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1. Introduction 

In the present work, we continue our previous study [1] of the one-dimensional Schrodinger 

scattering problem for the superposition of the repulsive Coulomb potential and any 

central potential vanishing more rapidly than the centrifugal one. We construct now the 

low-energy asymptotics for all the functions characterizing the scattering for the above 

potential superposition. 

The knowledge of the low-energy dependence of the functions characterizing the colli

sion of quantum mechanical objects allows one to solve a series of important practical and 

theoi-etical problems. For example, an experimental problem of extrapolating the charac

teristics to the low-energy region which is inaccessible for direct experimental study, and 

a theoretical problem of choosing the form and parameters of the interaction to describe 

the considered collision in the low-energy limit. 

For these reasons, a construction of the low-energy approximations and a correct defi

nition of the coefficients for these approximations are the important problems of scattering 

theory. The scattering length is one of the coefficients. 

First, the concept of the scattering length has been introduced [2] for the scattering 

·by the central potential V•(r) decreasing at large distances r as (or more rapidly), 

Vs(r) ~ Vy(r) ( or v•(r) = o(Vy(r))), r-+ oo, (1) 

. than the Yukawa potential 

VY(r) = Voexp(-µr)/r, µ > 0, Vo= const. (2) 

Usually [3, 4] the potentials of that kind are called the short-range potentials, whereas 

the potentials vanishing as an inverse power of the distance, 

(3) 

are called the long-range potentials. 

For the phase-shift 8:(k) generated by the short-range potential V• in the state lk,£) 

with the scattering momentum k and angular momentum£, the limit 

a• = - lim tan tS•(k)/k2l+l 
l k-+O l (4) 

is finite and the corresponding effective-range function 



is the entire function of k2. The coefficients a;, ril and P/ in the low-energy ( E = l.·2 
---+ 0) 

expansion [2] of this function 

I<J(E) ~ -l/a5,_ + k2
r~t/2- k4 r~tP/, k---+ 0, (6) 

are called the scattering length, effective range and shape-parameter, respectively, for the 

scattering in the state lk,l). Owing to (4) and (5), the phase-shift 8l(k) vanishes as the 

power function -a; k2l+I of k as k -> 0, and the scattering length has a meaning of the 

coefficient defining a slope of this function of the variable -k2H1
. 

In the low-energy limit, the total scattering phase 8'j'( k) generated by the superposition 

yes= ye+ ys, where ye= l/rR is the repulsive Coulomb potential and R >()is the 

Bohr radius [5], rises to infinite as the pure Coulomb phase-shift 8Hk): 

5e'(k)~8t'(k)~17(ln17-l), 1J=l/2kR, k---+0. 

Therefore, the analog of the limit ( 4), i.e., 

aes = - lim tan ,5es(k)/k2i+I = - lim ( 2Rk2i+ 2 
)-

1 

i -0 i -0 . ' 
is equal to -oo. This is the first reason why, for the superposition yes, the concepts 

of the scattering length and effective-range function should be redefined. The second 

reason is the following. The phase-shift 8'j'(k) is the result of the joint influence of ye 

and vs on the scattering. To extract th.e contribution of the short-range potential, one 

has obviously to subtract from the total phase-shift 8'j'(k) the pure Coulomb one 8e(k) 

and then to redefine the effective-range function in the form of the entire function of k2. 

This method was used by Breit, Condon and Present [6] to define of scattering length 

in the proton-proton scattering for the superposition yes. These authors introduced th~ 

concept of the Coulomb-nuclear phase-shift 

8t(k) = 8t'5(k) - 8t'(k) 

and prnved that the relevant Coulomb-nuclear effective-range function 

I<%'s(E) = ( ktCt(1J) )2( kcotan8?(k) + he(17)) 

should contain the analytically known Coulomb factors [7] 

Ct(1J) = 2£ exp(-1r17/2) If(£+ 1 + i17)1/r(2l + 2), 
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hc(17) = h(11)/ RC6(11). h(11) = RcllJ(i11)- In I/ 

prO\·iding t.hc desired asymptotics 

Kts(E) ~-I/at+ k2 r~//2 - k4 r~'/ Pf's, k---+ 0. 

( 10) 

(11) 

1\s far as both tlw expansions (6) and (11) have an analogous functional dependence 011 

/;
2

, the cocf!icicnt.s 

a;·s(k) = - Jim tan ,5r•(k)/ [ kWCt(11)) 2
] • 

k~O (12) 

r~,' and Pt' arc usually called [3, 8] the Coulomb-nuclear scattering length. effect iYe range 

and shape-parameter, respectively. 

The problem of defining the scattering length for the superpositiem i·cls = \ '• + \.11 + 1 ·• 

of the Coulomb and long- a11d short-range potentials occurred to be ,·ery complicated. 

The' total scattering phase-shift tSt•(k) generated by yc1s can be PXpa11dC'cl i11 t\\"o diffc,n·ut 

ways: 

8'/•(k) = 8J(k) + ,5t•(k); 

8'/·(k) = 8J1(k) + ,5t•(k). 8'/(k) = 8~(k) + lit1(1,). 

(!:!) 

(II) 

It should be emphasized that both th esp decompositions are matlH'mat ically e'qlliYa!Pnt. 

However, from the physical point of view, there is a nonequivalcncc' of the folloll'i11g 

conceptual meaning. The phase-shift ,5;•1·'(k) characterizes the joint i11f111e11cc· of thP l\\"o 

i11t.eractions V 1 and V• on the scattering in the Coulomb field ye. wher61s the phase·-shift 

li/·•(k) is the contribution generated 011ly the short-range potential \---' act i11g in the lo11g

ra11ge field vc1 = ve+ vi_ Therefore, to extract the information Oil t.h<' st met.me of,·., from 

the measured scattering phase t5f•(k), one needs a reliable met.hod of sPparat ing oft he 

phase-shift ,5;1,s(k) and constructing its low-energy asymptotics. Tlwsp probl<'ms arc• ,·er.,· 

general and import.ant. In fact, these problems arise in studying a role' of a gi\"C'n short

range potential responsible for nuclear forces in molecular, atomic and 1111ci!'ar rnllisio11s 

running at extremely low energies and, vice versa, in extracting t.lw informal ion 011 t !IC' 

nuclear forces from the measured cross-sections in the correspondi11g collisions. 

The low-energy scattering of a charged projectile (atom, ion, molecule or nucl,·us) 

by a target with an extended charge or rnag11etic dist.ributio11s Glll !JC' d<'snilwcl using 

the effective two-body approximation. In this approximation, t IH' total i11t,·ract ion is 

represented a.~ the rcleva11t superposition yc1s of the pure Coulomb intc-ract ion I·,. long

range elcctromaguetic correction V1 to this int.cract.ion, and short-range• pot<-11t ial I·, 

responsible for the pure nuclear i11teraction. 

;J 



The electromagnetic corrections arc due to the long-range potPntials ha\·ing the asymp

totics (3) with d = 2, :l, 4 .... For example, the magnetic-moment correction [9] 

vm(,) = -( 3(µ1. r) (f12. r) ,-2 - (f11. 112)) ,-3
' (Fi) 

describes the interaction of the magnetic moments f11 and j12 of two nuc!Pons and has th(' 

inverse-cubic r-dependence; the polarization correction VP describes the int cract ion of a 

charged projectile with the electric moment of the deuteron (considered as a point-lik<' 

particle) and has the asymptotics [10] 

VP(r) ~ -ae/2Rr1
, r » R, (JG) 

where ae stands for the deuteron electric polarizability. 

A detail theoretical investigation of the scattering by the superposition yc1s for a class 

of the long-range potentials with asymptotics (3) was made by Berger and Spruch [! I] 

and by Berger, Snodgrass, and Spruch [12]. As was proved by Berger and Spruch, in the 

case ye > 0 and d 2'. 3, the phase-shifts 8;·1s(k) and 8;•1(k) of (13) and (14) vanish as 

k-> 0 more slowly than the Coulomb-nuclear phase-shift 8;·'(k) of (7), 

,s;,ls(k) ~ 8t1(k) ~ (-V0d /2R1
-d) k2

d-
3 B(d - 1, 1/2), k-> 0, (17) 

where B is the beta-function [7], and, therefore, the direct analog 

a~·ls = - Jim tan 15;,1s I k2t+ 1 c;( 17) = - Jim k2
(d-l-l) exp( 7r / kR) 

k~D k-O 
(18) 

of the Coulomb-nuclear scattering length (12) is infinite and a physically meaningless 

value. Thus, the problem of defining the scattering length for yc1s has arisen. To resolve 

this problem, Berger, Snodgrass, and Spruch used decomposition (14), introduced the 

appropriate analog 

I<;1's(E) = ( eci1(11)) 2 
( k cotan 8t·•(k) + hc1(17)) (19) 

of the Coulomb-nuclear effective-range function (8), proved the asymptotics 

I<;1's( £) ~ -1 / a~/,s + k2 r~~s /2 - k4 r~~s P;1•s ' k-> 0, (20) 

and defined the relevant modified scattering length 

a~l,s = - Jim tan 8ts(k)/ [kW Cf(17))2
) , 

k~D 
(21) 
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effective range r~~s, and shape-parameter Pf1'' as the coefficients in-(20). The modified 

scattering parameters thus defined characterize the influence of vs alone on the scattering 

for yc1s_ 

Though the above problem was resolved from the conceptual point of view, the Berger 

and Spruch and the Berger, Snodgrass, and Berger formulae for the coefficients in expan

sion (20) are too complicated for practical calculations. Moreover, in their method, the 

factors Cj1(17) and h'j1(17) are expressed in terms of the defined integrals containing the 

regular and irregular scattering wavefunctions for vc1. These integral representations are 

also very complicated to be used for both the analytical and numerical studies of Cj1(17) 

and h'/(17) ask-> 0. 

The consideration of the sc1;ttering length for vc1s was renewed by Kvitsinsky _and 

Merkuriev [13] in 1984. As they noted in [14], due to .the proton-deuteron (pd) polar

ization interaction (16) the dublet and triplet pd-scattering lengths defined by (18) have 

no physical meaning. After this, the polarization effects in low-energy nuclear collisions 

where analyzed in an number of papers (see [15] and [16] and references therein). The 

most complete low-energy scattering theory for the Coulomb plus the long-range polar

ization potentials was constructed by Beneze et al. [17]. As a power method they used the 

variable phase approach [18, 19]. For the S-wave scattering(£= 0) by vc1s with V1 = VP, 

Benze et al. gave a mathematically rigorous proof that, when at least the modified scat

tering length is considered, it is possible to replace Ci( 17) by Ce( 17) in (21) and then use 

the resulting relation 

a~l,s = - lim tan 8t·s(k)/ [ kW Ct(11))2
] 

k-o 
(22) 

as a physically correct definition for the modified scattering length. 

However, the Benze et al. theory is incomplete, because the main theoretical questions 

were unsettled. These questions are: what is the structure of the factors Cf and he/ 

in (19) and how should one calculate the coefficients r~~• and Pf1
•s in (20). There are still 

no reliable and simple methods for calculating these values. 

The main goal of this work is to present such a method in the Coulomb repulsion 

(Ve > 0) case. Following our previous work [1], we use the system of units n = 2µ = 1. 

We also introduce the dimensionless variable x = r / R and parameter q = kR and present 

the studied Schrodinger scattering problem as differential equations 

( a; - £(£ + l)x-2 
- vc(x)- V(x) + q2

) ut{x,q) = 0' XE n+' 

5 
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for the sought regular ( ut) and irregular ( u;-) wavefunctions obeying the corrcspondi11g 

boundary conditions: 

u;(x, q) = 0( x±(l+I/2)+!/2 ), x-+ 0, (24) 

u;(x, q)-+ sin(p - 77 In 2p - (2£ + 1 =f l)1r /4 + 8t(q) + 8e(q)), x -+ oo, (25) 

Here, n+ denotes the positive half-axis, p = kr = qx, 77 = 1/2q, and Dt(q) stands for tlw 

phase-shift generated by the potential V in the repulsive Coulomb field vc = 1 / 2;. We 

assume that V is an arbitrary central potential so that 

lt(b,x) = (21r/(C + 1) )112 lx tjV(t)ldt < 00, 0 :Sb '.S x '.S oo. (26) 

This relation is sufficiently general (4) and valid for a wide class of the short-range poten

tials obeying (1), long-range ones having asymptotics (3) with d > 2 and, certainly, for 

the sum V1• of the above potentials. When it is necessary, we will specify the potential 

Vas v•, V 1 or V 1•. 

As far as we be dealing with the specifics low-energy ( q -+ O) expansions for the 

auxiliary (Coulomb and amplitude) functions and the wavefunctions, it is necessary to 

make some things clear. All the expansions will asymptotic infinite series of the form 

S(x,q)=N(q)"'f:,q2nSn(x), q-+0, xER+, (27) 
n=O 

where N(q) denotes the normalization factor and, what is very important, the argument 

x is separated from the vanishing parameter q. We expand each studied series S of (27) 

in two parts: the finite sum 5(M) and residual term (M)S: 

M 

S = 5(M) +<M) S, 5(M)(x,q) = N(q) L q2n Sn(x) · (28) 
n==::.O 

We would like to point out that such a reliable and simple (from the computational 

point of view) method for constructing expansions (27) for the two-body scattering wave

functions is unknown in the present scattering theory (4). We would like also to stress that 

the low-energy representations for the three-body wavefunctions and their phase-shifts are 

not constructed (20) yet. To derive these representations, one need to know the low-energy 

expansions for the two-body subsystem wavefunctions; because these functions are con

tained in the physical boundary conditions for the Faddeev components of the studied 

three-body wavefunction. 
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Fort he's<' reasons, the analysis of the ordinary two-body scattering probl<>m (:H)-(2G) 

with q --> 0 is also important. Therefore, in Sect.2, we will pay a special attention to 

the complete study of the structure of both the solutions u; oft his problem. We hope 

that this analysis will contributes to present scattering theory and also will be useful 

to treat analytically the three-body problem at comparatively small total energy. One 

of the interesting problems of such a kind i~ a study of the role of magnet ir-moment 

interaction (15) in the neutron-deuteron (nd) and proton-deuteron (pd) scatterings. ThP 

matter is that this interaction generates the neutron analog [21) of the Hamsauer effect 

in the tripld rm-scattering [22). Therefore, it seems to be quite rc>asonable to expect that 

some new peculiarities caused by the long-range part (15) of the total nuclcon-nuclc•on 

interaction will be found in the slow nd- and pd-collisions. 

However, before discussing the asymptotical method for the three-body problem. 1n• 

have to finish our investigation of the ordinary two-body problem (2:l)-(2G). In Sect .:l. 

w,· will exemplify how the expansions for the a,i;iliary and wavefunct ions ut can be used 

in solving some problems in two-body low-energy scattering theory. As the ,·xamples. 

we will give a new proof for expansions ( 11) and (20) and propose simplt' re lat ions for 

calculating their coefficients. 

2. Low-energy expansions for auxiliary and wavefunctions 

The linear form (in fact it is equivalent with the varying constant. rncflicic'nts [2;l. 2-1]) of 

the variable phase approach [18] is a powerful method for studying tll(' various solutions -

of the Schrodinger equation. In [25] Calogero formulat.cd the linear form in terms oft Ii(' 

amplitude functions for calculating the regular scattering wavefu11ctio11 a11d its phast'

shift. Recently, this form was completed in a simple way for nmstructing the irrt'gular 

scattering wavefunction [1], in studying of the artificial and physical rt'sonann•s [2Ci] and 

was combined with the complex coordinate rotation method [27) for cairn lat ing t II<' Jost 

function (28]. 

We extend now the linear form of the variable phase approach for must met i11g all 

low-energy expansions for problem (23)-(2G). First, we will remind how t.his probkm is 

reformulated using this form and recall some basic formulae and facts prol"<·d in [I]. 

2.1. Reformulation of the initial problem 

The sought. wavefunctions u; arc represented in terms of t.hc· arnplit 11d,· (c; a11d .-; ) a11d 

Coulomb (F, and Ge) functions as follows: 

ut(x,q) = Nt(q) U/(x,q), 

7 



11;- (.r. q) == ii;-(.r, q) + o;( q) u;(L q) . 11;-(.r, q) == N,:-( q) I •,-(.r. q) . (:Z9) 

U/(x,q) = c;(x,q) Ft(P,TJ) + s;(x,q) G,(p,TJ). (:IQ) 

The cotangent of the phase-shift 8t(q) and the normalization factors Nl(q) and o,(q) 

providing the asymptotics (25) are defined as the limits 

A(q)= Jim A(x,q) 
x-oo 

of the relevant functions A(x,q) given by 

cotan 8e(x, q) 

N,±{x,q) 

o'.f.(x,q) 

ct(x,q)/4(x,q), 

( 
2 2)~1/2 

(ct(x,q)) + (st(x,q)) , 

-ct(x, q) ce(x, q) - st(x, q) se(:z:, q). 

By definition, the amplitude functions obey the Lagrange identity [21] 

F'e(p, 71) Oxc';(x, q) + Gt(P, 71) Dxs;(x, q) = 0 

( :11) 

(:l:Z) 

(:n) 

(31) 

and satisfy the two sets of the ordinary first-order differential equations (the first one for 

ct, st and the second one for Ce, se)= 

,. 
Dx { c:(x,q) } == q-1 V(x) U/(x,q) { +Gt(P,71) } 

st (x,q) -Ft(p,71) 
(:35) 

with. 1 he corresponding asymptotical (x -> 0) boundary conditions 

{ c:(x,q)} ~ { 1} +q-11x V(t)Ft(p,71) { +~t(P,71) }dt, 
si (x,q) 0 o -J<e(p,71) 

(:36) 

ce(x,q) ce(xo,q)+q-11x V(t)G;(p,71)dt, 
xo 

se(x,q) I-q-1 jx V(t)Ft(p,71)Gt(p,71)dt (37) 

that nisure the asymptotics (21) of functions (29). In (36) and (37), p == tq and if 

V(x)Gi(p,71) E £/o,b]' then xo == 0 and c1(0,q) == 0, otherwise x0 is an arbitrary, however 

fixc~d parameter so that Xo > X and Xo(J « I. In this special case, the value Ce (xo, q) is 

ddincd from the \Vronskian relation 

c;(x,q)se(x,q)- ce(x,q)st(x,q) = 1 (38) 

8 
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for problem (3-5)-(37) as follows. The values ct(x0 ,q) and s;(x0 ,q) found using l36) 

and (37) are substituted into (38). Then the obtained equation is resolved in respect to 

ce(Xo,q). 

So, for constructing the solutions u; of the initial problem (23)-(26) by formulae (29) 

and (30), one should solve problems (35)-(37) and then find the limit (31) for each func

tion (32)-(34). Equations (35) are the lin~ar first order differential equations. Such 

equations are comparably simple [23] for the analysis using various asymptotical meth

ods [29, 30], e.g. using the method of separating of an argument from a parameter. To 

apply this method to the total problem (35)-(37), we should firstly represent the Coulomb 

functions as series of (27). Therefore, we will rewrite the two known formulae for these 

functions in the form that we need. 

2.2: The Coulomb functions 

In nonrelativistic quantum mechanics [5], the Coulomb functions Fe(p, 71) and Ge(p, 71) 

with real 71 > 0 and integer£= 0, 1, ... are well-known as the exact regular and irregular 

solutions of the Schrodinger scattering problem (23)-(25) with V = 0 and the repulsive 

Coulomb potential vc = 271/ p. 

As was shown by Lambert [31], the function Gt is the sum containing the entire 

function 0t of the squared scattering momentum (k2) and the function Fe. We rewrite 

this sum (Eq.(3.25) of Ref. [31]) as 

Ge(p,71) = Gt(P,71) + hc(q)Ft(p,71), Ge(p,71) = 0t(x,q)/Cj(q), 

Ct(q) = lCt(71), hc(q) = h(71)/qCo(q), 

where Ct(71) and h(71) are given by (9). 

(39) 

(40) 

The known Bessel-Clifford expansions (see the formulae 14.4.1-14.4.4 of [7]) for Ft 

and Gt are the infinite series in the polynomials bn(71) of k2 and the modified Bessel 

functions In(z) and I<n(z) of the variable z = 2x 112• Combining the terms with the same 

k-dependence in these series, we obtain the series in the form of (27): 

= = 
Ft(P, 71) = qCt(q) L q2n ftn(x), Gt(P, 71) = Ci1(q) L q2n 9tn(x), (41) 

n=O n=O 

{ 
2ftn(x) } = 2_2n f anmZm+l { fu+m+i(z) . ·} , (42) 

(2/ + l)gtn(x) m=2n (-1)-m Ku+m+i(z) 

9 



where the coefficients anm are energy-independent and obey the recursive chains 

(m = 2n, ... , 3n for each n = 1, 2, ... ) of equations 

2m anm + 2(2£ + m) an-1,m-2 + an-1,m-3 = 0 , 

in which a 0o = 1 and anm = 0, if n > 0 and m < 2n or m > 3n. 

(43) 

The finite sums (28) 5(M) = Ft(M), cWf) of the series S = Ft, Gt of (41) can be easily 

constructed via (41)-(43). As is known in WKB-approach [29], the estimates [7] 

(M) Ft(P, 77) = 0( q2M+ 3 Ct(q))' (M)Gt(P, 77) = 0( q2M+
2 /Ct(q)) (44) 

of the residual terms of these decompositions are uniform in p, if 

P «Pt= 77(1 + (1 + £(£ + l)/77)1l2
), (45) 

where p°£ stands for the Coulomb turning point. 

In the above case of V = 0, the solutions ut = Ft and ui = Gt of problem (23)-(25) 

are related by (39) and the functions Ft and Ut = Gt are series ( 41) in even powers of the 

parameter q and functions ( 42) of the variable x. Do the solutions u; of problem (23)-(26) 

have the analogous properties in the case V =/= O? How can one generalize the Lambert 

and Bessel-Clifford representations in this case? In further, we will answer both these 

questions for the potential V obeying (26). 

2.3. Amplitude functions 

According to (39)-( 41 ), the Coulomb functions contain the factors h( q) and Ct( q) with 

nonanalytical q-dependence ( ln(77) and exp(-1r /277) ). Evidently, the objects of that na

ture should generate the nonanalytical terms or factors in the sought low-energy expan

sions for the solutions of problem (35)-(37). Hence, to construct these expansions, we 

first have to resolve an essential problem: How to separate explicitly all the nonanalytical 

terms and factors? For this purpose, we use the special ansatz 

4"(x,q) = cz(x,q)- hc(q)sz(x,q) 

for cz and look for cz and s; as the series 

{ 
c~(x,q) } = { 
s£ (x,q) 

(qef(q)/-1±1)/2 

(qef(q)/+1±1)/2 

10 

} t,·· { czn(x) 

4n(x) } 

(46) 

(<17) 

0 

' 

No\\'. 11·c substitute F and Gin tlw form of (39) and (41) and ct and"''; as (4G) and (47) 

into (:lO) and (35)-(37). Then, separating q and x in the obtained relations. 11·e derive the 

represe11tations 

00 

U{(x,q) 

ut,(x) 

q(l±l)/2 Cf(q) L q2n Ut!(x), 
n=D 

L ( c;m,(:i•)ftm(1:) + 4m,(1:)ghn(.r)) 
m'+m=n 

and obtain the infinite (n = 0, 1, ... ) set of the equations 

{ 
ctn(x) } = V(.r) 

Dx stn(x) I: 
m 1+1n=n 

u,!,,(, l { +9crn(x) } 

-hn(.r) 

for the new sought fun ct ions ctn and szn and the explicit formulae 

{ 
cf(~) } ~ { bno } + L [v(t) ftm•(t) { +9rm(t) } dt. 
8 cn( 3,) 0 rn'+m=n O -.frm(/) 

Ccn(x) ~ ci,Jxo) + L [' V(t)gfm•(i)gtm(/)dt. 
1n 1+1n=n .r.o 

8in(x) ~ 8no - L [' V(il.ftm•(t)gcm(l)di 
m'+m=n 

describing the asymptotics of these functions as :r --> 0. 

(48) 

(HJ) 

(50) 

(51) 

In (50) and (51), 8nm is the Kronecker symbol, x0 = 0 and r;:;,(O) = 0 if .r- 21 \'(.r) E 

£/o,b]' otherwise x 0 is an arbitrary, however, fixed parameter so that .r < .r0 « I. 

Employing the Peano theorem [23], one can show that probl<-111 (,19)-(:i I) for c~, . .s~, 

(or for Cen, sin> in the case of cin(O) = 0) has the unique solution belonging to Ill<' C/i,.,xf 
class of functions. In the case of /cin(O)I = oo, an appropriate and uniqu<' ,<'t of th<' 

functions cin and sin is constructed by using the special recipe [:l'.2]. \\'hich is bas,·d 011 t hi' 

shift of boundary conditions. In our case, this recipe is realized as follo\\'s. \\",, find th,· 

values Cjn(xo), ·'in(xo), and sin(xo) by solving (49), (50) and integrating (iii). Then. 11·1· 

substitute these~ values in the relation 

L (cim•(x)sim(x)-ci,n,(:r)s;,,,(:r)) c=h,, 0 • 

1n1+m=n 

which we derived by inserting (17) into (38) and subsequc11t s<'parating q. As a result.\\'<' 

obtai11 the equation defining ci,,(xo)- Thus, WC fi11d <'en(:ro) am! .,;:;,(.ro). For ,r ::'.,I'().\\'(' 

ll 



represent the functions Crn and Srn as (.51 ). For .r:::: ,ro. we define them as th<' solu1 ion of 

Eqs. (49) with the boundary conditions at x = x0 > 0. 

Let us discuss the structure of the total problem ( 19)-( 51 ). Each partirnlar ( n = 
0, 1, ... ) problem of (49)-(51) for Cjn, st, (or for cin, Senl with the fixed n contains uei1h<'r 

q nor cfm, sfm at m > n. Moreover, Eqs. (19) for cfn, sfn and ct,,,, .sfm at 11 c/ ,n 

differ only by the inhomogeneous terms. Due to this structure of the total problem (,19)

(.51). some analytical properties of cfn and .sfn (for example, their asyrnptot.ics as .T -> 

x) could be established by induction and, moreover, the calculation of 4n and st a.1 

n = O. 1, ... , A1 < = is reduced to the subsequent (n = 0, 1, ... , 1'1.) integration of the 

coupled pairs of Eqs. ( 19) written in the increasing order of the index n and completed 

with the corresponding boundary conditions (50) or (51 ). Hence, both the analytical and 

numerical investigations of the finite sums of series ( 4 7) can be easily performed. However, 

mathematically, these series are only the formal asymptotic expansions [29] with the form 

of (27). Hence, to complete the study, we have to find the sufficient conditions for t.hc 

approximations S ~ 5(M) and estimate the residual terms (M)S. 

For these purposes, we decompose the series S = cf, SF of ( 4 7) as (28) and reduce 

problem (3.5 )-(37) for Cj, Sj ( or for ci, se) to the two mutually coupled problems: the 

problem (19)-(51) for Cin, Sin ( or for Cen, sin) at n:::; Mand the problem for (M)c;, (MJ,5t 

( or for (M)ce, (Ml.se]. The latter, being writ.ten in a more compact way, has a form of the 

two sets of equations 

{ 
(M)cf 

Ox (M),sf } 

_ 1 ± { +Gt } { = q V ul - Ft - Ox 

with t.hc corresponding boundary conditions 

±(M) 
Cl 

±(M) 
St 

(M) S = S - 5(M) ' S = cf ' sf ' X -> 0 ' 

that can be easily disentangled using (36), (37), (50) and (51). 

}, (52) 

(53) 

:\'ow, we reformulate problems (52), (53) under conditions (45) as follows. In (52), 

we represent S-serics (27) for Fe, _Ge, cf, and sf as the relevant decomposition (28). 

Then, we rcplacc_F}M)' G~M) and c'z(Ml, s'z(M) by the sums of the first (M + 1) terms of 

the corresponding series (11) and (47). To estimate the residual terms (M)ft and (M)Gt, 

we employ (41) and take into consideration the inequalities lcfnl, is7'nj < oo valid, when 
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0 < .r < oo and n '.S Af < oo. After the estimation we use the substitution 

{ 

(MJ ±( l } { ( c2( l)c-1±1J12 ±( l } Ce x, q = 2M+2 q e q Y1 x, q 
(M) ±( l q ( c2( ))<+1±1112 ±( l se x,q q l q Y2 x,q 

(54) 

and, in the obtained equations for the functions Yt and Yi, we omit all the residual term 

of the order of q2 as q -> 0. Thus, we reduce problems (52), (53) to the asymptotical 

( q --> 0, xq ~ Pe) equations 

Ox { y~(x, q) } ~ 
Y2 (x, q) 

V(x) (feo(x) yf(x) + gto(x) Yt(x)) { +gco(x) } 
- fto(x) 

+ V(x) { zt(x) } 
· 4(x) 

with the q-independent functions 

{ 
zt(x) } = 
zt(x) 

(f,,M+, (x) C,,(x) + g,,MH(x) ,i(x)) { 

+ L Ufm,(x) { +gtm(x) } 
m'+m=M+I -ftm(x) 

and explicit asymptotical (q, x--> 0) boundary conditions 

+gto(x) } 

-fto(x) 

{ 
y~(x, q) } ~ L 1x V(t) ftm•(t) { +gcm(t) } dt, . 
Y2 (x, q) m'+m=M+I xo - ftm(t) 

Y1(x, q) ~ y(xo, q) + L 1x V(t) gem•(t) gtm(t) dt, 
m'+m=M+l xo 

Y2(x, q) ~ - L ix V(t) ftm,(t) ftm(t) dt. 
m'+m=M+l O 

(55) 

(56) 

(57) 

(58) 

In (55) and (56)-(58), x0 = 0 and y1(0,q) = 0, if x-uv(x) E £[o,b]' in the other case, Xo 

is an arbitrary however, fixed parameter so that x < x0 ~ 1. 

Following the known asymptotical method [30], we write Eqs. (55) in an integral form 

and iterate the obtained integral equations. As V obeys (26) and ftn, gin of ( 42) and z; 

of (56) are finite, when 0 < x < oo, the iterations of these integral equations converge 

uniformly on the finite interval O < x '.S Pe· Therefore, all the functions y; are limited on 
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this interval and do not identically vanish as q -+ 0. Hence, if q -+ 0 and qJ: -1;:'. p):. thc11 

the residual terms (54) can be estimated as 

{ 
(Ml4(x,q) } = o(q2M+2 { 
(M)st(x, q) 

( qCj( q)) (-1±1)/2 

( qC;( q)) (+1±1)/2 

2.4. Wavefunctions 

}l (59) 

Substituting Uf of ( 48) into (29), we obtain the desirable formal asymptotic expansions 

for the wavefunctions: 

ut(x, q) = qCt(q) Nl(q) L q2n ul~(x)' (60) 
n=D 

00 

ul(x, q) = ( Ct(q) Nl(q) r1 L q2n ui;,(x), (61) 
n=O 

Ut,(x) = L ( 4m,(x) hm(x) + st.,(x) 9tm(x)) . (62) 
m'+m=n 

Let us analyze the structure of the obtained expansions (60)-(62). The representa

tions ( 41) and (60) for Ft and Uj are completely identical in structure. They are the 

products of the factors qCt(q) and qCt(q)Nt+(q) (depending only on q) and the infinite 

series. The latter contain the integer powers of q2 and the functions hn and Ue~ of x. 

Therefore, qCt(q)Nl(q) and U1;,. are the analogues of qCt(q) and fen, respectively. The 

representations (39) and (61) for Gt and ul have also the identical functional form. They 

are the sums of the two terms. The first terms, i.e., Gt and its analog iii', being divided 

by Ce(q) and Ct(q) Nl(q), respectively, turn out the entire functions of q2
• The second 

terms, i.e., hc(q) Ft and its analog at(q) Uj, describe the admixture of the regular solutions 

Ft and ut into the irregular solutions Gt and ui', respectively. 

Thus, we generalized the Lambert and Bessel-Clifford representations in the case, when 

the total potential vc + V contains an arbitrary nonzero term V obeying (26). However, 

the question concerning the approximation S;:::; S(M), where S denotes the infinite series 

ut and iii' of (60)-(62) and s<M) is the finite sum of this series, is still open. To answer 

this question, in (29), we replace each series ( 41) and ( 47) for S = Ft, Gt and S •= cf, Si 
by the relevant decomposition (27). Employing estimates (44) and (59) in the equalities 

(M)Uj N± ( (M) F, c±(M) +<M) Gt s±(M) +<M) c± F,l +<M) s± Gt 
l_ lt l l l 

+ q{l±l)/2cf1 L q2nul! ) + (M) + 
2M+2 { 0 } 

n=M+l al Ul 
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thus obtained. ll'f' find that condition (.J5) is sufficient for both tlw approximations 

ut ~ u;(M) and fie ~ 11;(.\l) with t.he absolute accmacy 

(.\l)uf(:i:,q) = o( q2AH3 Ce(q)) and (M);i;(x,q) = o( q2.u+2/C(q)). 

As we have shown, the sums u;(M) and ii;(M) can be found in practicf' by using the 

following algorithm: calculating Ce, ftn, and.gen (n = 0, 1, ..... \/) using (9) and (,13): 

soh·ing thf' recurrence chain (n = 0, 1, .... M) of (M + 1) problems (·19)-(51) for ct,. 
·'in and t.hc11 for cen• "en; constructing Ufn using (.JS); solving problem (3f>)-(37) for c;. 
4 a11d t.hcn for Ce' Se; defining Nf and Of by using (31 ), (33), a11d (3-1 ). a11d. finally. 

constructi11g 11.;(AI) and 11-eM via (60) and (GI). 

111 fmthcr. we will clarify how cxpansio11s (•17) and (G0)-(G2) earlier prmTd can be 

applied. 

3. Effective-range function 

To present. all our formulae i11 a more com part and uniform way, Wf' i11t rodu<·,, t 11·0 mut uall~· 

coupled superscripts a and a'. The symbol Aca(J:, q) with the superscript ca and a= .s. l. l.s 

stands for the considered function A(x,q) describing the scattering for tlw sum,-,-,, with 

the same a = s, l, ls. The symbols A"' ( q) with 1.he superscripts a' = c . .s. a = c. I. and 

a'= rl,.s containing the comma will refer to the contributions /irs(k). b;,
1
(1.·). and 8/'(k) 

to the tot.al scattering phase-shift 8';_"( k ), corresponding effective-rang<' fun ct ions /{/'. 

and K;1's and the coefficients of their asyrnpt.ot.ics that now we wa1l1 to d<'riYc. First. m· 

consider the case, when the potential V obeys (2G) and rapidly vanishes at larg<' dist an res. 

3.1 Short-range potential 

Let V = VS, a = cs, and a' = c, s. Using ( 10) we rewrite the Coulo111b-1111ckar effect in·

rangc functio11 (8) in the more convenient. and dirnensio11less for111 

K;'(q) = R21+1 K;'(E). 

Let us now prove the asymptotic representation 

M 

K;' (q) = L q2n /(;~ + O(q2/IH2), M < CX), I/-+ CX). 

n=O 

the formulae for it.s three first coefficients 

/ ,a'_ +a( )/ ,+a( ) J'a' _ ( +a( ) /'"' .+"( ))/ .+"( ) \eo - Ceo = 8 eo = , \ii - ell CXJ - \rn·'r1 = ·'rn x · 

! ,a' ( +a( ) /'a' +a( ) [,'a' +a( ))/ +a( ) 1 f2 = Ce2 = - 1eo ,sf2 CXJ - \ti 8t1 = 8ro = ; 

10 
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aud. finally. tlw n·latious 

a;'= -R2l+1 / !(;~ r~; = 2R1-21 !(;; Pe°' = -R3
-

2
t l(i~/r~; (GG) 

defining the Coulomb-nuclear scattering parameters ( a' = c, s) as the simple algebraic 

combinations (65) of the limit (x-+ oo) values cin"(oo) and stn"(oo), of the functions c;,, 

and st, obeying problem (49), (50) with V = v• and n = 0, 1, 2. 

To begin with we, expand the half-axis n+ in the point 

b = b(q) = x~ = (p~/q)P, 2/3 < p < l, (67) 

on the iuner (x '.S b) and outer (x 2 b) regions. By this definition, b depends on q and 

b/ Xe --t 0, while b -+ oo as q --> 0. Hence, when q is sufficiently small, relations (4,5) and 

(.j9) arc valid in the inner region and the integral (26) satisfies ·the inequality 

Ie(b,x) < In v'3 (68) 

in the outer region. Under this condition, perturbation theory of Ref. [l] can be applied 

to Eqs. (3.5) at x 2 b. Now, we sketch the scheme used for constructing of this theory 

and recall some key formulae. It is necessary, because to analyze problem (55)-(;\7) we 

will follow the analogous scheme. 

In [l], using the substitution 

CF(x,q) 

s;(x,q) 

exp(+ Be3 (b, x, q)) yt(x, q) , 

cxp(-Be3(b,x,q) )y't(x,q), 

Bt3(b,x,q) = q-1 ix V(t)Fe(p,ri)Gt(P,T/)dt 

(69) 

(70) 

Eqs.(:35) with the boundary conditions shifted to x = b were reduced to more simple 

equations, which were rewritten as the integral Volterra-type ones [33]. The integral 

equations were iterated in the outer region. The Klarsfeld inequalities [34] 

F/(p, ri)/q < x(21r/(2f. + 1))112 , 

IFe(p', T/) Gt(P, ri)I < (2n'x/(2f. + 1))112 , p' = qx' '.Sp= qx 

(71) 

(72) 

were~ used as the key ones to prove the uniform convergence, of the iterations under the 

conditions (26) and (68) and to estiwatc the convergence rate of these iterations (see 

bounds (:3-'>) in [l]). 
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Now. we substitute V, hand b given by (1), {26), and (67) to the above bounds and 

use estimates (59) taken at x = b. After the simple transformations, we find that for 

x 2 b and q --> 0 

lct(x,q)- ct(b,q)I, 14(x,q)-sz(b,q)I:::; o( exp(-µRq-
2
P))' 

lci(x,q)- ci(b,q)I '.So( Ci2(q)exp(-2µRq-
2P)). (73) 

Then, we study problems (49)-(51) with the fixed n consequently (n = 0, 1, ... ). We 

use the scheme which is slightly different from the given above-mentioned. There are 

only two differences. First, for the substitution we use an analog of the zero-energy limit 

( q = 0) form of (69) 

4n(x) 

s}n(x) 

where, owing to ( 41) and (70), 

exp( +Be3(b,x,0)) Yfn(x), 

exp(-Bt3(b,x,0) )yi'n(x), 

Bl3(b,x,0) = ix V(t)feo(t)geo(t)dt. 

Second, as the key inequalities, we use the bound relation 

ix fzo(t) IV(t)I dt < IVoR/41rl b112 exp(-µRb + 2b
1
l

2
)' 

(74) 

which is valid due to (1) and the asymptotics of fe0 (x) at x 2 b ~ 1. And, finally, we 

making in use also the limit form of (72), i.e., 

lfea(x') geo(x)I '.S ( 2n'x/(2f. + 1) )112
. 

By induction, we prove that, for all x 2 b and n < oo, all the functions y;:. are finite and, 

moreover, we find the explicit estimates for the differences y;:.(x) - Y'!:.(b). These results 

allow us to conclude that, for all x 2 b ~nd M < oo, functions (74) are also finite and are 

so that 

{ 
12:tn(x) - c:tn(b)I } < 0 ( q-(GM+t)P exp(-µRq- 2P +2q-P)) . 

lsfn(x) - Sin(b)J 
(75) 

Therefore, for each finite sum 5(M) = c;(M), s;(M) of series ( 4 7), one has the corresponding 

asymptotic ( q --> 0, x 2 b) relation: 

1
-±(M)( ) - -±(M)(b )I Ci X, q Ci , q 

1s;(M)(x, q) - s;'(M)(b, q)I 

O ( q(2M+2) ( qCj( q) /-1±1)/2)) 

O (q<2M+2) ( qCj(q))(+I±l)/2)) 
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As the next step, we write each residual term (M) S of series ( 4 7) as the identity 

(M)S(x,q) = (S(x,q)- S(b,q)) + (S(b,q)- 5(Ml(b,q)) 

+ (S(M)(b, q) - 5(M)(x, q)). 

Then, we estimate three differences included in the brackets by means of (73), (59), and 

(76), respectively. As a result, we find that estimates (59) are fulfilled for any M :c:; oo 

and all x 2: b. 

Now, we substitute Ci as the sum ( 46) into (32), decompose series ( 4 7) for the functions 

cT and sT as (27) and take x -+ oo. As we showed early, in this limit, the functions ct,, and 

Sin are restricted and estimates (59) are valid. Therefore, the above limit is transformed 

to the asymptotic relation 

'°'M 2n + ( ) 
cotan ot(q) = ( qC}(q) rl ( L..J';;o q2 c~ 00 + O(q2M+2)) - hc(q) 

Ln=Oq nsln(oo) 

which ensures the desired formulae (64) and (66). Comparing them with the standard 

expansion (11 ), we find relations (66). Thus, the calculating three Coulomb-nuclear scat

tering parameters a?, ,~•/, and P;•• is reduced to the consequent ( n = 0, 1, 2) integration 

of three energy-independent problems ( 49), (50) with V = V'. As we will show in further, 

for V = V 1
•, the recipe for calculating the modified scattering parameters is complicated. 

3.2. Sum of long- and short-range potentials 

Now let V = V 1+ V', where V' vanishes as (41) and V 1 has the long-range asymptotics (3) 

with d 2: 3. Let us prove that the function 

K;1-'(q) = ( C1(q)N/c1(q) )\qcotanot'(q) + qa1(q)) (77) 

is related with the modified effective-range function (19) by (63) and has the asymp

totics (64) with coefficients (65), where now a= ~ls, a'= cl,s and ct,,cl'(oo), s1,,C1'(oo) are 

some finite values, which will be determined in the proof. 

We will solve the initial problem (23)-(26) with V = V 1' step by step. An idea of the 

two-step solution was mentioned in [17) and discussed in a more detail way in [15). Her 

we now realize this idea as follows. 

As the first step, we find the auxiliary wavefunctions u;°1
, which are the solutions uf 

of problem (23)-(26) in the case of V = V 1
, a= cl, a'= c, I. To construct these solutions 

and their low-energy expansions, we apply the method described in Sect.2. 
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l'si11g this nwthod. W<' obtain the repn'sc>ntations 

11t1(.r, q) = N/c1(q) U/c1(x, q), 

-cl( ) - -( ) cl( ) +cl( ) - -( ) \'-d 1 ·-cl( ) ui' x,q=utx,q+a,qut :r,q, u,x,q=,( 1 .r.q. 

utr1(.r,q) = czcl(,:,q) F1,(p, T/) + s;cl(.r,q) Gt(P, T/), (,Ii) 

where the amplitude functions czc1 and st'1 stand for the solutions cf and st of prob

lems (·19)-(51) with V = V1 and the factors Nt1(q) and af1(q) arc limits_ (:31) of the 

rck\"a11t functions (:J:l) and (:H). Let us notice that, according to (25). the \\"ro11skian 

rc'lation for functions (78) reads as 

u1cl(x,q)flxu;cl(,:,q) + u.j°1(x,q)flxu1cl(.1:,q) = q .. r 2: 0. (79) 

Then, we construct the low-energy expansions 

= 
u;cl(x,q) qCe(q) N/c1(q) L q2n u//(.r) 

n:::::O 

ii,1cl(x, q) ( Ce(q) Nt°1(q) rl L q2n u(~,c1(.1·) 
n=O 

lfl~cl(x) = L ( 4:,\(.i:lfrm(x) + 4:,\(x)grm(.r)). (XO) 

m'+m=n 

111 which the functions c;,;' and s;,;' are defined as the solutions ct,, and .,;,, of prob

lems ('19)-(51) with V = V 1
• 

In the second step, we reformulate the initial problem (23)-(25) with\·=,-,., b~- using; 

a generalized linear form of the variable phase approach [18) as follows. First. m· write 

the a.syrnptotics (25) for the sought function u;", a = els in the form corresponding to 

decomposition (11) of the total scattering phase: 

nt'''(x, q) cos c5;1·"( q) ut°1(.r, q) + sin c5t'(q) u,c1 (.r. q) 

sin( p - T/ In 2p + 8~1(q) + 8;'-"'(q)). .r--+ oo. (XI) 

Then, we use the found functions ut°1 and u;cl as the basic fnnct ions i11skad of /•; and 

Ge, respectively. 'We look for u;ds as 

u;cls(a:, q) 

l!tl•(.r, q) 

N!cl"( q) U/cl•(,r, q) , 

ct''"(.1:, q) u;cl(x, q) + .,;c1'(:r, q) u1'1(.r. ,1). 
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wlwre. by ddi11ition. the generalized and sought amplitude functions c;cls illl(l .,7.-ts olwy 

the Lagrange identity 

Dxctcl•(x, q) uj°1(x, q) + Dxstcl•(x, q) Uec/(x, q) = 0. (8'.l) 

Substituting (82) into (23)-(2,5) and taking into consideration (79) and (83), we prove 

that the above amplitude functions obey the equations 

Dx { ctc1'(x,q) } = q-1 V'(x)ur•(x,q) { 
Sjcls( X, q) 

+ui"( x, q) } 

-utc1(.r,q) 
(81) 

and the simple boundary conditions 4e1, = 1, Sjels = 0 at x = 0. Comparing the 

asymptotics of wavefunction (82) as x -> oo with its required form (81 ), we find the 

relation defining the relative phase-shift o;1''( q ): 

rcl,s( ) ]" +els( )/ +els( ) cotanvl q = 1m cl x,q sl x,q . 
x-oa 

(85) 

To separate explicitly the nonanalytical terms in the low-energy expansions for the 

generalized amplitude functions, we look for them as 

cte1'(x,q) = cj°1'(x,q)-of(q)sj°1'(x,q), (86) 

00 

ctc1'(x, q) L q2n Cfnels ( X) , 
n=O 

00 

sj°1'(x, q) q( Ct( q)N/c/(q) )2 L q2n st,c/•(x) (87) 
n=O 

Substituting (80) and (86), (87) into (84) and separating x from q, we arrive at the 

recursive (n = 0, 1, ... ) equations 

{ 
c+els( ) } Dx en X 

st,/"(x) 
"\""' u+cls( ) { +ul-;:'(x) } 
L.....J lm' X +cl ' 

m'+m=n -Ulm (x) 
= V'(x) 

Ue~cl•(x). = L ( ul~!(x) ct:.''(x) + ul-;:!(x) st:.1·(x)) (88) 
m'+m==n 

for the functions ct,cls and st/• and define their appropriate boundary values as 

+els (0) £ +els (0) 0 Cln == VnO , Sin == • (89) 

Csing the iteration method [23], one can prove that all these functions are limited on 

n+, if V-' obeys (,t 1 ). We omit the proof of this statement, because it is too cumbersome 
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and rather tedious than interesting. Moreover, this proof actually repeats those given in 

Subsect.2.3. 

To come to our main goal, we insert 4c1s of (86) into (85) and let x -> oo. The 

obtained limiting relation is easily transformed into the desired formulae (77). The letter 

defines the dimensionless effective-range function in terms of the functions cj°1
' and sj°1

' 

taken at x = oo. Expanding series (87) as (27); we prove relations (64) and (65), in which 

a= els, a'= cl,s and ct:1•(00) and st:1•(00) are the limiting values for the solutions of 

problems (88), (89). Comparing (19) with (77), we find the relations 

CJ'(1J) = Cl(1J)N/c1(q), hc1(1J) = kof(q) (90) 

and formulae (66) for the modified scattering parameters with superscript a'= cl, s. 

Now, we can answer the questions that have been unsettled in [17]. 

First, it should be emphasized that definition (22) suggested in [17] for the modified 

scattering length is not quite correct. In fact, this definition does not contain the normal

ization factor caused by the long-range potential in the Coulomb field. According to (64), 

(66), and (77), the correct definition of the modified scattering length is 

a~l,s = -limtano;1•'(k)/[k(klCt(1J)Ntcl(k))2
]. 

k-o 
(91) 

This definition differs from the Beneze et al. [17] relation (22) by the existence of the 

squared normillization factor N/c1. Owing to estimates (37) of Ref. [1], this factor is 

close to unity, when V1 is sufficiently small. Only in this case the relation (22) gives an 

approximate value of a;'·•. 
As we have shown, to calculate CJ' and hf from (19) using (90), one should solve 

problem (35), (36) with V = V1 and find limits (31) of the relevant functions (33) and 

(34). In our method,the calculation of the modified scattering parameters is reduced to 

the consequent solving of problem ( 49)-(51) with V = V 1
, n = 0, 1, 2 and problems (88), 

(89) with n = 0, 1, 2. All these problems are the energy-independent linear differential 

equations with simple boundary conditions. The practical solution of these equations does 

not met any certain difficulties and, moreover, can be performed with a high accuracy. 

4. Concluding remarks 

Our main results are the following: the algorithm for constructing the analogies of (61) and 

(60)-(62) to the Lambert (39) and Bessel-Clifford (41) representations and formulae (77), 

(90), and (66) for the modified effective-range function (19) and nuclear scattering pa

rameters a~l,s, r~/ and P;'••. 
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TTym1111es B.B, 
HHJKo:rnepreTH'•leCKHe pa3JIO)l(eHml 
wui o.IinoMepnoii 3a,ua4H paccesimisi Wpe.UHHI'\!pa . 
~ - - ' ' " ' 

E4-97.-125 

. Perynsipttasi. H. H~perynsipi-lru! BOJIHOBble cpyHKUHH pacceSIHHSI cynepno:iHUHeH 
OTiaJIKHBatoIUero KYJI00HOBCKOro rIQTeHUHaJia H noTeHuiiana, y6brnatomero 6blCTpee 
ueH-rpo6e)l(HOro, npe.ucrninilK>TCSI '.6ecKoHe4HblMH psi.riaMH, B KOTOpblX HimyJibC 
pacce~nmsi H paccrosi,iHe. pa3.uene11b1. TTocTpoeHHe K0He'li-ii.tx C)'MM,' pasnoMeptto 
iinripo~CHMHpytolUHX 3TH pi.Ubl; _npH BnOJIHe _·onpe.ue.rieHHbl)( ycnotmsix CBO.UHTCSI 

'K perneHHto npocTeiiiimx .umpcpepeHUHaJibHhlX 3a,ua'I. • .. > · _ , · ·· 
~ BblBt!,lleHHble npenCTaBJleHHSI -BOJIHOBblX 'cpYJIKUHH MOryr 6b1Tb HCIIOJib30BaHbl 

.UJISI aHaJIHTH'leCt<Oro H· 'IHCJieHHOI'O · HCCJI.e.UO!JaHHH pa3JIH4HblX HH3K03HepreTH-, 
. ,, -. . \. ' 

'leCKHX aCHMIITOTHK B 3a,ua4e CTOJIKHOBe1msi·.usyx lffiCTHU. . 
· 1 o·co6oe BHHMaime,y.ueneuo n_omlTHto .llJIHHbl paccesiHHH i-i m:>cTpoe,rnto MO.UH

cpttUHposa~uo~ cpyHICUHH)cp<peKTHBHOro:pa,uHyca JV]SI cynepricnm.im{ OTTaJIKHBalO~. 
mero KyJIOIIOBCKOro, KOPOT.KO- H .UaJibHO.UettcTBytomerq noTeHUHaJIOB.. - ' 

~ . . . ' ". ' { ~ : . 

. ·. Pa6oTa ~blnOJIHeHa B na6opaTopHHTeopeT~'leCK~H q)H3HKH HM.H.HJioronro6o-
Ba 0115111. . . . . . 

Ilpenpu.u_; OfuenttHe_HHOfO HHCTHT)'Ta llllep~~IX IICCJJeAOBa!Illii. J:ly611a, 1997 ·. 

PupyshevV.V. . , 
Low~Energy Expansions . . , . , . . . . . . . 
for the Orie-Dimensional Snrodinger Scattering_ Problem 

• . . • t 

E4-97-125 

.,_.,' 

The regular arid irregular. ·s~attering wavefunctions. for· t~:e '- stip;;pos~tion 
of_the·repulsive Coulomb potential·and the ~entral 'potential that decre.ases more 
rapidly. than the centrifugal on·e are represented ·as an infinite series .with the distance 
and mcmientum ·separated.,·The ~onstructing of the"finite· sums that uniformly 
approximate these series 'under~ we·ll~defined con9itions is reduced to solving 
the simples( differen'tia!' problems. 1 .. . . , .. . . . .. . .· .. 

·,:The 'derived· representations of the wavefonctions .can·be successfully used 
for analytical and numerical' ti-eat!llerits ,of various low~energy asymptotics in two-
bodycollision problem. · - ·•· .· · :_. . •-' . '. . .•. . . . . . . -

A special attention. is paid to the concept of the scatteri'ng length arid construction . 
of'the·modified· effectivt:-ra_nge function -for ·the scattering by .•the superposition· 
of the,repul~ive Coulomb and _long- and short-range_ potentials. · 

The investigation 'has\ :been. performed at ,Jhy. Bogoliubov. (aboratory 
of Theoretifal _Physics, JINR.-. - . . .. . . . 
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