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1. Introduction 

New approximate methods of nuclear structure theory are usually examined by applyi11g 

them to simple exactly soluble models in order to gain some insights ·on a range of their 

· validity. One of the widely used models is the two level schematic shell model which 

possess the SU(2) symmetry and is often called SU(2) or Lipkin ~- Meshkov (;!irk 

(LMG) model [l]. Numerous applications of the LMG- model ra11 be found i11 [4 
During the last years the model .has been used many tinws t9 justify approxi111al<· 

methods of the many-body theory.at finite.temperature [3-9]. These methods are <'SJJ<'­

cially interesting in view of current -intensive studies of hot nudear systems. Previous 

works on the LMG- model at finite temperature [3, 4] have focused on boson expa11sion 

methods and symmetry b_reaking in hot nuclei. The mixed state repn·se11tation hrs IH·,·n 

formulated and then applied to the LMG- f!lOdel in refs.[:i-8]. In particular, 111<' 1 hn-. 

ma! Hartree - Fock approximation as well as the thermal ra11clolll phas<' approxi1nal ion 

(TRPA) were studied within the apprn~ch [8] .. The thermal llartree- Fork approximation, 

and the static path-approximation were analyzed within the model in ref. [9]. 
A new-approximate method has been recently proposed [10] to describe rnl!Pctivc, 

excitations in hot finite Fermi systems. This method, the so-rallPd reJ1ormali:w<l THPA 

(TRRPA), is an extension of the renormalized RPA of he11-ji llara [I I] and D. How" 

[12] to fi11itf' temperah1res. Within THHPA vihratio11al Pxcitatio11s ar<· snpposPd to IH' 

harmonic likP in THPA hut a t<•mperature - <le1w11de11t ground stat<· is trPatf'd in a 111on~ 

rnnsistPnt 111a11J1Pr. Namely, .a fi11itf'' 1111miH•r of tlwrrnal quasi particles aw pn·s<·nt{'(I in 

this ground state. 

111 the present paper, we investigatc the accuracy of tlw tll('r111al rc1101:111alized ra11don1 

phasr approximation hy rnmparing it with th<' 1•xact. calrulat.ions for the gra11<l canonical 

,·11s1·111hl1· for t h1• L:\I( ;. moclrl. l\lon•ov1•r: a rn111pill'ison with th<' tJwrmal m<·a.11 fi1•ld 

approximation (Tl\lFA) and TRPA is also <lo11e. 

2. The LMG- model and the grand canonic.al, en­

semble calculations 

The following version of the LMG- model is used: N fermions are distributed over two 

levels. each having a degeneracy fl. The distance between the levels is c:, the coupling 

constant V does not depend on any quantum number. At T = 0 and V = 0 the lower, 

level is full, the upper - empty, i.e. N = n. The model Hamiltonian has the form 



where the operators of quasispin j and its projections i+, i_, i, are defined as follows: 
; ~ ' , ; ' 

·2 1 ( • • • • ) ·2 
J = 2 J+J+ + J_J_ + J, , 

n n 
1 "' + + • "' + • - (. )+ ' Jz = 2 L ( a2pa2p - a 1pa1p) , J+ = L a 2palp, J_ - J+ . 

p=I p=I 

Here at and a;p are particle creation and annihilation operators on the lower (i = 1) or 
the upper (i = 2) level. · 

The operators j± and i. form SU(2) algebra,· and the quasispin operator commutes 

with l/. So the Hamiltonian matrix breaks tip into submatrices 0; of dimension 2J + l. 
The Hamiltonian can be diagonalized in each of these sub~paces independently. The 

corresponding eigenvalues are denoted by 'Ef; Ef, .. :Efi+i: 
To calculate the grand canonical partition function·, one needs th!! eigenvalues Ef and 

the degeneracies of irreducible quasispin representations 0; for different particle numbers 

from the range O < · N S: 20. The latter have been determined in ref. [7], and here we 

usl'·this result. The whole number of the ense~ble states, i.e.,'the whole number of the 

<'igenstates of the LMG- systems formed by t\vo 0- degenerated levels with a number of 

particles varying from 1 to 20 is equal to 220 • Any state of the ensemble can be.written 

in the following form: 

l91P1, 92P2, ··•9nPn) ~ a:,Pl at,1'2, ... a:,.Pn IO), 

The indices g;, p;; n have the following meanings: 

llgplO} := 0. 

g; E {1,2}, Pi E {1, ... n}, i E {l, ... n}, n E {1, ... 20}, 

i.e., g marks the lower and the upper levels, p- sublevels, i is an index of a particle and 11 

is the particle number in the particular LMG- system from the grand canonical ensemble. 

If n = 0, /g1p1,92P2, ··•9nPn) = IO). A particular distribution of the given number of 

particles over two degenerate levels can be characterized by numbers v1· and v2 : v
1 

is a 

number of sublevels which are occupied by particles for both the lower and upper le,-els; 

112 is a number of sublevels which are occupied for neither the lower nor the upp~r level. 

The'quasispiri J of the state is' determin~d by the distribution of the' rest of particles over 

2r sublevels where 2T = n - v1 - v2. The number 2(r + v1) is equal to the number of 

particles. We denote by I'p,,p2,. .. P2r+.,, the subspace of states with v1 occupied and v2 empty 

sublevels. Its dimension is 22
r. There exist n!/{2r)!v1!v2! distinct subspaces I'P,,P2,---P2r+.,, 

for fixed T and v 1• Each of them may be decomposed into irreducible subspaces with 

fixed quasispin values 0r (appearing once), 0r-I (appearing gf times), 0r_2 (appearing 

g{ times), ... , 0r-k (appearing g'{, times), ... , 0r-[r] (appearing 9[r] times). Here 

T {2T )! (2T )! 
9k = -

k!(2T - k)! (k - 1)!{2r - k + l)!" 
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and [Tj = r, if r is integer, [r] = T - 1/2 if T is half-integer. 

Then, the exact grand partition function is 

Z(T) = "' rn "'gT "'exp [ E;,,-k - 2( r + vi).\] 
L (2r)!v1!v2! L k L T 

TVJ.IJ'i k m 

The expressions for average energy, quasispin z-projection and the total fermion number 

are 

(H)acE 
1 . n• • Z L (2r)'; Iv IL 9k L E;,-k exp [ E;,,-k - 2( T + vi).\] 

T"1"'2 • I· 2· k m T 

{i,)acE 
1. rn . 
Z L (2r)!v

1
1v ,L9kL(k,r/iz/k,r)exp [ E;,,-k-2(r+v1)A] 

TVl".I • 2· k m . T 

(N}acE = .!_ L rn 2 ( T + V1) "'gT "'ex [- E;,,-k - 2( T + 11i),\] 
Z (2T)!v1!v2! L k L P T 

r.v1v-.z . k ' , m 

3. Thermo field dynamics: basic elements 

To be more understandable while describing approximate methods, we briefly recapitulate 

the formalism of thermo field dynamics (TFD) (see, [3, 13-1-5)). 

The extension of quantum field theory to finite temperature requires the field degrees 

of freedom to be doubled. In TFD, this doubling is achieved by introducing an additional 

tilde space. A tilde conjugate operator A is assigned to an operator A (acting in ordinary 

space) through the tilde conjugation rules 

(AB)=AB; (aA-tbB)=a*A+b*B, 

where A and B represent ordinary operators and a and b are c-numbers. The asterisk 

denotes I he complex conjugation. The tilde operation commutes with hermitian conju­

gation a11d any tilde and non-tilde operators are assumed to commute or anticommute 

with. each other. A double application of tilde operation changes a sign of a ·fermionic 

opera!or ~nd saves.it for a bosoni~ one. The whole Hilbert space of a heated system is a 

direct product of ordinary and tilde spaces. A formal quantity playing a central role in 

the present discussion is the so-called thermal Hamiltonian: 

1l=H-H .. 

The operator 1{ serves to translate temperature dependent wave functions along the time 

axis. It means that an "excitation spectrum" of a hot system (or, in other words, a set 

of energies corresponding to the thermitl equilibrium stat~s) should be obtained by the 

diagonalization of 1l. 
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The temperature-dependent vacuum lll!o(T)) is the eigenvector of 1-{with eigenvalue 0 

1ilwo(T)) = 0. 

If one determines the thermal vacuum state as 

lll!o(T)) = l ~ En · 
JTr(exp(-H/T)) ~exp(- 2T)ln)@ In) 

where En, In) and Iii) are eigenvalues, eigenvectors-and their tilde counterparts of the 

Hamiltonian H, respectively, the expectation value (ll!o(T)IOlll!o(T)) will exactly corre­

spond to the grand canonical ensemble average ~ 0 ~ of a given observable 0. 

In practice, it is impossible to find the exact thermal vacuum for a full Hamiltonian 

of a many-body system. In setting up approximate schemes, the usual starting point is 

the thermal mean-field approximation .. In this case, the thermal v~cuum lll!o(T)) is an 

eigenvector of the uncorrelated thermal Hamiltonian 

1iMFI0(J:)) = (HMF :- HMF)IO(T)) =; Lc;(ata; - ata;)J0(T)}'= 0. ' (2) 

The solutions of eq. (2) define the vacuum J0(T)) for so-called thermal quasi particles fl, fl: 

. /J; = x;a; - y;at. 

- - + /J; .":' x;a; + y;a; 

/J;J0(T)) = fJ;J0(T)) = 0, 

where the coefficients x;, y; denote the thermal Fermi occupation probabilities of the states 

at JO) (I0) is a vacuum for a;) 

x; = Jl - f; , Yi = ✓-J; 
1 . 

f;=------
. 1 + exp(c;/T) 

Sometimes the { x, y} transformation is called the thermal Bogoliubov transfor~ation. It 

is a unitary transformation and thus conserves the commutation relations. 

4. Approximate methods 

Now we apply the TFD formalism to the· LMG- model and derive the ·corresponding 

equations of TRRPA. A more general formulation of the thermal renormaliz~·d random 

phase approximation can be found in refs. (10, 16, 17]. Moreover, within the Hartree -_ 

Fock method, depending on the value of the coupling constant V two different phases of 
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the LM G- system exist - a normal phase and a deformed one. The present consideration is 

restricted to a normal phase. So we do not take into account the mean field rearrangement 

which occurs if the valueofthe effective coupling constant X = V(N -1)/c: becomes more 

than unity. 
The model thermal Hamiltonian 1i = H - Ji, where H has the form (1), has to be 

written in terms of the thermal quasiparticle operators. The first item in (I} conserves 

the diagonal form. The interaction operat~r becomes more complicated. For further 

studies we need only that part of 1i which. consists of the terms with even numbers of 

both creation _and annihilation thermal quasiparticle_operators. Namely, 

where 

1t ~c: (s~ iJ)- V(f1
2
-M [( A+2 +A2)- (,1+2 +A2)J , 

1 n 
B = ? L (/Jipi32p - /1tr,fl1p) , 

- p=l 

n 

A+ = L pt;,M;, ' 
p=l 

. 11 
-+ ~ +~+ A = L.J /J1i,/J2i, · 

p=l 

(3) 

The following exact commutation rules are valid for the thermal biquasiparticle oper­

ators A, A+, A and .J.+: 
n n [l 0 

[A, A+]= N - 'f)it)ip - L,/Jir,/32p, [ A, .4.+ l = N - L, Mi,fJ1p - ~jlt)2p · ( 4) 
p=l p=l p=l p=I 

All other commutators between the operators A, A+, A and A+ vanish. 

By the use of the Wick theorem one can approximate flO, 16J the r.h.s. of (4) by 

c-numbers neglecting an influence of the pairs of normal ordered operators : fJ+/3 : and 

: [J+ fJ :. Namely, 

[A,A+,] = [,1,.J+J = N(l -p1 - p2) = N (I - 2p). (5) 

H.ere p; are the numbers of thermal quasi particles in the temperature - dependent ground 

state lllio(T}) that will be defined later on. That is 

I fl 1 -fl 
p; = N(Wo(T)IN. lll!o(T)) = N{wo(T)IN; !Wo(T)} 

where Nf is the operat~r of the number of thermal quasi particles Nf = ~=I /3!/J;p. 
The thermal Hamiltonian (3) can be diagonalized in the space of two one-phonon 

states constructed as bilinear forms of the thermal biquasiparticle operators: 

Qt(wo(T)} = (ef.r1A+ -11>1A} l%(T)) 

Qflwo(T)) = (ef.r2A+ - ¢:i.ti) lllio(T)}-

5 
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Now we define the wave function of the temperature - dependent ground state jllt0 (T)) as 

the thermal phonon vacuum, i.e. Q1,2IIV 0{T)) = 0. 

The states (6) have to be ,orthonormal. Thus, taking account of eq. (5) the following 

constraints on the amplitudes tp and </J are derived 

¢[-</J;=[N(l-2p)r1
, i=l,2. 

The system of equations for ¢;, <Pi and the phonon frequencies w; is easily obtain-ed by the 

equation of motion method. It appears that only a positive value of w1 and a negative value 

of w2 is allowed under a requirement that the wave functions Qt lllto(T)) and Qfjllt0(T)) 

are vectors of the Hilbert space. The eigenvalue - eigenvedor problem has the following 

solution: 

wi = w == Jc:2 
- v2 (h -ld (1- 2p)2 (N - 1)2, 

c:+w 
.t.2 - ) ' 
'l-'1 - 2Nw(l - 2p 

E-W 
,1.2 __ -:-_ )' 
'l'I - 2Nw(l - 2p 

W2 = -W , 'Ip~ = 1Pi , <P~ = <P~ · 

One more equation has to be added to the above system - the equation for p. To 

evaluate this equation we need an expression for the thermal phonon vacuum state. The 

latter can be derived from the thermal quasiparticle vacuum state j0(T)) by a unitary 

transformation 

lllto(T)) = v'Re5 j0(T)), S = l <Pl ( 
2(1 - 2p) 1Pi A+ A++ ,4+ ,4+) 

By the use of standard techniques of the operator calculus [?] we get 

1 E-W 

P = 2 Nw . (7) 

It is interesting to note that in the thermodynamic limit, i.e. at N -> oo, p vanishes and 

the TRRPA equations are reduced to the TRPA ones. 

Let us display the expressions for the average energy, the average quasispin z-projection 

and the variance of the particle number 

(fl')TRRPA 
. €2 - w2 (!2 - Ji )2 + 1 

Nc:(h-fi) (l -2p) + ~ x 2(12 -Ji) 
2 

()z)TRRPA N(h - Ji) (l - 2p) = 2 

t:.NTRRPA = JN(l - 2p) [f1(l - J1) + h(l - h)]. 

The above expectation values were taken over the .TRRPA vacuum state. 
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It seems appr6priate to give expressions for the same quantities within other approxi­

mations -TRPA and TMFA. The TRPA expressions are obtained from the TRRPA ones 

by putting p = 0. In this case, the commutator [A,A+] is equal to N,and the expectation 

values are taken over the TRPA vacuum 

(H')TRPA 

(]z)TRPA = 

Ne(h-Ji) c:2_-w2 (h-Ji)2 +1 --+--x 
2 2w 2(12 - Ji) 

N(f2 -Ji) • 

2 

li.NTRPA = ,JN [J1(l - Ji)+ h(l - h)] . 

Within TMFA the interaction between particles is omitted and one has to evaluate the 

expectation values over the thermal quasiparticle vacuum j0(T)\ The TMFA expressions 

for (]z)TMFA and D.NrMFA are tlie same as in TRPA. For (H)rMFA one gets 

(H
.) Nc:(!2 - Ji) 

TMFA = 2 · 

5. Results and discussion 

The numerical calculations are done for the LMG- system with N = S1 =10 particles and 

c:=2. The results are displayed in Figs. 1-6. 

Firstly, we discuss a dependence of some characteristics of the system on the effective 

coupling constant X· The energy of the collective state w as a function of x at T = 0 and 

0.25c: is displayed in Fig. 1. Besides the results of the TRPA and TRRPA calculations 

the exact solution at T =0 is also shown. As it should be, with increasing x the energy w 

goes down. Within TRPA w vanishes at x =l. This collapse does not take place for the 

exact s'altition as well as for the TRRPA result. This last feature of the RRPA. solution 

is well :known in the case of a cold nucleus and is actively used in some recent nuclear 

structure calculations [18]. As it has been demonstrated for the first time in ref. (10], the 

same i~ valid at T ¥, 0. In the present version of the LMG- model heating effect_ively 

weakens the interaction of particles (the effective coupling constant xis multiplied by a 

factor of J1 - h < 1) and the TRPA collapse occurs at larger x- values. In TRPA when 

\ -> x~illap,e (H)TRPA ~ -w-1 -> -oo. It is not the case for TRRPA {see Fig. 2). The 

value (H)rRRPA goes down much slower and remains even greater than the exact value 

(H)ccE• At large values of X the strong difference between (H)rRRPA and (H)ccE is due 

to neglecting the mean field rearranging. 

In Figs.· 3-5,'the average energy of the system, the average Jz value and the variance of 

the particle' riumber as functions of T are displayed (x =0,95). The 'notic~able difference 
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Fig. 1 The energy of the lowest excited state in the LMG- model as a fun~tion of the 

effective coupling constant x at T = 0 and 0,25t:. The exact results - open circles; 

the TRPA (RPA)results - dashed lines; the TRRPA {RRPA) results - solid lines. 
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Fig. 2 The average energy of the LMG- system (H) as a function of the, effective coupling 

constant X· The exact results for the grand canonical ensemble - open c:ir.cles; the 

TRPA results - dashed line; the TRRPA results - solid line. 
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Fig. 3 The average energy, (H) as a function of temperature T. The exact results for 

the grand canonical ensemble - open circles; the TRPA results - dashed line; the 

TRRPA results - solid line. 
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Fig. 4 'I'.he.average value of the quasispin projection (Jz) as a function of temperature T. 

For notation see Fig. 3. 
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Fig. 6 The dependence of 11N/N on a particle number N. For notation see Fig. 3. 
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between the exact and the approximate values is only at moderate T S 0,3£. Here 

TRRPA works evidently better than TRPA and TMFA. The absolute values (H)TRPA 
and (jz)TRPA are greater than (H}ccE and (jz)GcE, respectively. At the same time, 

l(H)rnRPAI < l(H}ccEI- The relation l(jz}TRRPAI < l(jz)ccd is valid only at T < 0,& 

but then l(jz}TRRPAI appears to be slightly greater than f{jz)GcEI- At T > 0,5c: the 

differences between the exact and the approximate results is negligible. The difference 

between exact and approximate values of th«;_particle n~ber variance is only 2-3%, i.e. 

even less th~n for other variables. Decreasing in the difference with raising up T is a 
result of effect_ive weakening of the interaction. 

The value 11N/N as a function of N is shown in Fig. 6. It decreases slowly when T 
increases, and its typicaf value at N = 10-30 is around 10%. Th~ approxiinaie methods 

disturb 11.N only slightly. The difference between different approximations is of minor 

importance although formally TRRPA seems to be better. 

6. Summary 

Taking the Lipkin - Meshkov - Glick model as an example we have studied a validity 

of some approximate methods of many-body theory at finite temperature. The average 

energy, the average quasispin z-projection and the particle number variance as functions 

of temperature and particle number have been calculated in different approximations 

as well as exactly with the grand canonical partition function. On the whole, TRRPA 

gives better results than other approximations. Its advantag~ are especially evident at 

moderate temperat~ T S 0,5c:. With increasi~g T and N, results of app~~ximate 

methods improve rapidly and at T ~ £ the difference between exact and approximate 
results is invisible. 

'In the present paper, we have studied only the case with not too strong particle 

interaction (x < 1). Investigations of the deformed phase of the LMG- model are in 
progress. 

The stimulating discussions with Prof. V. V. Voronov are acknowledged. The work is 

done ~nder the partial support of RFBR (grant of RFBR 96-15-96729). 
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