite Maxwell equations in the w representation:

w 8 w _u‘) w
¢_‘_a_psz E:)_’U( ﬂA)

10 w w
;aP(EZ' +47Py) — —“(Ef +4nP;) = 4mp¥,
OFY w
= —HY. 5.2
The last equation is satisfied trivially if we express electromagnetic strengths through the

HY = ﬂ(E;;’ + 47rP;,"),

electromagnetic potentials:

ov w w 0AY
w o _ EYv = ¥ . AY W £
E ép’ P v c T8 ap

In deriving these equations we have taken into account that the z and ¢ dependence of
all Fourier companents of electromagnetic potentials, field strengths, polarization, charge
and current densities is given by the factor expliw(t — z/v))].

The electric field E of a moving charge induces the polarization P(7, t) which being added
with E gives electric induction D = E + 47 P. Usually, it is believed (see, e.g.,[21,22))
that the w components of Pand E

B = / e tP(Ft)dt, E, = / e Wt E(F, t)dt

are related by the formula

L Wi
47er = T—_Z—,——Ew. (53)
wh — w* +1pw

Using this fact and expressing electromagnetic strengths in Eq.(5.2) through the poten-
tials we get (remember that the last equation (5.2) is satisfied trivially):

2 Y ~ 1
88 — 28 + Zdiv A = ——4np®
v c €

2
A,A,+‘-"c-2-eA‘;—ﬁ’Eecpw e

8AY  aav

2 — g 0% 5.4

p P ap (5.4)

Here

© = £5(0)d(y) exp(—iwz/v), ¥ = ed(@)o(y) exp(—iwafv), Da = ~ir(p).
=5 T ' pop™ Bp

The last equation (5.4) is satisfied if we choose

AY = Pe(w)d” (5.5)

13



while two others coincide after this substitution. The solutions of these equations are

P AL Ny I P )

In the (7, t) space they are given by Eqgs. (3.5) and (3.6).
Now we rewrite Eq.(5.3) in the (7,¢) representation:

P@t) = # / G(t - t)E(t),

where oo

Glt—t)=uw? /

), (5.6)
wy — W+ 1pw
Taking into account the positivity of p one gets:
a) for p < wy:
G(t—t’):Ofort’>ta.nd

o 2rw? —pft —¢ i g —p?/A(t —t)] for ¢’ < t.
Git-t)= \7=-—"‘7; exp [—p(t — t')/2] sin[y/wf — p?/4(t - V)]
b) for p > wy:,
Gt-t)=0fort >t and

2w} : B 20 ’

Git-t)= TIL”‘“ exp [-p(t — t')/2] sinh[y/p? /4 — WE(2 f)] for ¢’ < t.

As a result of positivity of p, the value of polarization P> at the moment ¢ is defined
by the values of the electric field Ein preceeding times (causality principle). The source
of polarization is distributed along the z axis: .

divP = —6—6(1:)(5(21)—————“i —— exp [—p(t — 2/v)/2] sin[\‘/wg +w? — p?/4(t —- 2/v)]

v w4+ wi —p2/4

for z < vt and divP = 0 for z > vt (this equation is related to the wf + w? — p?/4 > 0
case).

Now the origin of oscillations of the potentials and field strengths behind the Mach cone
becomes understandable. A moving charge gives rise to a time-dependent polarization
which, in the absence of damping, oscillates with the frequency /w? + w?. The oscilla-
tions of polarization being added lead to the appearance of the smoothed Mach cones
enclosed in each other. On the surface of the cylindrical surface C, they are manifested
as maxima of the potentials, field strengths, and intensities. The position of the first
maximum approximately coincides with the position of the singular Mach cone in the
absence of dispersion. The latter case is obtained if we neglect the w dependence in the

denominator of the integral in (5.5):

2
w

Gt —t)=2m-L8(t - t),
Wy

14

. Obviously, this can be realized for large values of wy. The introduction of damping
should lead to decreasing of secondary maxima. To verify this, we evaluated the magnetic
vector potential for different values of the parameter p defining the imaginary part of ¢(w)

_ (see section 3). We see (Fig. 18) that for p > 1 the secondary oscillations disappear.

Although the polarization formalism leads to the same expressions (3.5),(3.6) for the’
electromagnetic potentials and field strengths, it presents another, more physical, point
of view on the nature of the Vavilov-Cherenkov radiation.

6 Another choice of polarization

So far we have dealt with the gauge condition of the form AY = fe(w)d“. Tt looks
highly non-local in the (7,¢t) representation. There is another interesting possibility. We

substitute

E_—Vfb—l?é, H=VxA
c Ot

into the first and fourth Maxwell equations (5.1) and obtain
1, o
AD + —divA = —4rp + 4ndiv P,

¢

AA——A V(divA + @)—41(” + ).
C

We try to separate equations for ® and A by imposing on them the Lorentz condition
B i
divA+-¢=0. {6.1)
¢
This equation is satisfied automatically if we put
A=A, =0, A, =pd (6.2)

and take into account that for the treated problem all the electromagnetic quantities
depend on z and ¢ through the combination z — vt. Thus, we obtain

1. :,
Ad — 23<I) = —dnp+ dxdiv P,

It follows from this that only the 2 component of P differs from zero in the chosen gauge
(as only the z components of A and 7 differ from zero). We rewrite these equations in
the w representation

5,1 1 1
Azq)u +LL)2(EE -— P)Qw = “47pr - 47{'%[101,

15



1 1 T w
A AY + wﬂ(g - ;;)A‘; = —7]: - 47T?P“’_ (6.3)
As the treated medium is non-magnetic, it is natural to require the coincidence of equa-
tions (5.4) and (6.3) for vector potentials satisfying different gauge conditions. This takes

place if P¥ is chosen to be proportional to AY:

P,=——(e— 1)A}. 6.4
= = (e 1) (64)
Then, one gets
AP 4+ w (_ce_ - -13)<I> = —dmp”,
w 5, € 1, o _ T
A2"442 +w (C—Q - U_Q—)AZ - —_]z

The solutions of these equations are

2e w 2e w
v = 7KO(%\A — f%), = KO(%—I\/I — B%),
2ejw : ” w
Hy = ——l——l\/l—ﬁ%Kl, E; = DJ = Hj /B,

21ew
(1 - ﬁ2 )K07

where all K functions depend on the argument ‘uﬂ\/l_——vzz in which the value of /1 — A%
corresponding to its positive real part should be taken. Obviously, there is no propor-
tionality between D and E for the chosen polarization. In the (7,¢) representations the
magnetic vector potential and field strength are the same as Egs.(3.5) and (3.6), while
for ®, E, and E, one gets

21
E, =221 -f")K, D,=
’U

2 We o0 wo
&(r,t) = —e(/+/)dwcosaKo + E/dw(sinaJo — cos alNp),
Y v
We

2 1. ¢ 7 . e T L
z = W—;(l - @)[(/+/)wdwsmal(o - EE-/.L,.;du.z(Nosma+ Jocosa)),
B, = 7”)2 / / Jdww/|1 — B%|cosaK, + — /dww\/ [1 — (%€ (sin aJy — cos aNy).

for 8 < B, and

9 [~} wo
o(rt) = —Z/dwcos aKy + %/dw(sin aJy — cos alNy),
s
W 0
1 o0 e Wo
E,=—(1- E)[/wdwsinal(o - C—Q/wdw(Nosina + Jycos )},
wo 0
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00 wo ’ .
2
E,= W—;/dww,/u — (2| cosaK; + v%/dww\/ll — (%€ (sin aJ; — cosaNy).
wo 0

for 3 > 3.

These expressions satisfy the Maxwell equations but with the polarization different
from the one used earlier. We observe that electric induction D is the same as earlier,
but the electric strength differs. As the integrands defining ® and E are finite for any
value of w, the corresponding integrals are convergent and can be evaluated numerically.
We observe that for § — 1, E, — 0. This means that for this choice of polarization the
energy flux in the transverse direction disappears, that is, all the energy is radiated in
the direction of charge motion. .

It is surprising that the choice of Lorentz condition (6.1) almost inevitably leads to
the solution with vanishing p component of polarization. But the physics cannot depend
on the gauge choice. A probable resolution of this controversy is that polarization P is
not observable. But electric strengths E defining the Poynting vector are also different
in both the gauges. So, the question remains to be answered.

7 On the Kronig-Kramers dispersion relations

Up to now we considered the case when the imaginary part of the dielectic penetrability
was chosen to be zero.Can this be reconciled with the Kramers-Kronig dispersion rela-
tions? Using the fact that for the chosen form of the Fourier integrals, the poles of e(w)
lie in the upper w half-plane, one has (see, e.g.,[22]):

oo
/ %z)_—;-ldw +inle(z) — 1] =0.

—00

Or, separating real and imaginary parts:

/ Z:;dw=7rei(-’5), / w?IW=—7r[er(z)—1] (7.1)

(by the integrals, we mean their principal values which obtained by closing the integration
contour in the lower w half-plane).
Here ¢, and ¢; are the real and imaginary parts of w:

2 2 '
Wi (wo d ) _ powr, (72)

=1 _ L €= ——— =
+ (W2 —w?)2 4+ p2w? (wE — w?)? + p2w?

At first glance it seems that relations (7.1) cannot be fulfilled. Take, e.g., the second of
them. For ¢ = 0 its left-hand side disappears, which is not valid for its right-hand side.

17



Consider the integral entering into its left-hand side

7 wdw 1
dw = —pof, [ : 7.3
~/w—zw PoL w—z (w§ — w?)? + p2w? (7.3)
A detailed consideration shows that the integral in the right-hand side of this equation
is equal to ~
Tz —w}

IRz o

The factor p of the integral in (7.3). cancels out with the factor 1/p in (7.4). Thus,.

(=)

/ 5 dw = 7w}

w1z (22

z? — W}
2)2 +p21-2’

-0

that exactly coincides with the the right-hand side of the second relation (7.1). The same
resoning proofs the validity of the first relation (7.1). Thus, Kramers-Kronig relations
are valid for any small p > 0. The positivity of p defines how the integration contour
should be closed, which in turn leads to the fulfillment of the causality condition.

’

8 Conclusion.

We briefly summarize the main resuls obtained:

1. The space-time distributions of the EMF produced by a umformly moving charge
in medium with frequency-dependent dielectric permittivity are studied. The oscillating
EMF arises inside the Cherenkov cone. It is associated with the time-dependent polar-
ization induced by the moving charge.

2. It is proved that a charge uniformly moving in medium with frequency—dependent
dielectric permittivity radiates at each velocity. The spectral characteristics of this radi-
ation are given. It turns out that for a small charge vélocity the main contribution comes
from high frequencies.

3. It is shown that there are possible different definitions of polarization which are due
to different choices of the gauge condition imposed on the electromagnetic potentials.
However, their physical consequences are different.
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Figure 1: Schematic presentation of the Cherenkov cone for a constant electric permnittiv-
itv. The radiation field is confined to the surface of the cone, the field inside the cone does
not contribute to the radiation. On the surface of the cylinder C, the clectromagnetic
field is zero for z > —z.; S, means the radial energy flux through the cylinder surface.
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Figure 2: The distribution of the magnetic vector potential on the surface of eylinder (7.
The number of a particular curve means 3 = v/e; z and A, are in units ¢/wy and cwy/e.
resp.
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Figure 3: The same as in Fig.2, but for different values of 8.
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Figure 4: The same as in Fig.2, but for different values of 3.
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Figure 5: The distribution of the magnetic field strength on the surface of cylinder C,.
The number of a particular curve means § = v/c; z and Hy are in units c¢/wp and ew?/c?,

resp.
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Figure 6: The same as in Fig.5, but for different values of 3.
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’ Figure 7: The same as in Fig.5, but for different values of 4. Figurc 9: The same as in Fig.8, but for 3 = 0.8. 1t is scen that inclination of trajectories

increases compared to the previous figure.
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Figure 8: The positions of field strength maxima for 8 = 0.99. The number of a particular
curve means the number m defining a particular trajectory (see the text); z and p are in
units c/wy.

Figure 10: The same as in Fig.8, but for § = 0.7. It is seen that the trajectories are
grouped near the z axis. The termination of the m = 0 trajectory is due to the vanishing
of |fi]. At this point the WKB approxoimation breaks.

22 23




F(B)
N(B)

0,01 |

1E-3 . .
0.0 0.2 0.4 06 0.3 1.0

Figure 13: The number of emitted quanta in the radial direction per unit length (in units
ewo/hc?) as a function of B = v/c. The number of a particular curve means the critical
velocity ..

Figure 11: The radial cnergy losses per unit length (in units e*w2/c?) as a function of
(3 = v/c. The number of a particular curve means the critical velocity 3.

10 . r — — 10 . . . r . . . .
r
08 |- o8 B =08
: 06 |- 8
o8 B =08 *
. ¢ 1 | 5 0.99
32 Pt |
= oal 08 i 04l
0.8
02+ 06 i 02 -
. | 0.6
0.4 0.4
0.0 " 1 . ] N 1 N 0,0 L 14 1 L L 1 —
“00 02 - 04 08 08 1,0 0o 02 o 06 be 10
w
0]

Figure 14: Spectral distribution of the emitted quanta (in units e?/hc?); w is in units wy.

Figure 12: Spectral distribution of the energy losses (in units e%wp/c?); w is in units wp. .
The number of a particular curve means 8 = v/c.

The number of a particular curve means § = v/c.
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Figure 15: The distribution of the radial energy flux (in units c%% /c?) on the surface of
cylinder C,. z is in units ¢/wy. The number of a particular curve means 8.= v/c. For
B = 0.4 the radial flux is negligible.

Figure 16: The same as in Fig.15, but for different values of 3.
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Figure 18: Shows how switching on the imaginary part p of dielectric permittivity affects

the magnetic vector potential; z

and A, arc in units ¢/wy and cwp/e. resp. The solid.

point-like and short-dashed curves refer to p =0, p = 0.1 and p = 1. resp. It is seen
that sccondary maxima are damped for p = 1 much stronger than the main one.
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Appendix.

We write out electromagnetic potentials and field strengths for the finite value of a pa-
rameter p defining the imaginary part of . Since e(—w) = ¢’ (w), the EMF can be written
in a manifestly real form :

_26

¢ = [(€ ' cosa — ¢ ' sina) Ky, — (€7 cosa + €; ' sin @) K] dw,

y
0

2 oo
A, = -ﬂ-i /dw(cosaKo,. — sin aKg),
0

% [ ¢ L .
Hy = —~ O/de(02 + b2)1/4[005(5 +a) K, —sin(g + a) Ky,

2 o
E, = 2 /walw{[cosoz(e—::1 — B?) —sinag Ko + [sinale; ! — B%) + cos ae; V| Ky, },
0

o]

2 .
E, = o wdw(a® + b?)*/*[(- cos @ ~ € ' sin a)(cos %Ku — sin %Ku)—
D
—(€ " cos @ + €, sin @) (sin g‘Klr‘*'COS %KU)]. (A.1)

Here we put

pw
Ko = ReKo(Z5 /1= 29, Ko = ImEo(Z2y/1 - o),
K, = Rek (%1 - g2 L T
1 € 1( " 1 ﬂ 6), Kh ImKl( ‘U 1 ﬁ 6),

€ and ¢; are the real and imaginary parts of e(w) (see Eqs. (7.2)); €' = /(€ +
), €'=-¢€/(€+€); @ =w(t—z/v); a,band ¢ are defined by Egs. (3.2) and (3.3).
The energy flux per unit length through the surface of a cylinder of the radius p coaxial
with the z axis for the whole time of charge motion is defined by Eq.(4.1). Substituting
E, and H, given by (A.1) into it one gets:

O~—3

where

2¢% 4, 2y1/4 1 2o @ 1 ¢
f(w) Y (0® + ) {(Kor Koy + KoK (€7 —ﬁ)s1n§—e,-" cosg]—

i

— (Ko Kir — Kor Kui)[(€," — 5%) cosg + ¢ sin g]} (A.2)
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Consider now the limit p — 0 .
Let 1 — 32 > 0 in this limit, then (see section 3):

sing—)O, cos%—)l, 60, ¢' =0, Ku—0, Ku—0

and, therefore, f(w) — 0 while electromagnetic potentials and field strengths coincide
with those terms in (3.5) and (3.6) which contain modified Bessel functions.
On the other hand, if 1 — % <0, then:

sin%—)l(forp>0), cosg—)o, &—0, >0,

7r w 7r 7r
Kor = "ENOy‘KOi - "‘2‘-70, Ky — _'2‘-]1; Ky — ENI;

where the argument of the Bessel functions is pl:_'l‘/ [1 — B2%|. Substituting this into (A.2)

and using the relation

T, (@) N1 (3) = N (@) o (2) = _.;23_:

one arrives at . .
fw
="Za-—=).
fw) = S - )
This in turn leads to W exactly coinciding with (4.2),(4.3) and (4.4). Electromagnetic
potentials and field strengts (A.1) coincide with the terms in (3.5) and (3.6) containing

usual Bessel functions.
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