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Ty1rnem1poaam1e C )lHCCHnauuefi B OTKpbITbIX KBaHTOBbIX CHCTeMax 

PaCCMOTpeH npouecc T)'HHeJIHpOBaHH» Ha OCHOBe o6o6meHHOro MaCTep-ypaB­
HeHH» )lJI}I OTKpbITbIX KBaHTOBbIX CHCTeM. 11cnOJib3YH TeXHHKY KOHTHHYaJibHbIX 
HHTerpanoB, nonyqeuo aHaJIHTIIl{eCKOe BblpIDKeHHe )lJI}I Bepo»THOCTH npOXO)K)leHH» 
11epe3 napa6oJittlleCKHH 6apbep.' Bepo»THOCTb T)'HHenttpOBaHH» B OTKpbITbIX KBaH­
TOBblX CHCTeMax CHJibHO JaBHCHT OT CB»JH CHCTeMbl C TepMOCTaTOM. JJ:uccunauH» 
cnoco6cTByeT TYHHeJIHpOBaHHIO, HO MemaeT npoxo)K)leHHIO llaCTHUbl npu Ha.a;6apb­
epHbIX :;meprn»x. KaK O)lHO HJ npHJIO)KeHHH, paCCMOTpeH pacna.a; MeTacTa6ttJibHOro 
COCTOHHH». 

Pa6oTa BbiOOJIHeHa a Jla6oparnptttt }l)lepHbIX peaKUHH HM.f.H.<l>nepoBa u B Jia-
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Tunneling with Dissipation in Open Quantum Systems 

Based on the general form of the master equation for open quantum systems 
the tunneling is considered. Using the path integral technique a simple closed form 
expression for the tunneling rate through a parabolic barrier is obtained. 
The tunneling in the open quantum systems strongly depends on the coupling 
with environment. We found the cases when the dissipation prohibits tunneling 
through the barrier but decreases the crossing of the barrier for the energies above 
the barrier. As a particular application, the case of decay from the metastable state 
is considered. 

The investigation has been performed at the Flerov Laboratory of Nuclear 
Reactions and at the Bogoliubov Laboratory of Theoretical Physics, JINR. 
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There has been considerable interest to the quantum tunneling of a particle 
through an energy barrier when the dissipation is present [l, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14, 15]. Using various models for the description of the quantum 
open system, the opposite dependences of tunneling rate on the dissipation have 
been observed. It is generally thought that tunneling probability decreases in the 
presence of coupling to the environment. Disregarding the stage of averaging over 
the intrinsic degrees of freedom, one can consider the tunneling effect starting right 
away from the general Markovian master equation for the reduced density matrix 
of the collective degree of freedom [16, 17, 18, 19, 20, 21, 22, 23, 24, 25] 

(1) 

Here Ho is the Hamiltonian of the collective subsystem and ½ are operators acting 
in the Hilbert space of the subsystem. The second term in (1) is responsible for the 
friction and diffusion and supplies the unreversability in the open quantum system. 
Omitting this term we get a standard form for the density matrix evolution equation 
in the case of closed system. The generality of Eq. (1) was mathematically proved 
in [18, 19]. 

In the one-dimensional case the phase space path integral expression [26] for the 
propagator corresponding to (1) is written as 

q(t), q'(t) . 

G(q, q', t; q0 , q~, 0) = j D[a] .J D[a'] exp (kS[a, a']), 
qo(O) q~(O) 

t 

S[a,a'] == j dr{q(r)p(r)- HeJJ(q(r),p(r))} 
0 

t 

j dr{q'(r)p'(r) - H;Jf(q'(r),p'(r))} 
0 

t 

i L j dr{Vj(q( T ),p( r))½*(q'( r),p'( T ))}, (2) 
3 0 

with the effective Hamiltonian 

Here the Wigner transform of operators H-0 f-/½, Vj+ and ½ are denoted by H0 , 

1½1 2
, ½* and½, respectively. For the inverted harmonic oscillator with the Hamil­

tonian 

R 1 •2 mw2 •2 
o= 2mp --2-q (3) 



and linear environment operators 

A A A '"'+ .... *"' • V;=A;p+B;q, \!'.i =A;p+B;q, J=l,2, (4) 

the propagator (2) can be evaluated analytically: 

G(q,q',t;qo,q~,0) = 
2 

ti,~:( ) exp(At)exp(iSR/h)exp(-SJ/h), 
71" S!Il wt 

(5) 

where 

SR mw ( h( ) [ 2 ( ')2 2 , 2 2sinh(wt) cos wt qo- qo +q -(q)] 

2cosh(At)[qoq- q~q']- 2sinh(At)[q0q' - q~q]), 

Sr= 8A(w2 - A~ sinh2(wt) (A(t)[qo - q~]2 - 4B(t)[qo - q~l[q- q'] -A(-t)[q- q']2), 

A(t) 
B(t) 

a 

b 

C 

d 

aexp(2At) + bsinh(2wt) + ccosh(2wt) - d, 
a cosh(wt) sinh(At) + bsinh(wt) cosh(At), 

2w2 2 2 '2 . 
nm (m Dgq[w - 2A] - 2AmDpq - Dpp), 

2wA 2 2 ) 
nm (m w Dqq + 2AmDpg + Dpp , 

2A. 2 2 . 2 ') 
nm (m w ADgg + ADpp + 2mw Dpg , 

h~ (w2 - A2)(m2w2 Dgg - Dpp)-

Here, the quantum mechanic~! diffusion coefficients Dgg = ½~IA; 12, Dpp = ½ I:: IB; 12 
J J 

and Dgp = -½Re I:; AJB; and the frictional damping rate A= -Im~ A;B; [18, 19, 
J J 

22, 23, 24, 25] satisfy the following constraints: Dgg > 0, DPP > 0 and DppDgg- D;q 2: 
A2n2 /4 which secure the non°negativity of the density matrix at any time. The diffu­
sion models, in which these constraints are not fulfilled, can be related to the classical 
or semiclassical considerations because they allow the violation of the uncertainty 
inequality at some time [15, 20, 21, 22, 23, 24). · 

Using (5), p(t) is determined from p(t = 0) as 

< qlfi(t)lq' >= j dqo j dq~G(q,q',t;qo,q~,O) < qolfi(t = O)lq~ >. (6) 

In order to study the tunneling with the Hamiltonian (3), we consider a particle in 
the initial state 

· · 1 i 
\Jl(q) = (211"0'gg(0WI/4 exp(- 4ugg(0) (q - ij(0))2 + hji(0)q) (7) 

2 

\ .. 

"' 

1' 

,,, 

in the left-hand side from the potential barrier. The calculation of (6) with (5) and 
(7) yields the Gaussian distribution at time t 

p(q, t) =< qlfi(t)lq >= (211"CTgq(tW 112 exp(--
2 

1 
( )(q - ij(t))

2
), . O' gg t 

(8) 

with the first q(t) and second O'gg(t) moments. The equations for these moments 
are given in Refs. [15, 18, 19, 21, 22, 23, 24) and below for arbitrary potential. 
Originally they contain the friction in both coordinate Ag and momentum Ap so that 
Ap + Ag = 2A. The considered particular case of Ap = Ag = A is gene~alized for 
Ap # Ag by using the canonical transformations [15) p' = p + µmq, q' = q with the 
parameterµ. Therefore, the expression (8) can be applied to the case of Ap # Ag as 
well. 

The solutions of equations for the first and second moments in (8) are 

q(t) = e->.t (ij(O) [cosh(ipt/2) + Ap; Ag sinh(ipt/2)] + :V'ji(O)sinh(ipt/2)), 

O'qq(t) 1 . [ 2 2 - l 
2

m 2A(w2 _ ApAg) m (w - 2ApA)Dgg - Dpp - 2mApDpq 

-2>.t [ 2C1 1 [( ) l + e ~(Ag - Ap) - 2mw2 Ag - Ap C2 + C3ip cosh(ipt) 

+ 
2
~w2[(Aq-Ap)C3+C2ip)sinh(ipt)], (9) 

where the following notations are used: 

Cr = 
mw2(Ag - Ap) [ 1 _ Ag - Ap 

.,.2 O'gg(0) - -2upp(0) + --2-upq(0) 
'I' mw mw 

1 1 (Aq - Ap) ] 
).Dqq + m2w2A Dpp - mw2A Dpq ' 

_ 1 [Ag - Ap ( ( ) 2 2 ( 2 C2 - 1/'2 -m- O'pp 0 - m w O'qq 0)) + 4w, O'pg(0) 

1 ( 2w
2 - ApAg + A; 2 2 2 ] 

+ w2 _ A A m [Dpp + m w Dqqj + 4Aw Dpq) , 
p g 

C3 1 [ 2 2 ) - mip m w ugq(0 + O'pp(0) 

1 ( 2 . 2 2 )] + w2 _ ApAg AqDpp + 2mw Dpg + m w ApDgg 

and ip = J(Ap - Ag)2 + 4w2. With these expressions we obtain the same result as 
• . . 2 
m Ref. [27) at Ap = Aq = 0, Dpp = Dqq = Dpq = 0 and upp(0) = ti, /(4uqq(0)) 
(uqp(0) = 0). In the limit Dpp = Dqq = Dpq = 0 our results coincide with the 
results of Ref. [4) where as in Ref. [27] the tunneling was studied with the inverted 
Caldirola-Kanai Hamiltonian. 
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The penetration probability at time t is determined by the following expression 
(q = 0 corresponds to the top of the barrier): 

00 0 

P(t) = j dq[p(q, t)- p(q, t = 0)]/ j dqp(q, 0), (10) 
0 

which is the ratio of change of the probability to be on the right-hand side of the 
barrier in time t over the initial probability of the finding the particle on the entry 
left-hand side. Using Eqs. (8)-(10), the penetration probability P = P(t ➔ oo) is 
easily calculated taking the initial variances in accordance with the' uncertainty 
relation. Here, we use o-qq(0)o-vv(0) = n2 /4 and O"pq(0) = 0. 

The dependences of the penetration probability through the parabolic barrier on 
the initial energy E of system are presented in Fig. 1 for three sets of the friction 
coefficients >.P and >.q. All diffusion coefficients depend only on >.. For the sub­
barrier energies (E < 0), the tunneling is larger for Aq = Ap =/ 0 as comparable to 
the case without friction >.P = Aq = 0. For E < 0, the dissipation in coordinate 
Aq increases but dissipation in momentum >.P decreases the barrier penetration. 
The increase of the tunneling was obtained in the microscopic Gisin's model [28) 
for large friction. However, in this model one cannot distinguish the influence of 
frictions in coordinate and momentum on the tunneling. Larger penetration of the 
barrier than in the standard coupled-channel calculations is necessary to explain 
the experimental data on the sub-barrier fusion [29). It could be that in this case 
the coupling with environment leads to Aq =/ 0 that renormalizes the barrier and 
increases the penetration [15]. The friction and diffusion reduce the crossing of the 
barrier for the energies above the barrier. For E = 0 and >.P = Aq, the penetration 
and reflection probabilities are equal to each other with and without dissipation. 

In Fig. 2 we show how the tunneling depends on the diffusion coefficients at 
different values of friction in momentum Ap for Aq = 0. One can see that only with 
the diffusion coefficient in momentum Dpp (Dqq = Dpq = 0) P decreases with in­
creasing Ap- Note that this set of diffusion coefficients is not compatible with the 
quantum mechanical consideration. For Dqq =/ 0, the value of P initially decreases 
with increasing >.P up to some "critical" friction coefficients and then it starts to 
grow. This effect becomes more evident at larger Dqq and Dpp (higher tempera­
ture). The "critical" friction coefficient decreases with increasing temperature. This 
behaviour of the tunneling probability P as a function of Ap can be explained in the 
following way: The tunneling is more crucial to the value of Dqq then to the value 
of Dpp because O"qq(t) (correspondingly p(q,t) and P) is more sen,sitive to Dqq than 
to Dppi At large >.P the system has a longer time for the tunneling and during this 
time O"qq(t) and P(t) strongly increase due to diffusion in coordinate. The increase 
of tunneling rate with temperature is in agreement with Ref. [3). 

The probability of finding the particle to the right of the barrier is very sensitive 
to the width O"qq(0) of the initial wave packet localized to the left df the barrier at 
t = 0 (Fig. 3). This effect is weaker with the dissipation. For smaller O"qq(0), the 
value of O"pp(0) becomes larger in quantum mechanics and the penetration probability 
increases due to the larger fluctuation energy. In the vicinity of O"qq(0) = n/(2mw) 
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the dependence of P on O"qq(0) becomes weak and the curve in Fig.3 has a step-like 
behaviour. 

The calculated time of decay from the metastable state in the potential 

U(q) = c,q2 - (3q3 (11) 

is shown in Fig. 4 as a function of >.P. These data result from the solution of 
equations for the first and second moments (obtained from eq. (1)): 

dij 
dt 
dj5 

dt 
do-qq 
dt 

do-pp = 
dt 

da-pq 
dt 

1 
->.qij+ -p, 

m 
1 

-8U(ij)/8ij- 283U(ij)/8q3o-qq - >.pp, 
•) 

-2>.qo-qq + ::::_o-pq + 2Dqq, 
m 

-2>.pa-pp - 282U(q)/8q2o-pq + 2Dpp, 

1 
-82U(q)/8q2o-qq + -a-PP - (>.p + >.q)o-vq + 2Dpq• 

1n 
(12) 

These equations are obtained from (1) and (4) for arbitrary potential U(q). In order 
to calculate P(t) for short times, we can use in the first approximation the formalism 
elaborated for·the parabolic barrier. The value of time t112 at which P(t 112) = 0.5 
( the value of ij corresponds to the top of the harrier) may be defined in some sense as 
the tunneling time [7). The tunneling time increases monotonically with >.P (>.q = 0) 
when Dqq = 0. For Dqq =/ 0, the value of t112 initially increases with >.P and then 
it decreases. This means that for large Ap the dissipation prohibits the decay from 
metastable state due to diffusion in coordinate. The results of calculations above 
are in agreement with the results obtained in [7) using the Gisin model [28) for the 
double well potential. 

In conclusion, our calculations show that the dissipative effects on the tunneling 
process are quite complicated. It is evident that the earlier conclusions that the dissi­
pation inhibit tunneling is not correct in the general case. There are examples when 
the dissipation prohibits the penetration through the barrier. Using the general 
master equation (1) for describing the open quantum systems, we can transparently 
show the influence of each friction and diffusion coefficient on the tunneling. How­
ever, the microscopical calculation of these coefficients in the real system remains to 
be interesting problem. In the consistent quantum treatment the tunneling should 
be calculated with the set of the diffusion coefficients where Dqq > 0. As was shown, 
the tunneling is crucial to the value of Dqq > 0. If the environment operators lead to 
Aq =/ 0 then the interaction with environment renormalizes the potential barrier and 
influence the tunneling. With the initial Gaussian distribution (7) the distribution 
function remains to be Gaussian at any time. · 

The author (N.V.A.) is grateful to the Alexander von Humboldt-Stiftung for the 
financial support. This work was supported in part by DFG. 
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Figure 1: Calculated dependence of the penetration probability through the par­
abolic barrier on the initial !';nergy of particle E at temperature kT = 0, hw = 2.0 
MeV, q(0) = -2 fm, aqq{0) = 0.2 fm2, m = 53m0 (mo is the mass of nucleon), 
Dqq = !i>./(2mw), Dpp = >.mhw/2 and Dpq = 0. The results for the cases 
(>.P = >.q = 0), (h>.P = h>.q = 1 MeV) and (h>.P = 2 MeV, >.q = 0) are presented by 
solid,· dotted and dashed lines, respectively. 
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Figure 2: Calculated dependence of the tunneling probability P on the friction 
coefficient in momentum >-v at temperatures kT = 0 and 3 MeV, hw = 2.0 
MeV, q(0) = -2 fm, aqq(0) = 0.2 fm2

, E = -5 MeV, m = 53m0 , and fric­
tion coeflisients in coordinate >.q = 0 (>. = >-v/2). The calculations for the cases 
(kT ~ 0, Dqq = h>./(2mw), Dvp = >.mhw/2 and Dv9 = 0), (kT = 0, D9q = O, 
Dvp = >.vmhw/2 and Dv9 = 0), (kT = 3 MeV, D99 = h>./(2mw)coth(hw/(2kT)), 

· Dvp = >.mhw/2coth(hw/(2kT)) and Dv9 = 0) and (kT = 3 MeV, Dqq = 0, 
Dvv = >.vmhw/2 coth(hw/(2kT)) and Dpq = 0) are presented by solid, dashed, 
dotted and dashed-dotted lines, respectively. 

7 



~ 

10-1 

10~2 

lQ-3 

lQ-4 

10-5 _, ~ ........ ~~.........,w,1__,_.........,w,.1...__._.L-LLu.uL--'-.L.LL.u.uiJ 
J0-4 """" lQ-3 lQ-2 10-1 JOO . 101 

cr (0) (fm2) 
qq 

Figure 3: Calculated dependence of the penetration probability P on the initial 
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Dqq = !i>./(2mw), Dpp = >.mliw/2 and Dpq = 0. The results obtained with >.. = 
Ap = Aq = 0 and Ii>.= !i>.P = li>.q = 1 MeV are presented by solid and dashed lines, 
respectively. The value O'qq(0) = li/(2mw) is marked by arrow. 
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Figure 4: Calculated dependence of the decay time from the metastable state in the 
potential (11) on the friction coefficient Ap at Aq = 0 (>. = >..p/2), kT = 0, p(0) = 0, 
O'qq(0) = 0.2 frn2 and m = 53m0 . The depth of potential pocket with the minimum 
at q(0) = -1.08 fm is 5 MeV (o = -2.57_ MeV fm- 2 and fJ = 1.59 MeV fm- 3

). The 
top of the barrier corresponds E = 0 McV at q = 0 fm. The calculations for the cases 
(Dqq = !i>./(2mw), Dvv = >.mliw/2 and Dpq = 0) and (Dqq = 0, Dpp = Apmhw/2 
and Dpq = 0) are presented by solid and dotted lines, respectively. 
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