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Lipkin — Meshkov — Glick Model at Finite Temperature

The Lipkin — Meshkov — Glick model is used to examine the validity of some
approximate methods in a many-body theory at finite temperature. Namely, the
thermal random phase approximation (TRPA) and the thermal renormalised random
phase approximation (TRRPA) are studied. An average energy of the system, an
average quasispin projection and a particle number variance are calculated within
these approximations and exactly with the grand canonical ensemble partition
function. On the whole the results of TRRPA are found to be in better agreement
with the exact ones. The validity of the both approximations becomes better with
increasing temperature as well as particle number.
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1. Intlfédliction

New approximate methods of nuclear structure theory are usually examined by aﬁplying
them to simple exactly soluble models in order to gain some insights on a range of their
* validity. One of the widely used models is the two level schematic shell model whichi
possess the SU(2) sy»x_nmetry. and is often called SU(2).or Lipkin - Meshkov = Glick
(LMG) model {1]. Numerous applications of the LMG- model can be found in [2]

During the last years the: model .has been used many times to justify appmxinmlﬂ
methods of the many-body theory.at finite temperature [3-9]. These methods are espe-:
cially interesting in view of current.intensive studies of hot nuclear systems. Previous
works on the LMG- model at, finite temperature [3, 4] have focused on boson expansion
methods and symmetry breaking in hot nuclei. The mixed state representation has heen
'f‘())rxllula;ted and then applied to the LMG- model in refs.[5-8]. In particular, the ther::
mal Hartree - Fock approximation as well as the thermal random: phase approximation:
and the static path-approximation were analyzed within the model in ref. [9].

A- newrk'approximate method has been recently proposed [10] to describe collective,
excitations in hot finite Fermi systems. This method, the so-called renormalized [TRPA
{TRRPA), is an extension of the renormalized RPA of Ken-ji Hara [11] and D. Rowe
[12] to finite temperatures. Within TRRPA vibrational excitations are siupposed to he
harmonic like in TRPA but a-temperature - dependent ground state is treated ina more
consistent manner. Namely,»é finite number of thermal quasiparticles are presented in
this ground state, / “

In the present paper, we investigate the accuracy of the thermal fenormalized randomn
phase approximation by comparing it with the exact calculations for the grand canonical
cnsemble for the LMG- model. - Moreover. a- comparison with the thermal®mean” field”

approximation (TMFA) and TRPA is also done.

2. The LMG- model and the grand _canoni‘,‘c'aly\e\h-
semble calculations ' ' ’

The following version of the-LMG- model is used: N fermions are. distributed over two
levels. each having a degeneracy .. The distance between the levels is ¢;-the coupling
constant V' does not depend on any quantum number. At T = ( 'and V' =0 the lower.
level is full, the upper - empty, i.e. N = Q. The model Hamiltontan has the form

H:sL-%V (j+j++j_j_) , (1)
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where the operators of quasispin J and its projections j+, j_, J. are defined as follows:

=l 5 (Feds +7.0) 02,

l Q Q '
1 P + .
Z = EZ a2pa2P alpalp) J+ = Z A2pC1p J- (J+) : .

]

Here a and a;; are particle creation and a.nmhllatlon operators on the lower (i = 1) or

the upper (1 =2) level.

The operators Jy and'J, form SU(2) algebra, and the quasispin operator commutes
with H. So the Hamiltonian matrix breaks 1ip into submatrices © s of dimension 2J + 1.
The Hamiltonian can be diagonalized in each of these subspaces mdependentl) The
corresponding eigenvalues are denoted: by 'Ey; Ej ;. By ‘

* To calculate the grand canonical partition function, one needs the eigenvalues Ef and

the degeneracies of irreducible quasispin representations O for different particle numbers

from the range 0 <'N < 2Q. The latter have been determmed in ref. [7], and here we

use’this result. The whole number of the ensemble states, i.e., the whole number of the
cigenstates of the LMG- systems formed by two Q- degenerated levels with 2 number of
particles varying from 1- to 20 is equal to 220, Any state of the ensemble can be written
in the following form: ‘ ‘

ngpx,gzpz,-.-gnpn) = 0 O 10),  agl0) = 0.

The indices g;, p;; n have the following meanings:

g9 € {1,2); pi € {1,..0}, i € {1,..n}, n € {1,..20},

i.e., g marks the lower and the upper levels, p - sublevels, i is an index of a particle and n

is the particle numnber in the particular LMG- system from the grand canonical ensemble.

If n =0, |g191,92pP2,...gnPn} = [0). A particular distribution of the given number of
particles over two degenerate levels can be characterized by numbers vy and v,: v, is a
number of sublevels which are occupied by particles for both the lower and upper levels;
vz is a number of sublevels which are occupled for neither the lower nor the upper level.
The'c qua51sp1n J 'of the state is détermined by the dlstnbutlon of the rest of particles over
27 sublevels where 2r = Q — v; — v;. The number 2(7 + 1y) is equal to the number of
particles. We denote by I, Par-Paris, Lhe subspace of states with 1y occupied and v, empty
sublevels. Its dimension is 227. There exist Q/(27)l,1v;! distinct subspaces T, ,, . Birdn
for fixed 7 and 1. Each of them may be decomposed into irreducible subspaces with
fixed quasispin values ©, (appearing once), -, (appearing g] times), O,_, (appearing

g3 times), ..., ©,_; (appearing gJ times),... , ©,_, (appearing 9y times). Here

. () (2r)!
TR - k- — k)
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and [r] = 7, if 7 is integer, [r] = 7 — 1/2 if 7 is half-integer.
Then, the exact grand partition function is

ETF_9(r + ul)A]

Q! T m
z2(T)y= Z 2 ly! 2,‘: I Zexp I:— T

TIYvy
The expressions for average energy, quasispin z-projection and the total fermion number

are
: (H)GCE = E g: (27_)!”1!”2! Zk: 9k Z Em exp [ T
TV m .

. 1 oo . R EF -2+ u,)A]
(Ldece = 7 Z Brint zk:gk Z(k,’"]t’zlk, T)exp [ -
TINYY m

o 1 a . _w}
Wacs = 73, TP I D [ T

3. Thermo field dynamics: basic elements

To be more understandable while describing approximate methods, we briefly recapitulate
the formalism of thermo field dynamics (TFD) (see, {3, 13-15]).

The extension of quantum field theory to-finite temperature requires the ficld degrees
of freedom to be doubled. In TFD, this doubling is achieved by introducing an additional
tilde space. A tilde conjugate operator A 1s assigned to an operator A (acting in ordinary

space) through the tilde conjugation rules
(AB) = AB: (aA+bB)=a"A+b B,

where A and B represent ordinary operators and a and b are c-numbers. The asterisk
denotes the complex conjugation. The tilde operation commutes with hermitian conju-
gation and any tilde and non-tilde operators are assumed to commute or anticommute
with cach other. A double apphcatlon of tilde operation changes a sign of a fermionic
operator and saves it for a bosonic¢ one. The whole Hilbert space of a heated system isa
direct product of ordinary and tilde spaces. A formal quantity playing a central role in

the present discussion is the so-called thermal Hamiltonian:

The operator H serves to translate temperature dependent wave functions along the time
axis. It means that an ”excitation spectrum” of a hot system (or, in other words, a set
of energies‘correslponding to the thermal equilibrium states) should be-obtained by the

diagonalization of Hi



The temperature-dependent vacuum [¥o(7T')) is the eigenvector of H ‘with eigenvalue 0
H{U(T)) =0.
If one determines the thermal vacuum state as

: 1 E... - ..
[Wo(T')) = N e ; exp(—z5)n) ® )

where E,,|n) and |} are eigenvalues, eigenvectors-and their tilde counterparts of the
Hamiltonian H, respectively, the expectation value (¥o(7)|O|Wo(T')) will exactly corre-
spond to the grand canonlcal ensemble average < O > of a given observable O.

In practice, it is 1mposmb1e to find the exact thermal vacuum for a full Hamiltonian
of a many-body system. In setting up approximate schemes, the usual starting point is
the thermal mean-field approximation.. In this case,-the thermal vacuum {o(T)) 1s an

eigenvector of the uncorrelated thermal Hamiltonian

Hurl(T) = (Hoor = Bur)O(D) = 3 edat o~ ata)lo()y=0. * ()

1

The solutions of eq. (2) define the vacuum |0(7")} for so-called thermal quasiparticles 3, /73:‘&

Bi = mia; — yia}
é:‘ = zia; ‘—l-l_y.-a,*
BI0(T)) = A10(T)) = 0

where the coefficients z;, y; denote the thermal Fermi occupation probabilities of the states

aF|0) (|0} is a vacuum for a;)
: . ! e

1= fi,m=VF e
. BRI
1+exp(e/T) . 0

Sometimes the {z,y} transformation is called the thermal Bogoliubov transformatlon It

fi=
is a unitary transformation and thus conserves the commutatlon relations.

4. Approximate methods

Now we apply the TFD formalism to the LMG- model and derive the correspondmg‘

equations of TRRPA. A more general formulation of the thermal renormalized random
phase approximation can be found in refs. [10, 16, 17]. Moreover, within the Hartree -

Fock method, depending on the value of the coupling constant V- two different phases of

o
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the LMG- system exist — a normal phase and a deformed one. The present consideration is

-restricted to a normal phase. So we do not take into account the mean field rearrangement

which occurs if the value of the effective coupling constant y = V(N 1)/5 becomes more
than unity. -

The model thermal Hamiltonian H = H — H, where H has the form (1), has to be
written in terms of the thermal quasiparticle operators. The first item in (1} conserves
the diagonal form. The interaction operator becomes more complicated. For further
studies we need only that part of 7 which consists of the terms with even numbers of

both creation and annihilation thermal qua.s'lpart]cle operators. Namely,
H=c (8- B) ——————f‘ fz [(a*" + 47) - (4* +A7)], (3)

where

Z ﬁlpﬂ?p

The following exact commutatxon ru]es are valid for the thermal biquasiparticle oper-
ators A, A A a.nd A+'

=2 (Bh8— i), A Zﬂ?pﬂt«

p=1

{A A+ Zﬁﬂxp Zﬁ;pﬂ'zp, [As /i+] N— Zﬁﬂﬂp ZﬂZPBZP

p=1

All other commutators between the operators A, A*, A and A vanish.
By the use of the Wick theorem one can approximate [10, 16] thg r.his. of (4} by

¢-numbers neglecting an influence of the pairs of normal ordered operators : At : and

:B*B:.Namely,
(4] =[AA] =N-p-p)=NO-2. .

Here p; are the numbers of thermal quasiparticles in the temperature dependent ground
state }¥o{T)} that will be defined later on. That is

g o l(%(T);Nf;%(T» = FTIFATT)

where N8 is the operator of the number of thermal quasiparticles Nf szl FBip -
The thermal Hamiltonian (3) can be diagonalized in the space of’two one-phonon
states constructed as bilinear forms of the thermal biquasiparticle operators:

QTN T(T)) = (AT — $1 A} |%o(T)) L (6)
QTN = ($2A* — &2A) [Wa(T))-



Now we define the wave function of the temperature - dependent ground state {¥o(T')) as
the thermal phonon vacuum, i.e. Qy2|Wo(T)) =0. - ,

The states (6) have to be orthonormal. Thus, taking account of eq. (5) the following
constraints on the amplitudes 1 and ¢ are derived

vi-@=IN0 -2, i=12.

The system of equations for ¢;, ¢; and the phonon frequencies w; is easily obtained by the
equation of motion method.” It appears that only a positive value of w; and a negative value
of wy is allowed under a requirement that the wave functions Q7 |¥o(T)) and QF [Wo(T))

are vectors of the Hilbert space The elgenvalue elgenvector problem has the following

w=w=\Je - V2= R - 202 (N - 17,
¢2=__‘?+“’_ ¢2__Lw___
YT ONW(1—2p)" ' T 2Nw(l —2p)°

— v 2
W2 = ~w, 11’2:1»[’1» ¢;=¢%

" One more eqiiation has to be added to the above system — the equétion for p. To

solution:

evaluate this equation we need an expression for the thermal phonon vacuum state. The
latter can be derived from the thermal quasiparticle vacuum state [0(T)) by a unitary

transformation
_ s 1 ¢1 ~ . .
[Co(T)) = VRESIO(T)), S= T (A+A+ +A+A+) :

By the use of standard ;echhiqués of the operator calculus [7} we get

le—
p=3 {7)

w
It is interesting to note that in the thermodynamic limit, i.e. at ‘N — oo, p vanishes and
the TRRPA equations are reduced to the TRPA ones.

Let us display the expressions for the average energy, the average quasiépin z-projection
and the variance of the particle number

(rrars = NE(f;— f'l)‘(l - 2/;) + d 2:)“) * (f;(ffl)2 T
N 2
(J:)rRRPA = N(f2 M= h) ( - 2p)

ANrprpa = /N(1=2p)[fi(l - fi) + (1= f)].

The above expectation values were taken over the TRRPA vacuum state.

L o £,
N e i

It seems appropriate to give expressions for the samne quantities within other approxi-
mations - TRPA and TMFA. The TRPA expressions are obtained from the TRRPA ones
by putting p = 0. In this case, the commutator [4, A*] is equal to V_and the expectation

values are taken over the TRPA vacuum

L _ NE(f?“fl) (f2 fl)2+1
(H )TRPA - 2 2&} 2(f2 fl) Al
(jz)TRPA = N(f22 fl )

ANrppa = /N[ - fi)+ (- H)].

Within TMFA the interaction between particles is omitted and one has to evaluate the
expectation values over the thermal quasiparticle vacuum {0( T)-) The TMFA expressions
for (J )TMFA and AN7pra are the same as in TRPA. For (H)7arra one gets

5. Results and discussion

The numerical calculations are done for the LMG- system with N = Q =10 particles and
£=2. The results are displayed in Figs. 1-6. . .

Firstly, we discuss a dependence of some characteristics of the system on the effectlve
coupling constant, x. The energy of the collective state w as a function of x at T = 0 and
0.25¢ is displayed in Fig. 1. Besides the results of the TRPA and TRRPA calculations
the exact solution at T =0 is also shown. As it should be, with increasing x the energy w
goes down. Within TRPA w vanishes at x =1. This collapse does not take place for the
exact sohition as well as for the TRRPA result. This last feature of the RRPA. solution

- is well/known in the case of a cold nucleus and is actlvely used in some recent nuclear

structure calculations [18]. As it has been demonstrated for the first time in ref. {10], the
same 1§ ‘valid at T # 0. In the present version of the LMG- model heating effectively
weakens the interaction of particles (the effective coupling constant x is multiplied by a
factor’ of fi — f2 < 1) and the TRPA collapse occurs at larger x- values. In TRPA when
= xcoua,,,e (H)rgpa ~ —w™! — —oo. It is not the case for TRRPA (see Fig. 2). The
value (H)rrrPa goes down much slower and remains even greater than the exact value
(H)GCE At large values of x the strong difference between (H)TR_RPA and (H )G’C'E is due
to neglecting the mean field rearranging.

In Figs: 3-5, the average energy of the system, the average J, value and the variance of
the particle number as functions of T' are displayed (x =0,95). The ‘noticeable difference
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“ Fig. 1 The eﬁergy of the lowest excited state in the: LMG- model as a function of the
effective coupling constant x at T' =0 and 0,25¢. The exact results — open circles;
the TRPA (RPA) results - dashed lines; the TRRPA' (RRPA) results — solid Lines.
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Fig. 2 The average energy of the LMG- system (H) as a function of the effective coupling
constant y.. The exact results for the grand canonical ensemble — open circles; the
TRPA results — dashed liné; the TRRPA results — solid line.
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Fig. 3 The average energy (H) as a function of.temperature T. The exact results for

the grand canonical ensemble — open circles; the TRPA results - dashed line; the
TRRPA results — solid line.
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Fig. 4 The average value of the quasispin projection (J.) as'a function of 'templerature T
For notation see Fig. 3.
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Fig. 5 The particle number variance AN as a function of temperature T. For notatron see
Fig. 3.
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Fig. 6 The dependence of AN/N on a particle nurrrber N. For notation see Fig. 3.
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between the exact and the approximate. values is only at moderate T' < 0,3c. Here
TRRPA works evidently better than TRPA and TMFA. The absolute values (H)rrpa
and (JZ)TRPA are greater than (H)gcr and (J YecE, respectively. At the same time,
[(H)rrrpal < |(H)ccel The relation [(J.)rarpal < WJ2)ecr) is valid only at T < 0,8¢
but then |(J,)rrrr4| appears to be slightly greater than |(J,)gcel. At T > 0,5¢ the
differences between the exact and the approximate results is negligible. The difference
between exact and approximate values of the pa.rtlc]e number variance is only 2-3%, i.e.
even less than for other variables. Decreasmg in the difference with raising up T is a
result of effective weakening of the interaction. R : ‘

The value AN/N as a functlon of N is shown in Fig. 6 It decreases slowly when T
increases, and its typical value at N = 10-30 is around 10%. The approximate methods
disturb AN only slightly. The difference between different approxunat]ons is of minor
importance although formally TRRPA seems to be better

6. Summary -

Taking the Lipkin — Meshkov - Glick model as an example we have studied a validity
of some approximate methods of many-body theory at finite temperature. The average
energy, the average quasispin z-projection and the particle number variance as functions
of temperature and particle number have been calculated in different approximations
as well as exactly with the grand canonical partition function. On the whole, TRRPA
gives better results than other approximations. Its advantags are especially evident at
moderate temperaturts T < 0,5¢c. With i mcreasmg T and N, results of approximate
methods improve rapidly and at T >> £ the difference between exact and approximate
results is invisible. ' ‘

In the present paper, we have studied only the case with not too strong particle

: mteracuon x<1). Invmtrgatlons of the deformed phase of the LMG- model are in

progress.
The stimulating discussions with Prof. V.V. Voronov are acknowledged. The work is
done under the partial support of RFBR (grant of RFBR 96-15-96729).
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