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TyHHenHpoBaHHe ¢ gUCCHNAUKEN B OTKPBITHIX KBAHTOBBIX CHCTEMaXx

PaccMotpeH npouecc TyHHENTMpOBaHHA Ha OCHOBe 0600LIEHHOro MacTep-ypas-
HEHUs IS OTKPBITBHIX KBaHTOBBIX cucTeM. Hcmonb3ys TEXHUKY KOHTHHYATBHBIX
MHTETPaNoB, NOMY4EHO AHAMUTHYECKOE BRIpAXCHHE [/ BEPOATHOCTH MPOXOXICHHS
uyepe3 mapaGonuueckHii Gapbep. BeposATHOCTs TYHHETUPOBAHHSA B OTKPBITHLIX KBaH-
TOBBIX CHCTEMax CHUITBHO 3aBHCHT OT CBA3U CHCTEMBI C TepMOCTaToM. Jluccunauus
CNoco6CTBYET TYHHENNPOBAHUIO, HO MEIaeT NPOXOXACHHIO YaCTHLLI NPU Hanbapk-
epHbIX SHeprugx. Kak ongHo M3 npunoxenuii, paccMOTpeH pacnag MetactaGHIBHOTO
COCTOSIHHSL.

PaGota Beinonnena B JlaGopatopuu sinepubix peakuuit um.I.H.®neposa u B Jla-
6oparopuu TeopetHueckoit pusuku um.H.H.Boromo6osa OUSH.
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Tunneling with Dissipation in Open Quantum Systems

Based on the general form of the master equation for open quantum systems
the tunneling is considered. Using the path integral technique a simple closed form
expression for the tunneling rate through a parabolic barrier is obtained.
The tunneling in the open quantum systems strongly depends on the coupling
with environment. We found the cases when the dissipation prohibits tunneling
through the barrier but decreases the crossing of the barrier for the energies above
the barrier. As a particular application, the case of decay from the metastable state
is considered.
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There has been considerable interest to the quantum tunneling of a particle
through an energy barrier when the dissipation is present [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15]. Using various models for the description of the quantum
open system, the opposite dependences of tunneling rate on the dissipation have
been observed. It is generally thought that tunneling probability decreases in the
presence of coupling to the environment. Disregarding the stage of averaging over
the intrinsic degrees of freedom, one can consider the tunneling effect starting right
away from the general Markovian master equation for the reduced density matrix
of the collective degree of freedom [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
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Here Hy is the Hamiltonian of the collective subsystem and ¥ ; are operators acting
in the Hilbert space of the subsystem. The second term in (1) is responsible for the
friction and diffusion and supplies the unreversability in the open quantum system.
Omitting this term we get a standard form for the density matrix evolution equation
in the case of closed system The generahty of Eq. (1) was mathématically proved
in [18, 19].

In the one-dimensional case the phase space pa.th integral expression [26] for the
propagator corresponding to (1) is written as
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with the effectivé Hamiltonian
. i
Hepp = Ho— 53 Vil
]

iy 17J and V; AJ- are denoted by Hy,
[V;l?, V;* and V}, respectively. For the 1nverted harmomc oscillator with the Hamil-
tonian

Here the Wigner transform of operators Hy V Vi
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and linear environment opéra.tors
Vi=Ap+ B, Vi=Ap+B, j=12 4)

7

the propagator (2) can be evaluated analytically:

G(9,9'+; 90,90, 0) = exp(Mt) exp(iSr/h) exp(—S1/h), (5)

mw
2rh sinh(wt)
where
mw ' '
Sn = m(cosh(wt)[qg —(9)*+¢* - (q)7]

2 cosh(At)[goq — go¢'] — 2sinh(Mt)[g0q’ — goa)),
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A(t) = aexp(2At) + bsinh(2wt) + ccosh(2wt) — d,
B(t) = acosh(wt)sinh(\t) + bsinh(wt) cosh(/\t)
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a = ﬁm( quq[w "'2’\2] -—2/\mqu Dpp),
2w
b = m(m 22 Dygy + ZAmDPq + D),
2X. P L ‘
c = ’—i-;(mzwzz\qu + ADp, 4 2mw? Dy,),
2 N
d = E(wz - A%)(mzwzpqq — Dyp).
Here, the quantum mechanical diffusion coefficients Dy =% E [4;[%, D | =1 Z |B;[2

~and Dgp = — R,CEA B; and the frictional damping rate /\ = —Imz A3 B; [18 19,

22,23, 24, 25] satlsfy the following constraints: Dgg > 0, Dpp > G and D pDog— D2, >
/\zl'i.2 /4 which secure the non-negativity of the density matnx at any time. The dlffu-
sion models, in which these constraints are not fulfilled, can be related to the classical
or semicla.ssica.l considerations because they allow the violation of the uncertainty
inequality at some time {15, 20, 21, 22, 23, 24]. ‘

Using (5), A(t) is determmed from p(t=0) as

<alp()lg’ >= [ dao [ dgoGla,'st; a0, 0) < ol(t = O)lgy > (6)

In order to study the tunneling with the Hamiltonian (3), we consider a particle in
the initial state

U(q) = (2m0g,(0))" l/"exp(— ()(q g(0))* + ﬁ(O)q) (7)

in the left-hand side from the potential barrier. The calculation of (6) with (5) and
(7) yields the Gaussian distribution at time ¢

plas) =< alit)lg >= (2no(0) ™ expl—5 e —a(O)), ®)

with the first §(t) and second oge(t) moments. The equations for these moments
are given in Refs. [15, 18, 19, 21, 22,23, 24] and below for arbitrary potential.
Originally they contain the friction in both coordinate A, and momentum A, so that
Ap + A, = 2X. The considered particular case of A, = A; = A-is genera.hzed for
/\ # /\ by using the canonical transformations [15] p’ = p + pmgq, ¢ = q with the
pa.rameter u. Therefore, the expressnon (8) can be applied to the case of A, # A, as
well.
The solutions of equations for the first and second moments in (8) are
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where the following notations are used:

2 1 A=A
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and 9 = /(A — Ag)? + 4w?. With these expressions we obtain the same result as
in Ref. [27) at A, = A, = 0, Dpp = Dyg = Dpy = 0 and 0,,(0) = A%/(40,(0))
(g45(0) = 0). In the lumt D,, = Dy = D,y = 0 our results coincide with the
results of Ref. [4] where as in Ref. [27] the tunneling was studied with the inverted
Caldirola-Kanai Hamiltonian.



" The penetration probability at time ¢ is determined by the following expression
{g =0 corresponds to the top of the barrier):

P(t) = [ dalpla,t) - pla,t =0}/ [ dap(g,0), (10)

which is the ratio of change of the probability to be on the right-hand side of the
barrier in time ¢ over the initial probability of the finding the particle on the entry
left-hand side. Using Egs. (8)-(10), the penetration probability P = P(t — oo) is
easily calculated taking the initial variances in accordance with the uncertainty
relation. Here, we use 044(0)0p,(0) = £?/4 and a,,(0) = 0.

The dependences of the penetration probability through the parabolic barrier on
the initial energy E of system are presented in Fig. 1 for three sets of the friction
coefficients A, and A,. All diffusion coeflicients depend only on A. For the sub-
barrier energies (E < 0), the tunneling is larger for A, = A, # 0 as comparable to
the case without friction A, = A\, = 0. For E < 0, the dissipation in coordinate
A; increases but dissipation in momentum A, decreases the barrier penetration.
The increase of the tunneling was obtained in the microscopic Gisin’s model [28]
for large friction. However, in this model one cannot distinguish the influence of
frictions in coordinate and momentum on the tunneling. Larger penetration of the
barrier than in the standard coupled-channel calculations is necessary to explain
the experimental data on the sub-barrier fusion [29]. It could be that in this case
the coupling with environment leads to A, # 0 that renormalizes the barrier and
increases the penetration {15]. The friction and diffusion réduce the crossing of the
barrier for the energies above the barrier. For £ = 0 and A, = J,, the penetration
and reflection probabilities are equal to each other with and without dissipation.

In Fig. 2 we show how the tunneling depends on the diffusion coefficients at
different values of friction in momentum A, for A, = 0. One can see that only with
the diffusion coefficient in momentum Dy, (D,, = D, = 0) P decreases with in-
~ creasing A,. Note that this set of diffusion coefficients is not comipatible with the
quantum mechanical consideration. For Dy # 0, the-value of P initially decreases
with increasing A, up to some "critical” friction coefficients and then it starts to
grow. This effect becomes more evident at larger D,; and D,, (higher tempera-
ture). The ”critical” friction coefficient decreases with increasing temperature. This
behaviour of the tunneling probability P as a function of A, can be explained in the
following way: The tunneling is more crucial to the value of Dy, then to the value
of Dy, because ay,(t) (correspondingly p(g,t) and P) is more sensitive to Dy, than
to Dpy; At large A, the system has a longer time for the tunneling and during this
_ time 044(t) and P(t) strongly increase due to diffusion in coordinate. The increase
of tunneling rate with temperature is in agreement with Ref. [3].

The probability of finding the particle to the right of the barrier is very sensitive
to the width o,,(0) of the initial wave packet localized to the left of the barrier at
t =0 (Fig. 3). This effect is weaker with the dissipation. For smaller g,,(0), the
value of 0,,(0) becomes larger in quantum mechanics and the penetration probability
increases due to the larger fluctuation energy. In the vicinity of 044(0) = K/(2mw)

the dependence of P on 04,(0) becomes weak and the curve in Fig.3 has a step-like

behaviour. . .
The calculated time of decay from the metastable state in the potential

U(q) = ag* - B’ (11)

is shown in Fig. 4 as a function of A,. These data result from the solution of
equations for the first and second moments (obtained from eq. (1)):

dg 1 .
5 = Mt P
dp I
o = —0U@)/03- 50°U(9)/07 0w = AP,
do 2
_d?qq“ = —2X04 + m +2D,,,
iczitﬁ = —2X0p ~ 262U(q)/6q’a,,q + 2Dy,
1
Coi o U@ /0T 0+ = o+ A + 2D (12)

These equations are obtained from (1) and (4) for arbitrary potential U(g). In order
to calculate P(t) for short times, we can use in the first approximation the formalism
elaborated for the parabolic barrier. The value of time t;/; at which P(t;7) = 0.5
(the value of § corresponds to the top of the barrier) may be defined in some sense as
the tunneling time [7]. The tunneling time increases monotonically with A, (A, = 0)
when Dy, = 0. For Dy, # 0, the value of t,/; initially increases with A, and then
it decreases. This means that for large A, the dissipation prohibits the decay from
metastable state due to diffusion in coordinate. The results of calculations above
are in agreement with the results obtained in [7) using the Gisin model (28} for the
double well potential.

In conclusion, our calculations show that the dissipative effects on the tunneling
process are quite complicated. It is evident that the earlier conclusions that the dissi-
pation inhibit tunneling is not correct in the general case. There are examples when
the dissipation prohibits the penetration through the barrier. Using the general
master equation (1) for describing the open quantum systems, we can transparently
show the influence of each friction and diffusion coefficient on the tunneling. How-
ever, the microscopical calculation of these coefficients in the real system remains to
be interesting problem. In the consistent quantum treatment the tunneling should
be calculated with the set of the diffusion coefficients where Dy, > 0. As was shown,
the tunneling is crucial to the value of Dy, > 0. If the environment operators lead to
Ay # 0 then the interaction with environment renormalizes the potential barrier and
influence the tunneling. With the initial Gaussian distribution (7) the distribution
function remains to be Gaussian at any time. '
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Figure 1: Calculated dependence of the penetratibn probability through the par-
abolic barrier on ‘the initial energy of particle F at temperature kT = 0, hw = 2.0
MeV, ¢(0) = —2 fm, 0,(0) = 0.2 fm?, m = 53m, (mo is the mass of nucleon),
D,y = hA/(2mw), D,, = Amhw/2 and D,, = 0. The results for the cases
(Ap = A, =0), (Ah, = BA; = 1 MeV) and (A), = 2 MeV, A, = 0) are presented by
solid, dotted and dashed lines, respectively.
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.Figure 2: Calculated dependence of the tunneling probability P on the friction

coefficient in momentum A, at temperatures k' = 0 and 3 MeV, hw = 2.0
MeV, ¢(0) = —2 fm, 0,(0) = 0.2 .fm* E = —5 MeV, m = 53my, and fric-
tion coeffisients in coordinate A, = 0 (A = A;/2). The calculations for the cases
(kT = 0, Dy = hA/(2mw), Dy, = dmfiw/2 and Dp; = 0), (kT = 0, D,, = 0,
Dy = Apmhiw/2 and Dy, = 0), (kT = 3 MeV, Dyy = h)/(2mw) coth(hw/(2kT)),

" Dpp = Amhw/2 coth(fiw/(2kT)) and Dpy = 0) and (kT = 3 MeV, D,, = 0,

D,, = Apmhw/2coth(hw/(2kT)) and D,, = 0) are presented by solid, dashed,
dotted and dashed-dotted lines, respectively.
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Figure 3: Calculated dependence of the penetration probability P on the initial
variance gge(0) at kT = 0, fiw = 2.0 MeV, g(0) = =1 fm, p(0) = 0, m = 53my,
" Dyy = h)[(2mw), D,y = Amhw/2 and Dy, = 0. The results obtained with A" =
Ap = Ay =0 and AA = A\, = i), = 1 MeV are presented by solid and dashed lines,
respectively. The value og,(0) = i/(2mw) is marked by arrow.
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Figure 4: Calculated dependence of the decay time from the metastable state in the
potential (11) on the friction coefficient A, at Ay = 0 (A = A,/2), kT =0, p(0) = 0,
04¢(0) = 0.2 fm? and m = 53m,. The depth of potential pocket with the minimum
at q(0) = —1.08 fm is 5 MeV (e = —2.57 MeV fm~? and § = 1.59 MeV fm~?). The
top of the barrier corresponds E = 0 MeV at ¢ = 0 fm. The calculations for the cases
(Dgq = BA/(2mw), Dy, = dmhw/2 and Dyy = 0) and (Dgg = 0, Dy, = Mpymhiw/2
and D,, = 0) are presented by solid and dotted lines, respectively.
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