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1 Introduction 

The method of adiabatic representation is very useful fo~ investigation of many real quan­
tum systerr{s with some degre~s of freedom the separation of which is not valid,' so f~ 
as it allows one to take irito account the mutual influence of slowly changing ~xternal 
and rapidly changing internal fields. Thedirect scattering problem treated in the. adia­
batic approach has had a rich history that dates back to the first studies of Born and 
Oppenheimer [1] and Born and Fock [2]. Then it has been intensely studied in many 
works by Landau [3] and Zener [4, 5], Hill and Wheeler [6], Demkov [7] (for references, 
see [8]- [12]. However, the inverse scattering problem in the adiabatic representation was 
proposed relatively recently (13, 14]. One of the main advantages of the inverse scattering 
method is the possibility of constructing a wide class of H~iltonians for which analytic 
solutions can be found in both linear and nonlinear wave scattering theory [15, 16, 17]. 
In its turn, the inverse problem in the adiabatic repre~~ntatio;.! ~xtends' the possibilities 
of the inverse scattering method in the investigation.of many real quantum systems with 
complicated dynamics [20, 21, 14]. . . · . 

The procedure of the adiabatic representation is a variant of dimensional reduction of 
space, because it leads to two the effective scattering -problems in the spaces of a lower 
dimension, than the original one. The method of analytic modelling in this approach is 
based on the consistent formulation in analytic form of both mutually connected prob­
lems: the parametric problem and the multichannel problem for the system of equations 
with a covariant derivative. The main peculiarity of this approach is that the potential 
and 'th'~basis wa've functions have to be found from the scatteri~g data parametrically 
dep'ending ·on· th~ spatial variables .. Generalization· of the . Bargmann.· tech.nique to the 
parametric family of inverse probl~ms is based on the' choice of Jost fuhcti~ns'that have 
to be rational, as usual, but parametrically depending on the adiabatic variables through 
the dependence of spectral characteristics on the~. In th~ consistent statement this de­
pendence is determined by solving the inverse problem for the system of equations .. 

'When the functional dependence of scattering data on the external adiabatic variable 
is given in advance, one initially recovers the potential by solving the parametric inverse 
problem and determines the basis functions. The matrix elements of the induced vector 
and scalar potentials can be constructed· and. studied iri terms of first obtained exact 
solutions of the parametric problem. The full solution of the original problem is then 
obtained by solving the system of multichannel equations with respect to the expansion 
coefficients. In the general case, the solution of the ~ystein of equations ha.S ~ot to be an 
exact analytic one and demands numerical calculation': . . . . 

Byspecifying the functional dependence of spectral ch'aracteristics on time through the 
dependence on it ofthe'external dyn~ical yariable x(t) we elaborate algebriuc pr~cedu~e 
f~r con~t~ucting ti~e~dependent multidimensional potentials and corresponding solutions 
of the parametric problem in a closed analytical form;' Here We have conside~ed a set ~f 
certain examples of exactly solvable models within the parametric problem on the entire 
line and on the half line. I~ particular, for a given functional dependence of spectral 
characteristics on the external coordinate variable, we reconstruct transparent symmetric 
and nonsymmetric potentials· in another spatial coordinate with the-pertinent solutions 
of the parametric task. In terms of the analytic basis functions,.the matrix elements Anm 
o( exchange interactions· are calculated .within a straightforward procedure at different 
moments of time. The approach suggested 'permits investigation of adiabatically driven 
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quantum systems with prescribed dependence on parametric adiabatic va:riables, as well. 

2 The Adiabatic Appro<:tch and Inverse Problem 

Consider the 'system evolving according to the· Schrodinger equation 

in djw~t) > = H(x(t))jw(t) > 

where the Hamiltonian H(x(t)) is given in the form 

H(x(t)) = -82/8;2 + h(x(t)): 

If 4>n(x(t); y) ~resolutions to the equatio~ 
.' , ' 

(1) 

h(x(t))l4>n(;(t); y) >= t'n(x(t))l4>n(x(t); y) >, h(x(t)) = -82 f8y 2 + V(x(t)', y) (2) 

and form a complete orthonormal set l4>n(x; y) >< 4>m(x; y')l 
< 4>n(x) l4>m(x) >= Dnm. Vx, then W can be expressed by the expansion 

jW(x,y) >= jn >< njW >= L J 4>n(x;y)Fn(x) 
,· ,, , n 

8(y :..,.. y'), 

(3) 

over eigen~tates of the self-adjoint parametric H~miltonian (2). Upon substituting the 
expansion (3) into the initial Schrodinger equatiop. (1) and using relations of orthonor­
malization, we arrive multichannel system of gauge equations 

[-(\7x + A(x))2 + V(x)]F(x)'= in8j8tF(x). (4) 

Here A(x) and V(x) is the effective·vector and scalar potentials, respectively, matrix 
elements of which are induced by the basis functions 4>(x; y) of 'the parametric problem 
(2) 

An,.,;(x) =< 4>n(x; Y )j\7 xl4>m(x; Y) >, (5) 

Vnm(x) = < 4>n(x;y)jh(x)l4>m(x;y) >-in< 4>n(x;y)j~m(x;y) > 
= t'n(x)Dnm- inBnm(x(t)). (6)' 

In the ca~e of 'a slow and s~ooth evolution in time of the collective coordinates x(t); the 
second derivative is neglected in (1), H(x(t))--.. h(x(t)), and the solution of equation (1) 
is sought in· the form ·of the expansion (see, for'instance, [22]) 

' ' '· -·. 

jW(t,,x(t),y) >= Lcn(x(t))exp( -* [ t'n(x(t'))dt')l4>n(x(t);y) > .. 
n 0 

(7) 

With account' of (2) the system of equations for en(t) can be written in the form 

_cn.(t~ =.L Bnm(x(t))exp[-* [(t'n(t')- t',;.(t'))dt']em(t). 
m 

(8) 

2. 

• I 

Ji 

J 

The matrix elements of exchange interaction 
: ' ' ' r' ; • • 

Bnm(x(t)) =< nlm >= An;,.(x(t)) ·.x(t)-

are generated by basis functions in > of the "instantaneous" Hamiltonian (2) .. 
· ·Thus, the initial p~oblem is reduced to the consistent solution of two problems (2) 

and (4) or (2) and (8). Here, we assume that H(x(t)) is real, limited and continuous in t. 
Because for each t the 'eigenfunctions are real valued and orthonormal 

·>< 4>n(x) 14>~·(x) >=: Dnm Vx 

then the nonadiabatic couplings Anm = :...,Amn in (5) are real and antisymmetric inn and 
m .. The matrix elements (5) of the induced connection A can be computed in terms of the 
analytic eigenfunctions of equations (2) for a given functional. dependence of scattering' 
data { t'n(x), l'~(x ), S(x, k)} on the slow coordinate variables x(t) (t'n(x(t)) = -~~:~(x(t))). 
After that the transition amplitudes c(t)can be determined from (8). In the consistent 
adiabatic approach, the parametric dependence of spectral characteristics on "slow" vari­
ables should be determined by solving the inverse problem for a system of gauge equations 

(4). 
• In accordance with the general definition of the inverse problem (18, 19], the para­

metric inverse problem (20] consists of the reconstruction of the potentials and corre­
sponding solutions from known spectral data {p( x, k ), N 2(x ), t'(x)} or the scattering data 
{S(x,k),l'~(x),t'n(x)} parametrically depending on the coordinate variables;x; Thisde­
pendence.reflects·the peculiarity of the nonstandard par~metric inverse problem. Specify­
ing this dependence and em'ploying the algebraic methods ofinverse scattering' problem, 
we present a wide class of Hamiltonians for which one can construct exactly solvable 
models and, consequently, derive solutions .in a closed analytic form. These Hamiltonians. 
with generalized B~~g~arin p~te~tial~ [20} a~e' 'defin~d by the r~tional Jostfun~tions · · 

' ·. ~· . " 

k _ ia(x) 
f(x;_ k).~ II k + i(J(x) · 

: (9)' 

parametrically depending on the "slow" dynamical variables x through the dependence 
of spectral parameters on them. This· situation ',is to a certain extent .analogous to the 
theory of nonlinear evolution equati~ns. The parametric Jost function (9) has N curves 
k = -i{Ji(x) of simple poles and N curves of si~ple zeros on the k = iai(x) defined as 
functions of the. parametric variable,;. In a(x) ther~ are not 'only zeros on the imaginary 
semiaxis corresponding to bo~nd states ~ Kj(x) = 0, ~ Kj(x) > 0 for each values of x 
but also zeros in the lower half-plane with~ Vj(x) < 0 (the number of simple pole curves 
of f3i(x) equals the total number' of ,.;/a~d Vj)> In this case the scattering matrix ~nd 
spectral function assume the form · 

S( ·k) n· (k+ia(x))(k+if3(x)) ( ·k)=IT(k-if3(x))(k-tif3(x)) 
x, => (k-i{J(x))(k-ia(x))' p x, (k+ia(x))(k~ia(x))' 

,'\.' 
. ,·.- .. (10) 

Fo; such S(x; k) and p(x; k) the kernels of integral ~quations of the parametri~ inverse 
problem can be represented as sums of terms with.a factorized· dependence on the fast• 
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variable y: Q(x;y, y') = z=r B;(x; y)B;(x; y'). When the k~r~el Q is inse~ted into the base 
parametric equation of the inverse problem · 

oo(y) 

K(x; y,y').+ Q(x; y,y') + IK(x; y,'y")Q(x;y",y')dy~ =:= 0, 

y(O) 

(11) 

it is evident that the k~rnel of the generalized shift K(x;y,);') also becomes degenerate: 
K(x; y, y') = z=r K;(x; y)B;(x; y'). As a consequence, the system of integral equations of 
the inverse problem is reduced to the system of algebraic equations. Then, the spherically 
nonsymmetric potential and solutions corresponding to it can be expressed in. a closed 
analytic form .in terms of the known solutions and spectral characteristics by using the 
generalized equations of the parametric inverse problem 

(12) 
'' ~ ' d ' ' 

V(x; y) =V (x, y) 'f 2dK(x; y, y), 
' ' y 

oo(y) 

<P(x; k, y) =<P (k, y) + K(x; y, y') <P (k, y')ay'. 0 J 0 (13) 

y(O) 

Integration limits in (11), (13) and signs in (12) depend on the particular approach to 
the inverse problem. Limits from y to oo (from y to a) and minus sign correspond ta the 
Marchenko approach.' Limits [0, y] and plus sign represent the Gelfand:_ Levitan approach. 

2.1 Exactly solvable models in the Marchenko approach on the 
. ' , ,'! '· ,, 

semi-axis 

For. the parametric inverse problem, radial or on a semi-axis, when V (y) = 0 and S ( k) = 
1 the kernel of the basic integral equation (ll)'in the Marchenko approach 

00 

Q(x; (y + y')) = 2~ /[1- S(x; k)] exp[ik(y + y')] dk 
-co 

N 

+ LM~(x)exp[-Kn(x)(y+y')] 
n 

with the scattering matrix (10) is rewritten as follows 

N 

Q(x; (y + y')),= -i L Res S(k = ibn(x))exp[-bn(x)(y + y')J 
n 

N 

+ L {-iRes S(k = iKn(x)) exp[-Kn(x)(y + y')J + M~(x) exp[-Kn(x)(y + y')]} . 
n 

(14) 

(15) 

Following the procedure of constructing phase-equivalent potentials suggested. in [17] for . 
the one-dimensional problem and in [20] for the parametric problem, one can cancel out 
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the second summation in the right-hand side of (15) if the,riormalii~tion functions M~(x) 
are chosen to be equal to iRes S(k) at k = iKn(x) 

0 2' 

Mn (x) =iRes S(k)Jk=i~n(x) (16) 

2Kn(x)(Kn(x) + bn(x)) ft (Kn(x) + bn•(x))(Kn(x) + Kn•(x}). 
(Kn(x)- bn(x)) , (Kn(x)- bn•(x))(Kn(x)- Kn•(x)) 

. n ~n .. , 

0 

As a result, we obtain the simpler expression for the kernel Q =Q 

Q (x; (y + y')) 
N 

-i L Res S(k)Jk=ibn(~) exp[-bn(x)(y + y')J 
n 

N 

L An(x)exp["-bn(x)(y +y')J, (1i) 

where 

A,.(x) = 2bn(x)(~n(x) ~ Kn(x)) ft (b;,(x) + Kn•(x)}(bn(x) + ~n•(x)). 
(b,.(:r)- fin(x)) n'#n(bn(x)- bn•(x))(bn(.r)- 1\n•(x}) 

Inserting the kern~! Q (x; y, y'f (17): into the parametric Marchenko eq~;ati~~ ( 11), we 
obtain 

. N • oo . . 

]{ (x;y,y') + LAn(x){ e-bn(x)y + J ]{ (x;y,y")e-bn(x)y"dy''}e-bn(r)y' = 0, 

n - ·y 

where the expression in braces is the Jost solution J + (ib,.(ir), y) for the soughtpotential 
0 0 . . . :- '• 0 . 

V(x;y). So that/{ (x;y,y') has a form similar to tha~ of Q (.r;y,y') from (li) with a 
separabilized dependence on y and y' and with a parametric dependence o'n .r . . ' . 

N 

K (x;y,y') =- LAn,x) f+ (k = ibn(x),y)exp[-bn(:r)y'J. (18) 
n 

Substituting this kernel of generalized shift from the free \v~ve to the Jost solution into 
the triangular integral equation ' 

00 

0 J 0 f(x;k,y)=exp(iky)+ K(x;y,y')exp(i/..:y')dy' · (19) 
' y ' 

0 

aU,:= ib,.(x) we get a set of equations for f (ib,.(x),y): 

N 

f (ibn(x),y) = L P,~n1,(x;y)exp[-(bn•(x)y] 
. n' 
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whe~e Pnn•(x; y) is defined as follows 

P, ( . ) ~ 
0 

· A ( )exp[-(b~(x) + bn{r))y]·· 
nn' X, Y - nn' + n X bn(x) + bn•(x) · 

Then by substituting (18) into the para~etric equations of the inverse problem (11)- (13) 
we obtain · 

0 J2 
V (x; y) = -2 dy2 1n det IIP(x; y)ll; (20) 

o N f± (x; k,y) = eip(±iky) + L An(x)P;J(x; y):xp[-(bn(x) + bn•(x) =f ik)y] 
· · nn' (bn(x) =f ik) · 

(21) 

The corresponding algebraic formulae for the one-dimensional Bargmann potentials and 
their solutions ([17)) can be directly obtained if we put Kn(x) := Kn and bn(x) = bn. 

Let us now present a case with two potential curves in the problem on the semi-axis. 
The Jost function (9) can be written in the form 

(k _ iK1(x))(k- iK2(x)). 
f(x; k) = (k + i,B1(x))(k + i.82(x)) 

We take the normalizations of bound state wave functions in the form (16) 
-' •; '· ' ' ; 

M{(x) = _ 2Kt(x)(Kt(x) + bt(x)} (Kt(x) + b2(x))(K1 (x) + K2(x)). 
. (Kt(x)- bt(x)) (Kt(x)- b2(J:))(Kt(x) .- K2(x))' 

Mi(x) = 
2K2(x)(K2(x) + b2(x)) (K2(x) + bt(x))(K2(x)+ Kt(x)) 

(K2(x)- b2(x)) (K2(x)- bt(x))(K2(x)- Kt(x))' 

(22) 

Th~~eby the potential V(x,y) is. determined only by .the spectral data K;(x) and 
,8;( x ), i '= 1, 2 and corresponds to one of the phase~quivalent potentials. From normal­
izations M~(x) being positively definite the conditions ,82(x) ~ K2(x) and .Bt(x) ~ Kt(x) 
follow. The spectral data have been chosen in the following way 

Kt (X) vtzKt , f3t(x)= vlz.Bt +0.3, 
cosh(K1x- 4.8) cosh(.Btx- 5) 

vtzK2 . · vtz.B2 

h( ) 
+ 0.4; ,82(x) = h(a 5) + 0.5, 

COS K2X - 5 COS p2X -K2 (X) 

Kt = 0.6, .Bt = K2 = .82 = 0.7. 

From the relations (20), (21) we obtain the two-dimensional potential V(x, y) (Fig.1c) 
and the corresponding normalized wave functions t/J1,2(x,y) (Fig.ld,e) of the self-energy 
curves t't,2(x). The behavior of the nonadiabatic connection (5), accomplished by the 
matrix element of the effective vector potential A12(x) is shown in. Fig.1b under the 
potential,curves Fig.1a. 
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14 _12 
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Fig.l. (c) Potentia!V(x,y) withS(x;k) with 4 pole curvesin the upper k half-plane, 
(d,e) the normalized eigenfunctionst/Jt,2(x;y) at~·=:= -iKt,2(x). (a) The energy-level 
curves &1,2(x) = -Kt2(x) and (b) matrix element A12(x) are shown in.the upper figures. 
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3 Transparent Potentials 

Let us consider quite a simple example of the use of the suggested technique. Reflection­
less (transparent) potentials along the fast variable describe the one-dimensional inverse 
problem along the whole axis with the zero-th reflection coefficient, s•ef = 0. The trans­
mission coefficient 5 1

' with the absolute value equal to unity is a rational function 

s1'(x; k) =II k + i~~:(x) 
k- i~~:(x) 

(23) 

depending on the dynamical parametric variable "x = x(t)" The relations for the po­
tentials and solutions can be expressed in terms of the norri-Ialized eigenfunctions and 
represented in the most symmetric and convenient form. Following (15], introduce the 
function 

>.~(x;y) = /n(x)exp(-Kn(x)y). 

Then the formula for K(x; y, y') can be written as 

N 

K(x;y,y') = - Lln(x)7f>n(x;y)exp(-Kn(x)y') 
n 

N 

L 1/>n(x; y),\n(x; y'): 
n 

For the normalized eigenfunctions 1/>n(x;y) from (13), we obtain 

N 

1/>n(X!Y) = LAJ(x;y)Aj;(x;y) 

with the matrix Ajn(x; y) given by 

A- ( . ) ---' 8_ Aj(x; y)>.n(x; y) 
Jn X, Y - Jn + ( ) + ·( ) • Kn X 11:3 X 

Finally, the kernel K(x; y, y') and the potential can be represented as 
' ' 

N N 

K(x;y,y') = - LLAJ(x;y)Aj;(x;y)>.n(x;y'), 
n 

V(x;y) =· -4 L"n(x)1f>~(x;y). 
n 

(24) 

(25) 

(26) 

(27) 

. Note, these relations are obtained for the specific case of zero reflection functionS' ( x; k) = 
0 Vx. Note, symmetric transparent potentials for each fixed value of x and appropri­
ate wave functions are completely defined·by the energy levels [23] since the normalized 
functions can be determined by the energy levels 

2( ) . tr · ( ). II ,,Km(x) + Kn(x) I 
In X =tResS (k)Jk=i~n(x) = 2~~:;, X · ( ) _ ( ) • 

. Km X Kn X 
.m;o!n 

(28) 

The set of time-independent transparent potentials, for which the parametric Schrodinger 
equations have exact solutions, have been constructed by us in (23], (24]. Here we give 
some examples of the reconstruction of time-dependent potentials that are symmetric and 
transparent in y (Figs.2)and nonsymmetric transparent potentials (Figs.5). 

8 

' 1 

~ 
. ~ 

-~0 

e 

Fig.2. Potentials V(x(t),y), transparent and symmetrical in y, calculat<'d for diff<'J-ent 
values of wl: (a) wt = 0, (b) wt = 1rj6, (c) wt = 7r/3, (d) wl = 1rj2, (e)..,.:/ = r.. To 
achieve a clearer presentation, the potential is inverted. 

-, 
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-10 

-10 

Figure 3: Eigenfunctions <jl!(:r(t),y) at (a) wt = 0, (b) wt = rr/6, (c) wt = rr/3, 

.,.:t = rr/2,' (e) wl = rr. 
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'~· I, 
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' { 
Figure 4: Eigenfunctions cl>2(x(t),y) at (a) wl= o; (b) wt ==: '1rf6, (c) wt = i/3, 
wt = rr /2, (e) wt = rr. . · · 

(d) 



Fig.5. Potentials V(x(t), y) calculated for different values of wt: (a) wt = 0, (b) wt = 1r /4, 
(c) wt = 7r/3, (d) wt = 7r/2, (e) wt = 1r. 

12 

3.1 Exactly solvable models with time-dependent symmetric 
potentials 

Consider a simple example of a two-dimensional exactly solvable model for a two-level 
system with a periodical dependence of the dynamical variable x(t) on time. We define 
two terms in the following way 

E1 = -i/ch2(x/3), [ 2 =;: -(1/ch(x/2) +0.25)2 

with 

x(t) =!I: (1 -a cos(wt)), 

where;~ corresponds to the time-independent case. We reconstruct symmetric transparent 
potentials and appropriate basis wave functions that are determined by the energy levels 
due to choosing the normalization functions i~(x(t)) in the form (28). The dynamical 
behavior of the potentials and the pertinent eigenfunctions is presented for wt equal to 
0, 1r /6, 1r /3, 1r /2, 1r in Figs.(2a,b,c,d,e) - ( 4a,b,c,d,e), respectively, and a = 1. Since their 
behavior is mirror~symmetric with respect to the line wt E (0,1r), it is not shown: Itis 
easy to see that the potential and functions change from very simple one-dimensional ones 
for wt = 0, Figs.2a - 4a, to quite complicate two-dimensional potentials and functions 
for all other value~ of wt =I 0. In. accordance with our. choice of the potential cur':es, 
when .t = 0, x(O) = 0 and bound state energies [ 1 = -1 and [ 2 = -1.5625 define the 
one-dimensional potential. The one-dimensional transparent potential with two bound 
states and corresponding wave functions are immediately obtained from more general 
relations (20] of the parametric task When wt =I 0, we have two-dimensional potentia.ls 

and functions. At wt ;= 7r/2 and wt = '3n-j2, :r(t) coincides with !I: and we ha\·e the 
two-dimensional time-independent case, while at wt = 271', the system comes back into 
the one-dimensional position with the initial states I.Pn(x(t);y) >== I.Pn(Y) >. Note, the 
eigenfunctions 1f;2(x; y) are symmetric (Fig.3) and 'lj;1 (x; y) are antisymmetric (Fig.4) in y 
at each fixed values of x(t) as it is required for the problem on the entire axis -oo < y < oo 
with a potential V(x;y) symmetric in y. Matrix elements of exchange interaction A

12 
induced by basis functions of the parametric instantaneous Hamiltonian are equal to zero 
in this case. The explanation is very simple, one of the basis functions is strong symmetric 
in y and another is strong antisymmetric in "y" (Figs.3-·1) and integrals 

1: .P1(x;y)8x¢2(x;y)dy ~ -1: .P2(x;y.)ax¢1(x;y)dy= 0. 

The systems of equations ( 4) and (8) decompose on two systems uncoupled with each 
other. The transition amplitudes between even and odd states equal zero because they 
are defined by the ze~o matrix elements Anm· As a consequence' we received an important 
result: the choice of normalized functions influences on the behavior of dynamical quantum 
systems. Obviously, another parametric dependence of the spectral characteristics can be 
chosen, and other initial spectral data corresponding not only to the one- but also to 
two- or three-dimensional dependence ~n the extra coordinate .variables can occur. In 
the next section we shall consider the influence of normalized .functions on the ll<'havior 
of potentials, basis wave functions and matrix elements A(x) of an exchangt' interaction. 

i ' ' ' ' ' . ~ . . " 
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3.2 N onsymmetric transparent potentials 

The choice of normalizing functions "f~(x) of energy-level curves, that do not obey the 
condition (28), leads to loss of symmetry in "y" of potentials and to another behavior 
of parametric basis functions. As a result, the coupling between neighboring states (and 
also between even and odd states) takesplace and the transitions takes place, too. 

Let us define two potential curves as in the previous case: £1 = -1/ch
2
(x/3), £2 = 

-(1/ch(x/2) + 0.25)2 with x(t)=;; (1- a cos(wt)), but normalized functions as 'Y~(x) = 
2Kn(x). The behavior of the potentials V(x(t),y) and the pertinent normalized eigen­
functions ¢n(x(t),y) = 'Yn(x(t))J(iKn(x(t),y)), n = 1,2 is p_resented for wt equal to 
O, 7r/4, rr /3, rr /2, 1r in Figs.(5a,b,c,d,e) - (7a,b,c,d;e), respectively, a = 1. It is easy to see 
that the potential and functions loose their symmetry in y as it takes place in choosing 

normalized functions in the form (28). 
The behavior of the matrix elements of the nonadiabatic coupling A12(x(t)) and 

B
12

(x(t)) calculated at different instants by using (5) are pictured in Figs.8b-'- 8e. Nat­
u~ally, when wt = 0, A;j and B;j are absent,since the dependence on x vanishes. For 
c-A :f- 0 all functions A12(x) = -A12(-x)are antisymmetric and all B12(x) = B12(-x) 
are' symmetric with respect to the origi~ of the coordinates. The behavior of A is defined 
by our choice of spectral data and of the dependence of x on time. It is evident, B( x) 
are symmetric functions since they are obtained as the product of both antisymmetric 
functions: A(x) and x(t). Remember that the matrix elements of A12(x(t)) = -A21(x(t)) 
and B12(x(t)) = -B

21
(x(t)) are antisymmtricin the index of the state (here 1 and 2). The 

tendency of changing A as a function of wt is the following: the amplitude of changing of 
A is the larger, the smaller the wt. When wt is small, the second pick to the right of the 
origin is comparable with the first pick. With increasing wt, the second pick is decreasing. 
From our point of view this behavior of the exchange interaction A can be explained by 
th~ mutual 'influence of eigenstates.' ·At small values of ~t the potential curves are close 
to each other on a larger. interval than at large values 'of wt. It is interesting to note, at 
wt = 1r'the matrix elements B1:i(x) =0 in spite of the adiabatic coupling Adx) :f- 0. 

The full solution of the original problem (1) is then obtained by solving the systems 
:of multichannel equations'(4) or (8) with respect to the expansion coefficients. In general 

case the solutions of the systems of equations have not to be exact analytic solutions. 
In' such a way one may also invehigate properties adiabatically driven quantum sys­

tems, Hamiltonians· for which are slowly varying functions of time. In the case quantum 
systems are described by the equations (1) and (8). According to equation (8) transitions 
from an initial state ll!W) = 4>(x(t 0

)) to a final state ¢(x(t)) are determined by the matrix 
elements of the evolution operator U( t, t0

) which satisfies the integral equation 

t 

Unm(t;t 0 )= Onm + ~ [ Bnm'(x(s))exp['-~ 1: (£n(t')- £m,(t'))dt']Um'm(s, t
0

)ds. (29) 

One cansolve'thi~ equation by iteration 

t 

Unm(t,t 0
) = Onm + J Bnm(x(s))exp[-* J:(£n(t')- £m(t'))dt']ds +... (30) 

tO 

The transition amplitudes in this case are defined by the matrix elements of an exchange 
interaction Bnm(x) that can be calculated in terms of analytic basis functions (8) and (5). 
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A 

D 

Figure 6: Eigenfunctions ¢1(x(t),y) at' (a) wt = 0, (b) wt = 7r/4, (c) wt-::= 7r/3, (d) 
wt = 1rj2, (e) wt = 1r. 
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E . 

Figure 7: Eigenfunctions <Mx(t),y) at (a) wt = 0, (b) wt = 7r/4, 
·wt = 7r/2, (e) wt = 1r. 
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(c) wt = 7r/3, (d) 

"'x 

II 

·D 

.. 
-tl X .. 

·ZI X - ... II " 

Fig.8 Matrix elements ,of exchange interections An(:r) (the lcft. colnmn)and /312(.r) (tlw 
right column) calculated for different values of wt: (b) wl "= 1rj1, (c) ..vi - 7fj;l, (d) 
wl = 1rj2, (~) wt = 1r. . ' 
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Consider the concrete example of the smooth behavio~ of x(t) studied in [10] 

x(t) =~ (1 +a exp(-1/t)), (31) 

but spectral data we take as for transparent potentials (23) with the same potential curves 

£1 = -1/ch2(x/3), ~2 = ~(1/ch(x/2) + 0.25)2
, -y~(x) = 2Kn(x). So that x(t =·D)=~, 

x(oo) = (1 +a) ~- When t = 0 this case coincides with the previous one at wt = 1r 

(Figs. 5d - 7d), the case t --+ oo corresponds to wt = 21r at a = 1 (Figs. 5e - 7e). It is 
evident from the comparison of the figures 8d and 8e the matrix element Ai:2(t) changes 
very smoothly in the interval 0 S t < oo. Therefore the transi.tion amplitude takes a very 
simple fo~m ,. · 

.. 00 

Unm( oo, 0) = Dnm + Anm(~) j 8,(1 + e-l/•)exp[ -,* 1' (£n(t') - Em(t'))dt'] ds.. (32) 
' 0 . I ' 

It is quite evident, we can cho<!Se another dependence on tim'e, and other initial spectral 
data with prescribed properties. In particular, for the special case of p~rametric variation, 
the spectral characteristics may be taken in a factorized form as in [10] En ( x) = xfn where 
x = x( t) and En are eigenvalues of the time-independent task: In the last paper, transition 
amplitudes were evaluated for the class of Hamiltonians with purely discrete spectra. Our 
approach permits one to consider a much larger class of Hamiltonians with known discrete 
and continuous parts, whose particular case is operators with spectral data in a factorized 
form. .... . .. . . 

We take attention that our method permits to construct potential~ and corresponding 
solutions. of the parametric equation (2) in a closed analytic, form and computing the 
matrix elements of exchange interaction by num~rically. First pro'cedure is algebraic one, 
but second step is numerical, therefore the method is semianalytical. Nevertheless, this 
approach allows to investigate the influence of normalizing functions on the behavior of the 
potentials, on the basis functions of the parametric Hamiltonian and on the behavior of 
the matrix elements of the exchange interaction. Examples of the reconstruction of time­
dependent and time-independent two-dimensional potenti~ls anci" corresponding solutions 
have been considered in [23], [24], [25]. 

4 Conclusions 

In conclusion, we would like to note that this approach allows one to construct a very 
\vide class of. two-diinensidnal exactly solvable models with time-dependent and time­
independent potentials. Some concrete examples of two-dimensional potentials with corre­
sponding analytic solutions of the nonstandard parametric problem are considered on the 
entire axis and on the semi-axis. We have presented an examples of the two-dimensional 
time-dependent transparent symmetric and nonsymmetric potentials with their basis func­
tions for two-level systems. We applied these exact wave functions for calculating the 
matrix elements of nonadiabatic couplings determining the exchange interaction. 

We find out the exchange interaction between the neighboring states is equal to zero 
for transparent symmetric potentials with respect to fast coordinate variables at each fixed 
value of adiabatic variable. In fact, we can trace the behavior of the matrix elements of 
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exchange interaction (5) at any moment of time and recommend our.approach for· the 
investigation of the Landau-Zener transitions and level crossing problems. . 
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CpbKO A.A:, Be.rn1'1esa E.n.-
To'luo- pewaeMbie. Mo.u.e.rm H HccneD:o8aiu 
KilaHTOBbiX CtfCTeM 

Pa.Jpa6aTMsaeTcjj 'o6o6meuu~ n!xu11 
CTaHOBIIeHHjj .UB}'MepHbll( OOTeH.UHanOB I 

. Ila . OCHOBe cneKTpanbHOH o6paTHOH 33,1 
s gauuouapuoM H uecTauliouapuoM cn}"', 
pOB.BOCCTaHOBIIeHHjj 3aBJ.iCjjmHX H He 3aBI 
anOB H COOTBeTCTBYIOmHX 6a.JHCHbiX BORH 
HOH. J3,Jla'IH. non}"'eHHbie B j!BHOM au 
npHMeHjjiOTCjj Mjj Bbi'IHCReHID! MarpH'IH~ 
onpe.U~RjjiOIUHX o6MeiiHble B3aH~O.lteHCTBI 

. Pa6ina ~bioonueua ~ Jra6opa~opuu Te 
sa 0115111. · · 

- llpenpHHT Ofue)lHHCHHOro 'HHCTHTyra 

" 

Suzko A.A., Veiicheva E.P: 
Exactly Solvable Models for Investigation 
of Dynamical. Quantum Systems . · 

The · generalizt:d technique of 
for the reconstruction of time-dependent 
pote~tiaJs anil_the corresponding. solutionl 
of the inverse scattering problem ·in tl 
of specific examples are considered-within' 
and on. the half~line. Matrix elements of 
and shidied in terms of obtained e~act soh 

The investigation ~as · been perfo: 
·of Theoretical Phy&ics;_ JINR. 

Preprini' of the Joint Institute for r 


