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IMpoBesieHo nanbHeiillee pa3BUTHE BEPCHM KBa3HYaCTHYHO-(DOHOHHOH MOIEIH
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New Possibilities of Studying Properties of Deformed Nuclei
at Intermediate and High Excitation Energies

The version of the quasiparticle-phonon nuclear model of deformed nuclei
(QPNM) has further been developed which makes use of the generalised phonon
operator containing an arbitrary number of components of different multipolarity
of the electric and magnetic types. The strength function method has been
generalised for this case. Statistical moments of the energy distribution of different
components of the wave functions, which were obtained with the use of energy-
weighted sum rules, are considered. They are compared with the numerically
calculated characteristics of fragmentation. A procedure of calculating properties
of an odd-A nucleus is proposed which takes into account a complete set of phonon
states of the relevant doubly even core. ’

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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Introduction

Papers [1,2] give a thorough analysis of specific features of deformed nuclei
which manifest themselves while studying their structure at intermediate
and high energies within the microscopic approach [3-5]. What is implied
are excitations of an order of the nucleon binding energy and higher:
3 MeV < E <20+ 30 MeV.
In particular, it is important to take into account that phdnon excita-
. tions of nuclei specified by a certain projection of the K angular momen-
tum onto the symmetry axis of a nucleus and parity = may be generated
by different multipole and spin-multipole interactions. A correct descrip-
tion in this case can be achieved by introducing a phonon operator with
a definite momentum projection p = K [1,2,6-8] but containing compo-
nents with a different multipolarity .

The use of an approach like that allowed one to develop a version of the
quasiparticle-phonon nuclear model (QPNM) for a unique consideration
of states of the electric and magnetic types [1,2]. These papers differ by
the way of introducing a generalised phonon operator and the form of its
representation though their final results are very close. Moreover, in [1]
tensor forces and multipole pairing have been taken into account.

To overcome additional difficulties that arise at the considered excita-
tion energies and are due to a large density of nonrotational states and

complexity of their structure, the strength function (SF) method, earlier
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developed in [9,10], has been improved in [2]. However, it was gener-
alised only to odd-A nuclei. In this paper, we succeeded in generalising
it to a more complicated case. Here we present other examples of further
development of QPNM:

1.The SF method is developed for the version of QPNM with a gener-
alized phonon.

2.Averaged characteristics (statistic moments) of the fragmentation of
simple configurations are calculated.

3.The method is worked out for computing an odd-A nucleus with
the allowance for a complete set of states of the phonon spectrum of
the corresponding core(i.e. without using the conventional cut-off of the
phonon space). ;
~ The basic idea of the studies and their purpose is to avoid some inter-

mediate computations, sometimes either unnecessary or rather detailed,

and to directly determine nuclear characteristics observed experimentally
by using both the general mathematical properties and peculiarities of
QPNM equations.

1 Development of the SF method for a generalized
version of QPNM (doubly even nuclei)

In ref.- [2], the SF method was generalized to the case of odd-A nuclei.
It was ‘also extended to the case when averaging was. made over both
initial and final states of a nucleus, i.e. a two-dimensional SF was intro-
duced. The application of this method to doubly even nuclei has certain

mathematical peculiarities due to the secular equation
|-7:;/(wui)| = FMwui) =0 (1)

being nonsymmetric because of neutron and proton variables. It defines

the energy spectrum wyi of phonons for the system of RPA equations of
a doubly even nucleus [1,2]
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Here ¢ is the number of a phonon with the projection p; n(f“ )‘ = ngp ):tnge” )
are constants of multipole and spin-multipole forces; the qﬁantities DF i
determine the phonon wave functiox} 2]; 7 = {N,‘Z} for neutron and
proton variables. The quantities X;2* [1,2] are elements of the matrix
Fip(wyi) with dimension 2Ng X 2Ny, where N, is the number of multipoles
of the electric (£ = \) and magnetic (£ = AL) types :With'the projection
p onto the nucleus symmetry axis.

Using the general properties of a homogeneous system of equations and
the normalization condition of a phonon, we can connect its norm with
the derivative of the secular equation (1) ‘f“(w,‘i) = OF*(wyi)/Ow,i, or in
a more general form, one obtains | ‘

Z( 1) nj+nj,+n K (3)
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where M, v is the minor of matrix ffe,(w#,),n%” 1)) = nf’i) Relation (3)
allows us to write expressions for cross sections of different processes
with excitation of a phonon w,,,- in a special forrh, where the dependence
on f“(w,,i) is shown explicitly. For instance, the reduced probability of
EX(M)\) transition from the ground state to an excited state I"K with

K = p and energy w,; assumes the form
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is the bordered determinant whose first row and first column contain the
amplitudes X 41 “ of the corresponding EA or M\ transitions, and e] ff is
the effective charge.

It is not difficult to solve the homogeneous system (2) and calculate (4)
for an arbitrary root i. However, if the number of roots is very large (for
instance, in calculating giant resonances, it sometimes amounts to several
thousand), it may become a technical difficulty. Moreover, a thorough
calculation turns out to be excess if for comparison with an experiment
only integral information is required and there is no necessity to calculate
it in detail for each value of i.

Therefore, instead of a traditional approach with a solution of the
elgenvalue problem, one can formulate a final goal of finding a strength
function of a sought quantity depending on energy w [9,10] having deter-
mined it as

BEXMN)mw) = 3 B(BAMA)w4s) oo — ). (6)

Now we average (4), in accordance with (6), using the Lorentz function
normalized to 1

P = 5 T ©

Then, SF can easily be determined with the use of the residue theorem.
Computing the integral along the closed contour of infinite radius and
the residues at poles w* = w & iA/2, as well as at 0 (if a ’spurious’
state is present) and at oo (when calculating higher statistic moments),
we obtain the following expression for SF of the reduced probability of
electromagnetic transition and its moments n

Fh{w*)

w=0,00

1 fpz\p * ' Ap
O (BAMA)p,w) ~ 7—T-Im {———(Qw*"} + Z resrpﬂ (:)w"p(w),
wr=w+iA/2

which are related to the photoabsorption cross sections [11}.

The calculations performed for deformed nuclei on the basis of the
results expounded here allow a common analysis of the role of different
interactions and a more exact determination of the relation of electric
and magnetic transitions.

Similar expressions take place for SF describing the fragmentation of
two-quasiparticle components of the phonon wave function and other

quantities.

2 Calculation of statistical r‘nor’nernts of fragmenta-

tion of simple configurations in odd-A nuclei

It has been shown in [9,11] that application of the QPMN allowed one to
study in more detail the fragmentation of different nuclear characteristics -
{spectroscopic factors, reaction cross sections and others) and of some
individual states of different complexity. Fig. 1 exemplifies calculations
of the fragmentation of one-quasiparticle compbnents in 13Sm. On the
upper horizontal axis the relevant quasiparticle energy ¢, is shown (all
elergies are given relatively the ground state energy 7,). As it is seen
from this figure and has been shown in [9,11]. the fragmentation has rather
a complicated nature and depends on a nucleus, quantum characteristics
of a state, energy interval considered and other quantities.

The overall analysis of this picture can be made by calculating the set
of statistical moments of the obtained distribution [10]. This kind of cal-
culations allows one to determine the distribution centroid, its dispersion
and other higher moments.

However, the above statistical characteristics of the fragmentation can
be obtained without numerical calculations presented in Fig.1. For this
it is sufficient to calculate certain commutators [11,12] of the model
Hamiltonian {2] with the operators that correspond to the components
of thie wave function of the nuclear system considered (one-quasiparticle,

quasiparticlev®phononyi or others) and use the complete space of its in-
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Fig.1. Fragmentation of single—particle states p in 535m.
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termediate states. Multiplicity of the above commutators depends on the
number of the sought statistical moment of distribution of a considered
component.

Thus, for the distribution centroid of the strength C'Z of one-quasi-
particle component with the Nilsson quantum numbers denoted by p, we
get

o= 2 C =12 Y <Ol lH L0 >=e (O
oo’
Here, ap‘,, is the quasiparticle creation operator, and 7; is the state j
energy of an odd-A nucleus. Averaging is made over the quasiparti-
cle vacuum. It is seen from (9) that in spite of the complexity of the
intermediate state j the distribution centroid C’Z is determined by the
quasiparticle energy €, [13].

For its dispersion [14] we get

. —an ciy [chﬁ} S 125 < Ol L 0>

oo’

=) (Thy, (10)

vnui

n;u nE ‘rm’
”" - 2\/_2 H (11)

determines the strength of interaction of the quasiparticle p with the

Here

phonon pi; £, "4 are matrix elements of the multipole and spin-multipole
forces; v, is the combination of the coefficients of the Bogoliubov trans-
formation.

The distribution centroid of the strength (D, ,;)? of the quasipartic-
lev@phononpi state

ooy = 1/2> <0

oo’

oo Qi [ H, o ]1|0 >—Zm( w) = vt
(12)

Analogous results are obtained for statistical moments of the fragmen-

tation of other components of the wave function of nuclei.
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The table shows some results of numerical verification of the validity
of these relations for %W with the use of the SF method with differ-

ent averaging functions: with the Lorentz function (in brackets) and its

square [15].
P €py MeV | 7, MeV S°I?, MeV? o;f,MeV2
5107 [ 0.9 0.9(0.96) | 0.15 0.15(0.33)
5211 [ 2.88 | 2.88(2.88) | 0.36 0.35(0.51)
6517 | 3.57  |3.59(3.57) | 1.16 1.17(1.28)

It is seen from the table that higher moments (n > 2) can be calculated
with the Lorentz function with noticeable errors which can however be
determined by the method described in [10].

3 Calculation for odd-A nuclei taking account of

the complete basis of phonon states

In the QPNM, phonons of a doubly even core are calculated microscop-
ically; therefore, all characteristics of the relevant odd-A nucleus are de-
termined without introducing any new free parameters. Obviously, this
is one of the advantages of the model. k
To find a solution of the eigenvalue problem for an odd-A nucleus, one
has to diagonalize the matrix whose dimension depends on the number
of one-quasiparticle states p with given K™. The number of these states
is about ~ 5+ 7, and the elements of the relevant matrix have the form
2,3

FrnyiFTﬂ#i ‘

;= = 77 13
‘/pp Z€u+wut'—n ( )

vnpi

It is natural that for numerical calculations one has to introduce trun-
cation in the number of phonons i taken into account for each its pro-
jection p so that the space of basis states of an odd-A nucleus could be
reduced without loosing accuracy. While for the study of excitations of

8

an odd-A nucleus at energies
~ 1+ 2 MeV it is sufficient
to take into account phonons
with ¢ = 5 + 10 and energy
wyi < 2+3 MeV, for interme-
~R diate and high excitation ener-
gies ~ 5 =~ 10 MeV one has to
take into account 50 + 100 and

more phonons for each value of

i. As a result, the dimension

of the space of basis states of
an odd-A nucleus increases by
an order of 1-2 and amounts to
10* ~ 105, which makes calcula-

tions difficult and complicates
the analysis of the obtained results even with the use of the SF method.

However, using expressions (3) and (11), one can show that V.

Fig. 2. The contour of integration

in the complex plane.

oo ~
D i 1/ F* (wui), and then summation in (13) over 7 can be substituted by

integration over the contour £ shown in Fig. 2. Having calculated the
integrals over the imaginary axis and the right semicircumference with
the radius R — oo and having found the residues at the poles of the
integrand, we finally get

P,/ (1)
Vop T 1 Z(n €,,)/Re {]_-# Gy — (v _Eu)]}dy+

vnp

5 L~ P e
(€n) pne 71(’ U v
+ [~§+# :V#UPV V# pl/ — 4 ]__“ ,’ ., ) . (14)

uny[ . vnu
Here, P)7#(w) is the bordered determinant which dn‘fers from (5) by the
first row and column that are expressed through the matrix elements fre,

A similar method has been used in ref. [16] in calculating SF moments.



Analogous results have been obtained for other quantities used in cal-
culating the properties of odd-A nuclei. At present, a possibility to gen-
eralize a similar procedure to doubly even nuclei in the two-phonon ap-
proximation is considered.

In conclusion, we should like to note that improvement of the QPNM,
expounded in this paper, allows one to simplify calculations of the prop-
erties of deformed nuclei and analyze experimental data at the level sat-
iéfying the requirements of modern experiment. -
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