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Ilpoae,neHO ,llaJibHeiirnee pa3BHTHe aepctttt KBaJ0qacT0qHO-qJOHOHHOH Mo,nentt 
.neqiopMttpoaaHHb[X ~ep (K<I>M51), B KOTOpoii HCITOflb3yeTC51 o6o6meHHblH oneparnp 
qJOHOHa, co.nep)KalllHH npott3BOflbHOe q0cno KOMITOHeHT pa3nlfqHOH MYflbTHITOnb­
HOCTH ,meKTpttqecKoro 0 MamttTHOro THITOB. ,U1rn :noro cnyqM o6o6meH MeTO,ll 
ClfflOBblX qiyHKUHH. PaccMOTpeHbl CTaTHCTlfqecKtte MOMeHTbl 3HepreT0qecKoro pac­
npe,neneHH.SI pa3n0q11bJX KOMITOHeHT BOflHOBb!X qJYHKUHH, nonyqeHHble C HCITOflb3O­
BaHtteM 3HeprernqeCKH-B3BellleHHb!X npaattn CYMM. Ilpoae,neHO HX cpaaHeHHe C pac­
cq0TaHHblMH q0cneHHO ycpe,nHeHHblMH xapaKTepttCTHKaMtt qiparMeHTaUHH. Ilpe.n­
flO)KeHa npoue.nypa pacqern caoiicrn A-HeqeTuoro H,npa c yqeTOM non11oro 11a6opa 
qJOIIOHHb!X COCTOHHHH COOTBeTCTBYIOlllero eMy qenm-qeTHOro OCTOBa. 
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The version of the quasiparticle-phonon nuclear model of deformed nuclei 
(QPNM) has further been developed which makes use of the generalised phonon 
operator containing an arbitrary number of components of different multipolarity 
of the electric and magnetic types. The strength function method has been 
generalised for this case. Statistical moments of the energy distribution of different 
components of the wave functions, which were obtained with the use of energy­
weighted sum rules, are considered. They are compared with the numerically 
calculated characteristics of fragmentation. A procedure of calculating properties 
of an odd-A nucleus is proposed which takes into account a complete set of phonon 
states of the relevant doubly even core. · 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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Introduction 

Papers [1,2] give a thorough analysis of specific features of deformed nuclei 

which manifest themselves while studying their structure at intermediate 

and high energies within the microscopic approach [3-5]. What is implied 

are excitations of an order of the nucleon binding energy and higher: 

3 MeV :SE :S 20 + 30 MeV. 

In particular, it is important to take into account that phonon excita­

tions of nuclei specified by a certain projection of the K angular momen­

tum onto the symmetry axis of a nucleus and parity 7r may be generated 

by different multipole and spin-multipole interactions. A correct descrip­

tion in this case can be achieved by introducing a phonon operator with 

a definite momentum projection µ = K [1,2,6-8] but containing compo­

nents with a different multipolarity A. 

The use of an approach like that allowed one to develop a version of the 

quasiparticle-phonon nuclear model (QPNM) for a unique consideration 

of states of the electric and magnetic types [1,2]. These papers differ by 

the way of introducing a generalised phonon operator and the form of its 

representation though their final results are very close. Moreover, in [l] 

tensor forces and multipole pairing have been taken into account. 

To overcome additional difficulties that arise at the considered excita­

tion energies and are due to a large density of nonrotational states .and 

complexity of their structure, the strength function (SF) method, earlier 



developed in [9,10], has been improved in [2]. However, it was gener­

alised only to odd-A nuclei. In this paper, we succeeded in generalising 

it to a more complicated case. Here we present other examples of further 

development of QPNM: 

1. The SF method is developed for the version of QPNM with a gener­
alized phonon. 

2.A veraged characteristics ( statistic moments) of the fragmentation of 

simple configurations are calculated. 

3.The method is worked out for computing an odd-A nucleus with 

the allowance· for a complete set of states of the phonon spectrum of 

the corresponding core(i.e. without using the conventional cut-off of the 

phonon space). 

The basic idea of the studies and their purpose is to avoid some inter­

mediate computations, sometimes either unnecessary or rather detailed, 

and to directly determine nuclear characteristics observed experimentally 

by using both the general mathematical properti~s and peculiarities of 

QPNM equations. 

1 Development of the SF method for a generalized 
. . 

version of QPNM ( doubly even nuclei) 

In ref. [2], the SF method was generalized to the case of odd-A nuclei. 

It was also extended to the case when averaging was made over both 

initial and final states of a nucleus, i.e. a two-dimensional SF was intro­

duced. The application of this method to doubly even nuclei has certain 

mathematical peculiarities due to the secular equation 

j.F~,(wµ;)j = :P(wµ;) = 0 (1) 

being nonsymmetric because of neutron and proton variables. It defines 

the energy spectrum w~; of phonons for the system of RPA equations of 
a doubly even nucleus [1,2] 
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(2) 
Here i is the number of a phonon with the projectionµ; "'~µ) = ,..,~eµ) ±K-ifµ) 

are constants of multipole and spin-multipole forces; the quantities V?i ·· 

determine the phonon wave functioi: [2]; r = { N, Z} for neutron and 

proton variables. The quantities x;t [1,2] are elements of the matrix 

Ft,(wµ;) with dimension 2Ne x 2Ne, where Nt is the number of multipol~s 

of the electric (£ = .X) and magnetic (£ = .XL) types ,with the projection 

µ onto the nucleus s:ymmetry axis. 

Using the general properties of a homogeneous system of equations and 

the normalization conditi~n of a phonon, we can connect its norm with 

the derivative of the secular equation (1) J:µ(wµ;) = 8Fµ(wµ;)/8wµ;, or in 

a more general form, one obtains 

1)Tµi1)~µi = . 8 "(-l)nI+n;:+n,..,(lµ) MT . T' (3) 
l l _Fµ(w ·) ~ (n) nt+n,nt,, 

µi n=0,1 

h M . th . f . :Fµ ( ) (tµ) - (tµ) R 1 . . (3) w ere n,n' 1s e mmor o matnx ff' Wµi , "-(O,l) = "-+,-· e at10n 

allows us to write expressions. for cross sections of different processes 

with excitation of a phonon wµ; in a special form, where the dependence 

on J:µ(wµ;) is shown explicitly. For instance, the reduced probability of 

E-X(M .X) transition from the ground state to an excited state r K with 

K =µand energy Wµi assumes the form 

where 

B(E-X(M.X);o;s.-+ (I""K);)= IM-'µil2 = P_-'µ(wµ;), 
. _Fµ(wµ;) 

( N-'µ)2 xNµi + ( Z-'µ)2 xZµi 
1 eeff ,\,\ eeff -\,\ 

N,\µx~ Nµi Z,\µx~ Zµi 
eeff U eeff -\f' 

p-'µ(wµ;) = ------------! 
N,\µ tµx~ Nµi z-'µ tµx~ zµil 

eeff "-+ U + eeff "-- ,\£' IIFt,11 
Z,\µ eµx~ zµi N,\µ eµx~ Nµil 

eeff "-+ ,\f' + eeff "-- U 
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is the bordered determinant whose first row and first column contain the 

amplitudes .X{fi of the corresponding E).. or M).. transitions, and e;;1 is 
the effective charge. 

It is not difficult to solve the homogeneous system (2) and calculate ( 4) 

for an arbitrary root i. However, if the number of roots is very large (for 

instance, in calculating giant resonances, it sometimes amounts to several 

thousand), it may become a technical difficulty. Moreover, a thorough 

calculation turns out to be excess if for comparison with an experiment 

only integral information is required and there is no necessity to calculate 

it in detail for each value of i. 

Therefore, instead of a traditional approach with a solution of the 

eigenvalue problem, one can formulate a final goal of finding a strength 

function of a sought quantity depending on energy w [9,10] having deter­

mined it as 

b(E>-.(M>-.)µ,w) = LB(E>-.(M>-.);wµ;)p(w-_wµ;). (6) 
i 

Now we average ( 4), in accordance with (6), using the Lorentz function 
normalized to 1 

1 ~ 
p(w) = 21r. w2 + ~2/4 (7) 

Then, SF can easily be determined with the use of the residue theorem. 

Computing the integral along the closed contour of infinite radius and 

the residues at poles w* = w ± i~/2, as well as at O (if a 'spurious' 

state is present) and at oo ( when calculating higher statistic moments), 

we obtain the following expression for SF of the reduced probability of 

electromagnetic transition and its moments n · 

1 {p>.µ(w*) ·} p>.µ(w) 
bn(E>-.(M>-.)µ,w) ~ -Im µ( *) wm . + L res Fµ(w) wnp(w), 

7r F W w•=w+it:./2 w=O,oo 

(8) 
which are related to the photoabsorption cross sections [11]. 
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The calculations performed for deformed nuclei on the basis of the 

results expounded here allow a common analysis of the role of different 

interactions and a more exact determination of the relation of electric 

and magnetic transitions. 

Similar expressions take place for SF describing the fragmentation of 

two-quasiparticle components of the phonon wave function and other 

quantities. 

2 Calculation of statistical moments of fragmenta-

tion of simple configurations in odd-A nuclei 

It has been shown in [9,11] that application of the QPMN allowed one to 

study in more detail the fragmentation of different nuclear characteristics 

( spectroscopic factors, reaction cross sections and others) and of some 

individual states of different complexity. Fig. 1 exemplifies calculations 

of the fragmentation of one-quasiparticle components in 1?3 Sm. On the 

upper horizontal axis the relevant quasiparticle energy Ep is shown (all 

energies are given relatively the ground state energy T}g ). As it is seen 

from this figure and has been shown in [9,11] the fragmentation has rather 

a complicated nature and depends on a nucleus, quantum characteristics 

of a state, energy interval considered and other quantities. 

The overall analysis of this picture can be made by calculating the set 

of statistical moments of the obtained distribution [10]. This kind of cal­

culations allows one to determine the distribution centroid, its dispersion 

and other higher moments. 

However, the above statistical characteristics of the fragmentation can 

be obtained without numerical calculations presented in Fig. I. For this 

it is sufficient to calculate certain commutators [11,12] of the model 

Hamiltonian [2] with the operators that correspond to the components 

of the wave function of the nuclear system considered (one-quasipartide, 

quasiparticlev®phononµi or others) and use the complete space of its in-
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termediate states. Multiplicity of the above commutators depends on the 

number of the sought statistical moment of distribution of a considered 

component. 

Thus, for the distribution centroid of the strength CJ of one-quasi­

particle component with the Nilsson quantum numbers denoted by p, we 

get 

fjp = L ru(ct)2 = 1/2 L <Ol[apo-, [H, a;0",]]10 >= Cp- (9) 
j o-o-' 

Here, a;o-' is the quasiparticle creation operator, and T/j is the state j 

energy of an odd-A nucleus. Averaging is made over the quasiparti­

cle vacuum. It is seen from (9) that in spite of the complexity of the 

intermediate state j the d~stribution centroid CJ is determined by the 

quasiparticle energy Ep [13]. 

For its dispersion [14] we get 

a;=~ TJ](Ct)2 - [~ T/ict] 
2 

= 1/2 L < OJ[apo-, [H, [H, a;"",]]]JO > 
J J O"~ 

= L(r;ei)2. (10) 
vnµi 

Here 
rnµi __ 1_ '°' fnfµ vrµi 

pv -
2
)2 L.,; pv Vpv f 

£ 

(11) 

determines the strength of interaction of the quasiparticle p with the 

phonon µi; J;;µ are matrix elements of the multi pole and spin-multi pole 

forces; Vpv is the combination of the coefficients of the Bogoliubov trans­

formation. 

The distribution centroid of the strength (Dvµi) 2 of the quasipartic­

lev®phononµi state 

fiv@µi = 1/2 L < o/[avo-Qµi,[H,ato-,Q;dJ/o >= LT/i (Dtµir = Ev+Wµi· 
o-o-' j 

(12) 
Analogous results are obtained for statistical moments of the fragmen­

tation of other components of the wave function of nuclei. 
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The table shows some results of numerical verification of the validity 

of these relations for 185W with the use of the SF method with differ­

ent averaging functions: with the Lorentz function (in brackets) and its 

square [15]. 

p Ep,MeV f/,MeV I:r2 ,MeV2 u 2 MeV 2 
P' 

510j 0.9 0.9(0.96) 0.15 0.15(0.33) 

52ll 2.88 2.88(2.88) 0.36 0.35(0.51) 

651j 3.57 3.59(3.57) 1.16 1.17(1.28) 

It is seen from the table that higher moments ( n ~ 2) can be calculated 

with the Lorentz function with noticeable errors which can however be 

determined by the method described in [10]. 

3 Calculation for odd-A nuclei taking account of 

the complete basis of phonon states 

In the QPNM, phonons of a doubly even core are calculated microscop­

ically; therefore, all characteristics of the relevant odd-A nucleus are de­

·termined without introducing any new free parameters. Obviously, this 

is one of the advantages of the model. 

To find a solution of the eigenvalue problem for an odd-A nucleus, one 

has to diagonalize the matrix whose dimension depends on the number 

of one.:quasiparticle states p with given J{tr. The number of these states 

is about ~ 5 + 7, and the elements of the relevant matrix have the form 

[2,3] 
V, ~ rrnµirrnµi 
pp'=~ pv p'v 

vnµi Ev + W µi - 77 • 
(13) 

It is natural that for numerical calculations one has to introduce trun­

cation in the number of phonons i taken into account for each its pro­

jection µ so that the space of basis states of an odd-A nucleus could be 

reauced without loosing accuracy. While for the study of excitations of 
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in the complex plane. 

an odd-A nucleus at energies 

~ 1 + 2 Me V it is sufficient 

to take into account phonons 

with i = 5 + 10 and energy 

Wµi :::; 2 + 3 MeV, for interme­

diate and high excitation ener­

gies ~ 5 + 10 MeV one has to 

take into account 50 + 100 and 

more phonons for each value of 

µ. As a result, the dimension 

of the space of basis states of 

an odd-A nucleus increases by 

an order of 1-2 and amounts to 

104 
- 105

, which makes calcula-

tions difficult and complicates 
the analysis of the obtained results even with the use of the SF method.· 

However, using expressions (3) and (11), one can show that i~p' ~ 
I:,,; l/Fµ(wµ;), and then summation in (13) over i can be substituted by 

integration over the contour £, shown in Fig. 2. Having calculated the 

integrals over the imaginary axis and the right semicircumference with 

the radius R f---t oo and having found the residues at the poles of the 
integrand, we finally get 

00 

{ pvnµ(• ) } l pp' 1y 
Vpp, = 41r L(rJ - Ev) f Re Fµ(iy)[iy - (71 - Ev)] dy+ 

vnµ 
0 

1 ~ (fµ) nfµ nfµ l ~ P:7((77 - Ev)2) 
+8 ~ K+ fpv Vpvfp'v Vp'v - 4 ~ Fl'((r7 - Ev)2) . (14) 

vnµf _ vnµ 

Here, P;?(w) is the bordered determinant which differs from (5) by the 

first row and column that are expressed through the matrix elements JP";µ. 
A similar method has been used in ref. [16] in calculating SF moments. 
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Analogous results have been obtained for other quantities used in cal­

culating the properties of odd-A nuclei. At present, a possibility to gen­

eralize a similar procedure to doubly even nuclei in the two-phonon ap­

proximation is considered. 

In conclusion, we should like to note that improvement of the QPNM, 

expounded in this paper, allows one to simplify calculations of the prop­

erties of deformed nuclei and analyze experimental data at the level sat­

isfying the requi_rements of modern experiment. 
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