


~.The study of spin phenomena in the curved space-tlme is one of the
most important problems of the modern astrophysics. The study of the
massive neutrino spin_ behavior i in the gravitational fields with various geom-
etries presents particular interest.  That is why we shall base the following
statement of the theory of spin phenomena in the curved space-tlme on the
neutrino example.

. The Dirac equatlon in the curved space-tlme has the followrng form [1];

((a)'r oo Zvabc'r‘q'r")rm, 0 PRIy (1)
where 'y,,bc '— e(c)e(,,),, ,,e(b); e(a) are tetradlc vectors G- u = 0,1,2 3 are
space mdlces, a, b, c —-,0, , 3 are tetradlc mdrces, ¥ are the Dirac

constant matrices; “we chosen them accordlng to Ref. [2]. The metrlc tensor
g“" is connected wrth tetradlc vectors e(a) in the standard way [3]

L s e(a)"(b)” , e ':, o)
is Mmkowskr metnc tensor Yot 4 APy = 2 g ' ‘
Kerr metric (4] presents the most interesting example of ‘studying the
solution of equation (1) . Ketr was looking for & special type solution of Ein-

stein equations , which would be suitable for describing algebraically special
manifold. This. form of metrlcs is currently referred toas ‘Kerr-Schield form )

[5] :
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g ="+ g, ST (8)
where £* is an 1sotrop1c vector in relation to the Mrnkowskl metric. 1)“" Kerr
mietric belornigs to this class (3):" It is.in" the. Kerr-Schield form ' that the.
structure of Kerr space-time is most obviously revealed. As it will be shown
in this work , spin phenomena in the curved space-time are most sxmply

described by the Dirac equatlon (1) for the class of metrlcs presented in'the
Kerr- Schleld form’ (3) T

Let’s present the product of the Dirac matrices in the followmg form :

'7 '7 ) c ﬁnTab---c { ’ . (4)

where o' are 4-dimensional Pauli matrices. Then, (1) can be presented in the A
form of . Schrodinger equation [6l: :
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For the metrlc (3), tetradlc vectors e( ) are easily expressed through isotropic
vectors 5“ : ‘ R I

e(a) = 6“ + é’l—‘é’a,

é.a nabgb . § =¢, &= (5)6)
‘We. shall look for the solutlon of equation (5) in the form of a wave package

localized i In a spatial area with a. diameter . We shall desrgnate the length
on whlch £is essentially changed as- L. Obv10usly Ly~ ——V— Prac-

v t1cally L, is the ‘order of the sizes R of the gravitational field source . For
black holes Ly is the order of the grawtatlonal radius R, of the collapsing
v astrophysxcal ob ject.- While Ry stars with the mass ‘of the .”Sun order is 1.5 ki,

80 Y. ~L, and these members in (5a) may be neglected with the accuracy
. of (—B) th order In thls case, (Sa) allows an essential srmphﬁcatlon

' ='—z(1+£2) =1+ 52)75(0V)+(£+—7 (ae))(£V)+ §(a[e><v1)+

bimp(1+ L —755(05))1 "; R (7
- We shall present ¥ in the form of combination of conditions with left and.
rlght hehcltles - )

‘I/ \I’L+‘I’R, \I/L __:_(1_'_75)‘1/ ‘I/Rf—(l_ )‘I/ (8)
Then » ‘ vl e, , -
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. --Here we have an accuracy of order- (
‘ amphtude (12) is deﬁned by the followmg condltlon
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B §(0' I€ x V])]\IILH + +zmﬂ(1 42 52 =S 6(06))\I'R,L} (9) :

The wave functlon 14 w1ll be normallzed accordmg to the followmg condltlon

/\Ile(a)'y“\ll\/ d T= 1 SRR (10)

. As follows flom (10) the p0551b111ty of neutrmo bemg 1n the condltxons of

right and left helicities equals ‘ B
Wﬂ_/qf Re(a)'y \pm/_d z, WL_/\IJ Le(a)'y \pu/_d z, Q1)
‘ ~ WA Wr=1 L

We shall search the solutlon of (9) in the form of a wave package w1th a
width L, > L, : , S v \

‘I/L, = 1 3 /dsqex})( (q deo) + /E(q’T)dT_z(qr) ) u(‘lat)LRa
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'Substltutmg (12) in (9) we' shall have

F(H)——2(1+§2) {(E(1+€2)—§($q)+(UQ ))F(H)+

+m(1 + 5(06))11(1’)}

Q———q——[£[£><q]] §[$><q] S (13)

In (13) £ is taken in the maximum’ of wave package amplltude (12);
» The maximum of the wave package

r= / (qu(q,r))dr'+ ro (g



which corresponds to'the movement of the package s grav1ty center along

the classical trajectory. The system of differential equations (13) describes _

-.the behavior of masslve neutrino spin in the curved space-tlme with the
Kerr-Schield metric. Contrary to the classical theory of spin in grav1tatlonal
field, the- quantum system of equations (13) obviously includes the mass of

. the particle m. Besides, in (13) there are members which are stxpulated
by non-hermiticity - of the Hamiltonian . H for. particles with spin. 5 in the

- curved space-time. This circumstance defines the character of neutuno spin

behavior in the gravitational field.”
Let’s present (13) in a more sultable form :"

T PR R J : .‘A'—»ﬁ A* ,»A,’,‘
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where ~¢ 7 %

B = (146 + ) - e 00,

i 14¢2
" The member V, in (15) leads to the change of spin conditions, i.e. F #

’ ‘AO ‘and dtH # 0. This is why we solve (15) for a statxonary case V = 0.
, Then we have : ,

=5 (0f).

ﬁmﬂ+mm_"ﬁHm+mﬁ;b”‘ (16)
~where Fy and’ Ho is solution of a linear algébralc equation system (16) From
the conditions of compatibility of the system equations (I6) it foIIows that

(17)

\
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: The value of F(q, f) can’ be-found from (17) Due to the presence of the
member —f[&' % q]"in H(+)and A ‘the* Values E(q,€) are: ‘complex and
ImE(q,£) ~ mfsin® (O is the angle: between the vectors q-and"¢-).
In (14) we need to substitute only ReE(q,¢) .
plicit form of Fy and Hy. These solutions are normalized according to the
conditions : : :

We :shall not need.the:ex- -

‘/\

B pe)R=1, Hy(1= —s(«re))Ho =L (s
: We d1v1de Fo and Hp into two lmearly mdependent members S

o Comaedey U apwey.
B 'Fo—foyr _}‘I(T_h"’H ho—Tfo (19)

ﬂ o Then the solutlon of the initial system (15) is to be searched in the form ‘

m(l + 252

F= CL(t)f 0~ CR(t ‘—ﬁrho:

m(1 + 5£%)
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.Substltutlng (20) in(15) and. neglecting the members of the ( 7). order we |
obtain a system Cof dlfferentlal equatlons for CR and CL .

00 = ety COIDEIONS
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G Or(t) = —5m&(h (@€ fo)Cu(t). (m),
We, indicate (. fo (af)ho) = w. The case of Cr(0) = 0 presents partlcular
‘interest . In thls case, we have the followmg equatlon system ‘

‘d,

CL = ZWCR: ““ &"CR --'—zw CL, - ‘, CR(O) =

'f"ﬁ?.ff/(zz',) ~

On mtegratmg (22),we get

i ‘ ’+ . ‘t " o v c ,
%“‘mwm/MﬁmAv * (23)

CL = Ach/k:)!d-r’ -

Thls kind of Cand Cp behavior is radically different; from. the case of elec-
' tromagnetlc field influence over the spin conditions of a ‘neutral particle,
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. From (26) an effect of massive neutrmo

q

Wltl"l a spin of 1 and anomalous magnetlc moment There, we deal with
_spin prece551on into electromagnetlc ﬁeld whlch unllkely (23) is descrlbed

" in trlgonometnc functions. -

For defining . WLand Wg we need to find exp( 2Im fE(q, )d‘r in the

explicit form, which is presented together with CLand CR The equation
(17) gives several. values of ImE(q,£). The concrete values [ mE(q, &) are

estimated by the fu.nctlons CL(t) and Cg(t) which determine the particle’s
spin conditions . That is why we express E(q,€&) by F and H, using the
system (16): e e :

¢ H*olgxa)H +F'(@ftxa)F
2u+9) (Fﬂw+UHH)

ImE =

: . (24)
In general case, the calculatlons in (24) are compllcated and bulky HOWever,
for £ <1 and'§ <1 calculations (24) are considerably s1mpllﬁed

‘vaE(q, )= 2dt ln(C+CL + C+CR) lw| = §m£2 sin ©, (25)

» ‘As a result, for'a weak gravitational field £2 < 1 with the help of (11),(23)

and (25) we find the dependence Wi, and Wk on time in Kerr-Schield metric:

W=+ thz(/ |w|d*r)]‘.l, - We=01+ cth?(/-,lw]d‘r)]"l.:’ o (26)
0 0
depolarlzatlon' in gravitational field

follows. The gravitational field of a rotating gravitating body can be de-
scribed by the following Kerr axial-symmetrical statronary metric: -

Ryp?

. ST ertlaxd k7 (@na),

p=4r—am+u+«mnr—&)at e

v"ﬁ” ~

“field' of the rotating gravitating. body
‘W, =0.51; Wg =0.49,and m = my = lln10(

a= ﬁ J i is grav1tatmg body s 1mpulse moment M is 1ts mass. For the Sun

ag Skm R;o _,2 96km Under r>>a (27)is s1mpllﬁed
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Assume that a partlcle is mov1ng along the radius r. Then’ |w|

"~ ar %sina (a is the angle between the vectors r and a'). In this case, the, '
- effect of changing massive neutnno helicity can be’ explamed by the fact

that the gravitating body has its impulse, or rotatlon ;moment. ‘Since (28)
describes the external grav1tatlonal field, we- shall calculate it w1th t =0 1
r= R (Ris the gravrtatlng body s rad1us) Then: - : :

PN N E

However, in (29 2t can be equaled to 1 with big precrslon Havmg mtegrated g
in(29) and calculated, we have the evaluatlon by r >> R

\ - g
/lwld‘r—ﬂ—~ mR aR sinq. T (30) .

" The exact formula for € will ev1dently differ from’ (30 wrth a; factor of the .

1-st- order.’ It will also consider the partlcular geometry in the gravrtatlonal ‘k
:Let’s ‘assume that £ =.In 10:: ‘Then,

the ﬂows of right and left neutrmo emltted by a star will be practlcally equal :
WL and: Wr change most cons1derably, if 0. lmo < K < 0 7mo Here
092>WL>055and045>WR>008 S
“For a solar neutrino, n,=3.1410%eVat a=1Z. If the neutnno is
emitted by a neutron star, havmg the same moment and mass as those of the o
Sun and a
than m=3.14 10%eV. - The deﬁc1t left solar neutrmos on the Earth D, -
ev1dently amounts to WR The effect described in this work allows establrshmg“v

considerable similarity between the theoretlcal and observed solar neutrmo" |
" flows, if m, 210 eV ~The effect .of the massive neutrino depolarizations

will also consrderably influence the rotating neutron stars..cooling, espec1ally o
‘at the moment of their formation when supernova stars explode '

)sma ‘Hence,if m > mo

1ad1us of R =10km , then, if a = o " mo w11] ‘be much greater .



7" To* gaini ‘a bétter understandlng “of the” nature ‘of the ‘massive neutrino -
depolarization in ‘the gravitational field, we shall express mg in the: explrcrt form,

V preservmg the Planck constant h and the velocxty of llght c:

ﬁ)t_ (Gr7 )lnlo(lf)-— 5”(12)10M "

R, ey

L 1
mo - (47rac),l;n 0

: where M 16:_(; is Planck mass, ‘UelS the revolvmg star equatoual veloc-'
ity. From (31 .it_obviously . follows that, the massive neutrino depolarlzatloni'

in gravitational ﬁeld is of quantum nature. ..

i
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