


1 Introduction -~ .. o

The method of adiabatic representatloh is very useful for investigation of many real quan- - -
tum systems with some degrees of freedom’ the separation of which'is not valid, so far
as it allows one to take into account the mutual influence of slowly changmg external
and rapidly changing internal fields. The direct scattering problem treated in the adia-
batic approach. has had. a rich history that dates ’byack to the first studies of Born and
Oppenheimer [1] and Born and Fock .[2]. Then it has been intensely studied in many
works by Landau [3] and Zener [4, 5], Hill and Wheeler [6], Demkov [7] (for references,
see [8] - [12]. However, the inverse scattering problem in the adiabatic representatlon was
proposed relatively recently [13, 14]. One of the main advantages of the i inverse scattering
method is the possibility of constructmg 'a wide class of- Hamiltonians for which analytic
solutions ‘can be found in both linear and nonlinear wave sca.ttermg theory {15, 16, 17):

- In'its turn, the inverse problem in the adiabatic representatlon extends the possrblhtles
of the inverse scattering method in the 1nvest1ga.tlon of many real quantum systems w1th
complicated dynamics [20, 21, 14]. :

The procedure of the adrabatlc representation is-a:variant of drmensronal reduction of
space, because it'leads to two the effective scattering problems in the spaces of .a lower '
dimension, than the original one.  The method of analytic modelling in this approach is
based on the consistent formulationin analytic form of both’ mutually connected prob-
lems: the parametric problem and the multichannel problem for the system of equations
with a covariant derivative. The main peculiarity of this approach is that the potentlal
and ‘the basis’ wave functlons have to be found from the scattering data parametrlcally
depending on the spatial varlables Generahzatlon of the Bargma.nn technlque to ‘the
parametric family of inverse problems is based on the choice of Jost functions that have
to be rational, as usual, but parametrically depending on the adiabatic variables through
the dependence of spectral characteristics on them. In the consistent statement this de-
pendence is determined by solving the inverse problem for the system of equations. -

.'When the functional dependence of scattering data on the external adiabatic variable
is given in advance, one initially recovers the potential by solving the parametric i inverse
problem and determines the basis functions. The matrix elements of the induced vector
and scalar potentials can be constructed - and ‘studied in terms of first obtained exact
solutions of the parametric problem. The full solution of the original problem is then
obtained by solving the system of multichannel equatlons with' respect to the expansion
coefficients. In the general case, the solution of the system of equatrons has not to be an
exact analytic one and demands numerical calculation. * o :

. By specifying the functional dependence of spectral cha.racterlstlcs on time through the
dependence on it of the external dynamical variable z(t) we elaborate algebra.lc procedure
for constructing tlme-dependent multrdrmensronal potentrals a.nd correspondmg solutrons
of the parametric problem in a closed analytical form: Here we have considered a set of
certain examples of exactly solvable models within the parametric problem on the entire
line and on the half line. In pa.rtlcular, for a given functional ‘dependence of spectral
characteristics on the external coordinate variable, we reconstruct transparent symmetric
and nonsymmetric potentials'in another spatial coordinate:with the:pertinent solutions
of the parametric task. In terms of the analytic basis functions,. the matrix elements Anm
of exchange interactions:are calculated w1thm a stralghtforward procedure at different
moments of time. The approach suggested permits investigation-of adlabatlca.lly driven
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quantum systems With prescribed dependence on pa.ra.metric adla.bat.ic yariables es Well.

2 The Ad1abat1c Approach and Inverse Problem

Consrder the’ system evolvmg accordrng to the Schrodlnger equatlon .

du()> ER N BEEN
= >“_H( (t))[lI'(t)> B

where the Ha.mrltoma.n H (:c(t)) is glven in the form

‘vzﬁ

H(z( ) —LaZ/ax + h(z( ).

If gu(z (t) y) are solutrons to the equatlon

(= (t))|¢n( o(1);y) >=¢, (z(t))Ian( (t),y) >, h(z(t))=—32/3y +V( (), ‘)> k(‘2)'

and - form -a complete orthonormal . set - [¢a(z;y) >< /¢n(z; )| = 5(y 2z y)
< ¢7n(:c) | qu(:c) >= 5nm Vz, then ¥ can be expressed by the expansron

I‘I/(w,y) |n><n|w >—Z [oeone

over ergenstates of the self—adjomt para.metrrc Ha.mrltonra.n (2). Upon substrtutrng the
. expansion (3) into the initial Schrodinger equatron (1) and using relations of orthonor-
: ma.lrza.tron we a.rrrve multlcha.nnel system of gauge equatrons '

4 A 4 V() = 0o ) S

‘Here Az ) and. V( ) s the effectrve ‘vector. and sca.lar potentrals respectrvely, ‘matrix
g ((el(;ments of whrch are 1nduced by the ba.srs functrons é(z ,y) of the para.metrrc problem

Au(2) <¢n( Ve |¢m(z,y>> | I

V) = < et ‘—zh<¢n(z Dlbn(zi9) >

In the case of a slow and smooth eyolution in time of the collective coordinates z(t); the
second derivative is neglected in (1), H(:c(t)) = h(z(t)), and the solutron of equat1on 1)
is sought 1n the form of the expa.nsron (see for instance, [22])

(t z(t) ¥) >—ch( (t»ezp — / S(za'»dt)wn( > O

\Vlth account of (2) the system of equa.trons for c,‘(t) can be written in the form |

LR

ZBnm(z t))ezp —~/(5 () = & ))dtl m(t): r | (8)

-2

En@)bum = hBun(a(t)). EOR

e

The ma.tnx elements of excha.nge mtera.ctlon
Bup(a(t)) =< nlrh >= Anm(w(t)) fc(t)

are generated by basis functlons [n > of the” instantaneous” Ha.mrltoma.n (2)

" “Thus, the initial problem is'reduced to the consistent solution of two problems (2)
and (4) or (2) and (8). Here, we assume that H(z(t)) is real, limited and continuous in 2.
Beca.use for ea.ch t the ergenfunctlons are rea.l va.lued a.nd orthonormal

< bule) | (0) > B Vo

then the nonadra.ba.tlc couplrngs Anm = —Am,. in (5) are rea.l and a.ntrsymmetrlc inn a.nd
m..The matrix elements (5) of the induced connection A can be computed in terms of the
analytic eigenfunctions of equations:(2) for a given functional. dependence of sca.ttermg
data {£,(z), v2(z), S(z,k)} on the slow coordinate variables z(t) (€a(2(t)) = —&3(z(1)))-
After that the transition amplitudes c(t) can:be:determined from (8). In the consrstent
adiabatic approach, the parametric dependence of spectral characteristics on "slow” vari-
ables should be determined by solving the inverse problem for a system of gauge equations
)

+In accordance with the’general definition of the inverse problem {18, 19], the para-
metric inverse problem {20] consists of the reconstruction of the potentials and corre-
sponding solutions from known spectral data’ {p(z, k), N*(z), E(z)} or the scattering data
{S(z; k),72(2), E(2)} parametrically depending on the coordinate variables'z: This de-!
pendencereflects the peculiarity of the nonstandard parametrlc inverse problem: Spec1fy‘

. ing this dependence and employlng the algebraic methods of inverse scattering problem,

we present a wide class of Hamiltonians for which one can construct exactly solvable
models and, consequently, derive solutions in a closed analytic form These Hamiltonians.
with generalrzed Ba.rgma.nn potentlals [20] are defined by the ra.tlonal Jost functlons ‘

parametrically dependrng on the ”slow” dynamical ; variables z through the dependence
of spectral parameters on them. This situation is to a certain extent analogous to the
theory of nonlinear evolution equa.tlons The pa.ra.metrrc Jost function (9) has N curves
k = —if;(z) of simple poles and N curves of srmple zeros on the k = za_,(a:) defined as
functions of the parametric variable z. In o(z) there are not only zeros on the i imaginary
semiaxis corresponding to bound states R k;(z) = 0, & kj(z) > 0 for each values of z
but also zeros in the lower half—plane with & v;(z) < 0 (the number of simple pole curves
of B;(z) equals the total number of ; ‘and ;) In"this’ case the scattering matrix and’
spectral function assume the form

) '(k+w(z))(k+zﬂ(-'v)) iB(2))(k 4 i8(2)
S =11 el H(k+m(z>) Fie(a)
e

For such § (:c k) a.nd p(:c k) the kernels of 1ntegra.l equations of the pa.ra.rnetrlc inverse
problem can-be represented as. sums of terms w1th a fa.ctorlzed dependence on-the fast



va.r1able y: Q(z y,y) = Z B; (z;y)Bi(z; y') When the kernel Q is 1nserted info the base -

pa.ra.metrlc equa.tlon of the i inverse problem ‘
M(y) E ’ Ve - .
/ K(z:yay )Q(z,y ’y)dy _0 : (11)

y(0) ¢

K(z,y, )+Q(z,y y)

it is evxdent that the kernel of the genera.llzed shift K (z,y,y) a.lso becomes degenerate:
K(z;y,9) = ¥ Ki(z;y)Bi(z; ). As a consequence, the system of integral equations of
the inverse problem is reduced to the system of algebraic equations. Then, the spherically
nonsymmetric potential and solutions corresponding. to it can be expressed in-a-closed
analytic form:in terms of the known solutions and.spectral cha.ra.cterlst1cs by us1ng the
generalized equatlons of the pa.ra.metr1c inverse problem ..

LV i

V(z y) (z y)wiff( )

L)
. ' c’oy(y) .

- ¢(z, k;y) = (k,y)+ / K(z;y,y") ¢ (k,y')dy'. Coy (13)

t y(O) a : e

Integration limits-in (11) .(13) and signs in (12) depend on the part1cula.r a.pproa.ch to

the inverse problem: Limits from y to oo (from y'to a) and minus sign correspond to the.

Marchenko a.pproa.ch L1m1ts [0 y] and plus sugn represent the Gelfand-Levitan approach.

2.1 Exactly solvable models in the Marchenko approach on the
' sem1—a.x15

For, the parametrlc inverse problem ra.d1al or on a semi-axis, when % (y) = 0and S (k) =
1 the kernel of the basic 1ntegra.l equation (11) in the Marchenko approach

Qe +) = 5 / =S Bleslty v d (9
. N“ 5 e . . ‘

+ D Mi(@)expl-—ma(2)(y +9)]

w1ththe slc'attering matrix (10) is rewritten as follo\lvs |
Qai v +y)) = i Z Res §(k = iba(z)) expl=bu(=)(y +¥)] (15)

N
g Z{ iRes S(k = irn(z)) expl—ra(2)(y +¥)] + MX(z) exp[—fcn(z)(y +y)}-

Followmg the procedure of constructing phase—equwa.lent potent1als suggested in [17] for..

the one-dimensional problem and in [20] for the parametric problem, one can cancel out

s

4

the second summation in the right- ha.nd side of (15) if the norma.hza.txon functxons M2(z)
are chosen to be equal to i Res S(k) at Ic = uc,.(a:) :

.1:) =1 Res S(L)]k_,‘,,(,) (1‘6)

=_2~n( z)(x (z)+b( ) ﬁ( 2) + bur()) z)m( )
' nn(z)—bn(z ",#"( n n:)—b,, /(2))(kn(2) = Ko (z))

As a result, we obtain’'the simpler expression for the kernel Q =Q

. N
Qmy+y) = —i) ] Res S(k)lizivy(e) exp[=bu()(y + )]
N i ) o
=) An(z) exp[— b y+y)] S 1)
where o b. ‘; -
A () = Za(2)0n()  a(2)) 7T (@) 4 (@ )(bule) + b))
" (buf) = #al@)) [l (bnl) = b)) (bn() = ()’

Inse1 ting the kernel Q (1: Y, y) (17>):into the parametric Marclienko equation (11), we
obtain , : L e

a
. 00

o " g
K (:9,9') + Z A,.(J‘:){C_,b"(r)y + / K (fp;y,y")e_é"(rly dyu}e_bn(r)y =0,
N - Vv‘y : i
where the explessxon in bra.ces is. the Jost solutlon f+ (1b,,(1) y) for the sought” potentml

V' (z;y). So that [y ( ,y,y) has a form sxmxlar to that of Q (r ¥, y') from (lt) with a
separabilized dependence on'y a.nd y and w1t11 a pa.ra.metnc dependence on x :

K (ziw.y) = - ZAczm = ib, (z),y)exp[ ba(a)y) (18)

Substituting this kernel. of generalized shxft from the free wave to the Jost solution into
the triangular 1ntegral equation '

Tk =entin) + [ F ety ()

4

at-k ='ib,(z) we get a setof equations for ;’ (1ba(x), y)t

T (iba(z),) = Z Pt (@i ) expl=(bu(2)y]



where P,m (ziy) is defined as follows el
' ’ exp[—(ba(x) + b (2))y] "
b,.,(:l?) + bnr(z) .

Thén by substi‘tuting (18) into the paraﬁxetric equations of.the inverse problem (11) - (13)
we obtain . :

Pnn (:12 y)—ann'+A (.’l?)

V(zy) = —2W1ndet [|1P(z;9)!l; (20)

k) = rpli) + 3 At

nn!

)Pias) SR L TN g
z) F k)
The corresponding algebraic formulae for the one-dimensional Bargmann potentmls and
their solutions ({17]) can be directly obtained if we put #.(z) = £, and bn(z) = by
‘Let us now present a case with two potential curves in the problem on the semi-axis.
‘The Jost function (9) can be written in the form

(k=i (2))(k = 1Ka(2))
(k+iBi(z))(k+1Ba(2))

We take the normahzatxons of bound state wave functlons in the form (16)

f(s5k) =

M) = - 2@nE) + bu(2)) (a) + () a(2) + ra(2))
R (f1(2) = 6i@)_ (ma(@) = ba(z))(m(2) — ma(@))’
: Mzt - ) sa(e) 4 5(2)) (rale) + (o)) (sa(o) + ()

(r2(@) ~0a(@)) (ma(@) = 6a(@))(Ra(z) = ()

Thereby the potential V(z,y) is determmed only by .the spectral data «i(z). and
ﬂ.( ), i=1,2 and corresponds to one of the phase—equwalent potentials. From normal-
izations' M’( ) being positively definite the conditions fy(z ) > ka(z) and Bi(z) 2 rx(z)
follow. The spectral data have been chosen in the following way )

s R
B v AT PR

iky(z) = _ﬂ__+04 ﬂz(z)zﬁ%ﬁ

cosh(kqz — 5)
Ky = 06, ﬂ] = K2 = ﬁz =0.7.

+0.3,

+0.5,

From the relations (20), (21) we obtain the two-dimensional potential V(z,y) (Fig.1c)
and the corresponding normalized wave functions 1,2(z,y) (Fig.1d,e) of the self-energy
~curves & o(x). The behavior of the nonadiabatic connection (5), accomplished by the
matrix element of the effective vector potential Ajz(z) is shown in, Fig.1b, under the
potential, curves Fig.la.

Jl

LLLL bhbb
O b= A) o O AM)_

Fig.1. ( ) Potentlal Viz ,y) w1th S(z k) W1th 4 pole curves in the upper k half—-plane, -
(d,e) the normallzed elgenfunctlons Y12(z;y) at ko= —ik; 2( ). . (a) The energy-level --
curves & 2(z) = —&3 ,(z) and (b) matrix element An( ) are shown in.the upper figures.
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'3 Transparent Potentials

Let us consider quite a simple eké.mple of the use of the suggested technique. Reflection-
less (transparent) potentials along the fast variable describe the one-dimensional inverse
problem along the whole axis with the zero-th reflection coefficient, S™/ = 0. The trans-
mission coefficient 5% with the absolute value equal to unity is a rational function
- k +ik(z)

k—ix(z)

depending on the dynamical parametric variable "z = x(t)” The relations for the po-
tentials and solutions can be expressed in terms of the normalized eigenfunctions and
represented in the most symmetric and convenient form. Following [15], introduce the

function . S
S M(®39) = 1al= )exp( n(z)y).
Then the formula for K(z;y, y’) can be written as

S (z; k) = (23)

- K(z;9,9) = Z'yn z;y) exp(—rn(2)y")

Z¢n ay ) D (24)

For the norrf_laliZed eigenfunctions 1,[),,( y) from (13) ‘we obtain

Z A ,y) (25)
with the matrix A;,(z;y) given by

Ajn(239) = 830 + M“(”_’% , )

Fmally, the kernel K(z;y,y') and the potentlal can be represented as

K(z53,9) = —ZZA“ S a(asy),

Vizy) = 43 ra(@)i(miy) ' (27)

Note, these relations are obtained for the specific case of zero reflection function §7(z; k) =

0 V:c Note, symmetric transparent potentials for each fixed value of z and appropri-
ate wave functions are completely defined- by the energy levels [23] since the normalized
functions can be determined by the energy levels :

2(z) = i ResS* (k),k_“ﬂ(,, 2#;,, Hlnm Km(@) + Fn(2)| . (28)

Em(z) = £n(z)

The set of time-independent transpa.rent potentlals for which the parametric Schrédinger

equations have exact solutions, have been constructed by us in [23], [24]. Here we give
"some examples of the reconstruction of time-dependent potentials that are symmetric and
transparent in y (Figs.2) and nonsymmetric transparent potentials (Figs.5).

8

.5
. -10--10

Fig.2. Potentials V(z(t),y), transparent and symmetrical in y, calculated for different
values of wit: (a) wt = 0, (b) wt = 7/6, (c) wt = 7/3, (d) wt = /2. (e) wt = x. To

achieve a clearer presentation, the potential is inverted.



Figure 3:
Cwt=7[2

Eigenfunctions ¢;{z(
sle)wt'=m.
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Figure 4 Eigenfunctions ¢2(a:(t);y) at (a) wi=0,(

wt=7/2, (e)wt=m.
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Fig.5.-Potentials V(z(t),y) calculated for different val

(c) wt'= 7/3, (d) wt = /2, (e) wi = 7.

12

lues of wt: (a) wt =0, (b) wt = =/4,

3.1 Exactly solvable models with time-dependent symmetric
’ potentials - AR AR co
Consider a simple "e):{an‘lple of a tw‘o}diﬁleﬁ;sional‘ éxactly solvable model for a tivp-level
system with a periodical dependence of thé dynamical variable z(¢) on time. We define
two terms in the following way . : '

= ~Vek(a/3), &= ~(1/eh(z/D + 025

with PR
: z(t) =z (1=a cos(wt));

where ¥ corresponds to the time-independent case. We're‘c'o,nstr‘l‘lc't symmetric transparent
potentials and appropriate basis wave functiors that are determined by the energy levels
due to choosing the normalization functions 72(z(t)) in the form (28). The dynamical
behavior of the potentials and the pertinent eigenfunctions is presented for wt equal to
0,7/6,7/3,7x/2,7 in Figs.(2a,b,c,d,e) —.(4a,b,c,d,e), respectively, and a =1. Since their
behavior is mirror-symmetric with respect to the line wt € (0,7), it is not shown. It is
easy to see that the potential and functions change from very simple one-dimensional ones
for wt = 0, Figs.2a — 4a, to quite complicate two-dimensional potelitials and functions
for all other values of wt # 0. "In accordance with our. choice of the potential curves,
when ¢ = 0, 2(0) =.0 and bound state energies £, = —1 and £ = —1.5625 define the
one-dimensional, potential. The one-dimensional transparent,pqtelvltial with two bound
states and corresponding wave functions are immediately obtained from 111§re general
relations [20] of the parametric task; When wt # 0, we have tWo-dimqqsional potentials
and functions. At wt = 7/2 and wt = 37/2, z(t) coincides with Z and we have the
two-dimensional time-independent case,.while at wt = 2m, the system comes back iuto
the one-dimensional position with the initial states [¢n(z(t);¥) >= |4a(y) >. Note, the
eigenfunctions v;(z; y) are symmetric (Fig.3) and ¢1(2; y) are antisymmetric (Fig.4) in y
at each fixed values of z(t) as it is required for the problem on the entire axis —oo < y < oo
with a potential V(z;y) symmetric in y. Matrix elements of exchange interaction, Ay,
induced by basis functions of the parametric instantaneous Hamiltonian are equal to zero
in this case. The explanation is very simple, one of the basis functions is strong symmetric

»."

in y and another is strong antisymmetric in "y (Figs.3-4) and integrals
/. $1(;y)0z2(z; y)dy = —/, ¢2(2;y)0:1 (25 y)dy = 0.

The systems of equations (4) and (8) decompose on two systems uncoupled with each
other.  The transition amplitudes between even and. odd states equal zero because they
are defined by the zero matrix elements A,.,. As a consequence'we received an important
result: the choice of normalized functions influences on the behavior of dynamical quantum
systems. Obviously, another parametric dependence of the spectral characteristics can be

chosen, and other initjal spectral data corresponding not only to the one- but also to
‘two- or three-dimensional dependence on the extra coordinate .variables ean occur. In

the next section we shall consider the influence of normalized functions on the behavior

of potentials, basis wave functions and matrix elements A(x) of an exchange interaction.
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3.2 Nonsymmetric transparent pof.entialsf

The choice of normalizing functions 72(z) of energy-level curves, that do .not obey the
condition (28), leads to loss of symmetry in "y” of potentials and to another behavior
of parametric basis functions. As a result, the coupling between neighboring states (and
also between even and odd states) takes place and the transitions takes place, too. -

Let us define two potential curves as in the previous case: & = —1/ch*(z/3), & =
—(1/ch(z/2) + 0.25)% with z(t) =z(l-a cbs(wt)), but normalized functions as ¥i(z) =
2kq(z). The behavior of the potentials 'V (z(t),y) and the pertinent normalized eigen-
functions ¢n(z(t);y) = 1 (z(®))f(irn(z(t),y)), n = 1,2 is presented for wt equal to
0,7/4,7/3,7 /2,7 in Figs.(5a,b,c,de) —(Ta,b,c,d:e), respectively, a = 1. It is easy to see
that the potential and functions loose their symmetry in y as it takes place in choosing
normalized functions in the form (28). K ' ‘ :

The behavior of thé matrix elements of the nonadiabatic coupling Ajz(z(t)) and
Bia(z(t)) calculated at different’ instants by using (5) are pictured in Figs.8b ~ 8e. Nat-
urally, when wt = 0, Aj; and Bj; are absent, since the dependence on x vanishes. * For

~wt # 0 all functions Ap(z) = —An(—x)‘are antisymmetric and all Bi2(z) = Biz(—2)
are symmetric with respect to the origin of the coordinates. The behavior of A is defined
by our choice of spectral data and of the dependence of = on time. It is evident, B(z)
are symmetric functions since they are obtained as the product of both antisymmetric
functions: ‘A(z) and #(t). Remember that the matrix elements of A12(x(t)) = —An(z(t))
.and Bua(z(t)) = = Byi(z(t)) are antisymmtric in the index of the state (here 1 and 2). The
tendency of changing A as a function of wt is the following: the amplitude of changing of
A is the larger, the smaller the wt. When wt is small, the second pick to the right of the
origin is comparable with the first pick. With increasing wt, the second pick is decreasing.
- From our point of view this behavior of the exchange interaction ‘A can be explained by
the mutual‘influence of eigenstates. -At:small values of Wt the potential curves are close
to each other on a larger interval than at large values of wt. It is interesting to note, at
wt = 7 'the matrix elements Bi3(z) ;‘0 in spite of the adiabatic coupling Ajz(z) # 0.
The full solution of the original problem (1) is then obtained by solving the systems
 of multichannel equations (4) or (8) with Tespect to the expansion coefficients. In general
case the solutions of the systems of equations have not to be exact analytic solutions.
* - In'such a way one may also investigate properties adiabatically driven quantum sys-
tems, Hamiltonians for which are slowly varying functions of time. In the case quantum
systems are described by the equations (1) and (8). According to equation (8) transitions
from an initial state ©(°) = ¢(z(t°)) to a final state ¢(z(t)) are determined by the matrix
elements of the evolution operator #(t,t°) which satisfies the integral equation

e S A | ,

uﬁrh(t,‘t") = Snm + Z / Bnml(z(s))ezp['_%/ (gn(tl) _ gm'(tl))dt’]umlm(s,tu)ds. (29)
AR A [} to B K

PR UEIRETIE EE T SIS SO m t? ) . .

One can solve this equation by iteration

Unn(t,8) = b + / B,,,;(z(s))ezp[—% /:(E,,(t")—8,,,(t'))dt']ds+... . @0)

The trariéitioﬁ amplitudes in this case are defined by the matrix elements of an exchange
interaction By (z) that can be calculated in terms of analytic basis functions (8) and (5).

14

Figure 6: Eigenfunctions ¢y(z(t),y) at’ (a)wt :

wt=7x/2, (e)wt=m.
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 Figure 7 Ei i Fig.8 Mat?ix éle[ﬁents of excl}ahgc interections Alz(;i)' (t.hc'l(‘ft.iyc‘ojhirm‘l)‘aud Bua(x) (the
Figure 7: Eigenfunctions ¢ (z(t),y) at (a) wt = 0, (B)wt=7/4, (c)wt=r/3, = (d) tight column) calculated for different valucs of wi: (b) wt = 7/4, (¢) wl = /3. (d)
.wt‘= /2, (e) wt = 7. . A o W/Q’_(é)’c“ﬂ =,7r.‘ . . S oo : o
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Consider the concrete example of the smooth behavior of I(t) studied in [10]
, z(t)=z(1+a ezp(—1/t)), B (31)
but spectral data we take as for transparent potentials (23) with the same potential curves
= —1/ch*(z/3), & = —(1/ch(z/2) + 0.25)%, 72(z) = 2ka(z). So that z(t = 0) =z,
1-(00) =(1+a) z. When t = 0 this case coincides with the previous one at wt = =
(Figs. 5d — 7d), the case ¢ — oo corresponds to wt = 27 at a = 1 (Figs. 5e - Te). It is
evident from the comparison of the figures 8d and 8e the matrix element A;2(t) changes
very smoothly in the mterval 0-< t < co. Therefore the transltron amplitude takes a very
simple form ' :

.

Unm (00, 0)—6nm+Am /6(1+e"‘/’ exp[——/ S(t) En(t)))dt] ds. (32) '

It is quite evident, we can choose another dependence on time, and other initial spectral
data with prescribed properties. In particular, for the special case of parametrlc variation,
the spectral characteristics may be taken in a factorized form as in [10] £,(z) = &, where
.-z =2z(t) and £, are eigenvalues of the time-independent task. In the last paper, transition
amplitudes were evaluated for the class of Hamiltonians with purely discrete spectra. Our
approach permits one to consider a much larger class of Hamiltonians with known discrete
and continuous parts, whose partlcular case is operators with spectral data in a factorized
form. : ST
We take attention that our method permits to construct potentlals and correspondmg

solutions of the parametric equation (2) in a closed ‘analytic.form and computing the

matrix elements of exchange interaction’ by numerlcally First procedure is algebraic one,
but second step is numerical, therefore the method is semianalytical. Nevertheless, this
approach allows to investigate the influence of normalizing functions on the behavior of the
potentials, on the basis functions of the parametric Hamiltonian and on the behavior of
the matrix elements of the exchange interaction. Examples of the reconstruction of time-
dependent and time-independent two—d1mens10nal potentials and correspondmg solutlons
have been considered in [23], {24], [25].

4 Conclusions

In conclusion, we would like to note that this approach allows one to construct a very
wide class of two-drmenslonal exactly solvable models with time-dependent ‘and time-
independent potentials. Some concrete examples of two-dimensional potentials with corre-
sponding analytic solutions of the nonstandard parametric problem are considered on the
entire axis and on the semi-axis. We have presented an examples of the two-dimensional
* time-dependent transparent symmetric and nonsymmetric potentials with their basis func-

tions for two-level systems. We applied these exact wave functions for calculating the

matrix elements of nonadiabatic couplirigs determining the exchange interaction.

We find out the ekchange interaction between the neighboring states is equal to zero
for transparent symmetric potentials with respect to fast coordinate variables at each fixed
value of adiabatic variable. In fact, we can trace the behavior of the matrix elements of

-~ :
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exchange interaction (5) ‘at” any moment of t1me and recommend our. approach for the .
inv estlgatlon of the Landau Zener transitions and level crossing problems o
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