


1. Introduction
In the present work, we continue our previous study {1] of the one-dimensional Schrédinger
scattering problem for the superposition of the repulsive Coulomb potential and any
central potential vanishing more rapidly than the centrifugal one. We construct now the
low-energy asymptotics for all the functions characterizing the scattering for the above
potential superposition.

The knowledge of the low-energy dependence of the functions characterizing the colli-
sion of quanturn mechanical objects allows one to solve a series of important practical and
theorelical problems. For example, an experimental problem of extrapolating the charac-
teristics to the low-energy region which is inaccessible for direct experimental study, and
a theoretical problem of choosing the form and parameters of the interaction to describe
the considered collision in the low-energy limit.

For these reasons, a construction of the low-energy approximations and a correct defi-
nition of the coefficients for these approximations are the important problems of scattering
theory. The scattering length is one of the coeflicients.

First, the concept of the scattering length has been introduced [2] for the scattering

by the central potential V*(r) decreasing at large distances r as (or more rapidly),
Ve(r) ~ V¥ (r) - (or Vir) =o(V¥(r)), r—oo, )
.than the Yukawa potential
VY (r) = Vp exp(—ur)/r ,t >0, Vo= const. ' )

Usually [3, 4] the potentials of that kind are called the short-range potentials, whereas

the potentials vanishing as an inverse power of the distance,
Vi) ~VEr?, Ve =const, d= 1,2,‘3, ey T 0O, 3)

are called the long-range potentials.
For the phase-shift §;(k) generated by the short-range potentxal V* in the state |k, £)

with the scattering momentum k and angular momentum ¢, the limit
ay = ~ lim tan §;(k) JEHH (4)
is finite and the corresponding effective-range function

K}(E) = k**! cotan 83(k) (5)
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is the entire function of k. The coeﬂicients aj, r3, and P} in the low-energy (E = k* — 0)

expansion [2] of this function
K}(E) ~=1/a} + k32 — K'r3, P;, k>0, (6)

are called the scattering length, effective range and shape-parameter, respgctively, for the
scattering in the state |k,£). Owing to (4) and (5), the phase-shift 6§(k) vanishes as the
power function —a} k**! of k as k — 0, and the scattering length has a meaning of the

coefficient defining a slope of this function of the variable —k?+1.

In the low-energy limit, the total scattering phase é;°(k) generated by the superposition .

Ve = Ve 4 V°, where V° = 1/rR is the repulsive Coulomb potential and R > 0 is the
Bohr radius [5], rises to infinite as the pure Coulomb phase-shift §5(k):

§3°(k) ~ 85(k) ~n(lnp —1), n=1/2kR, k—0.
Therefore, the analog of the limit (4), i.e.,

. cs — . 2042\—1
af = - limtan & (k)/K* = — m(m]a ),

is equal to —oo. This is the first reason why, for the superposition V', the concepts
of the scattering length and effective-range function should be redefined. The second
reason is the following. The phase-shift §°(k) is the result of the joint influence of V¢
and V* on the scattering. To extract the contribution of the short-range potential, one
has obviously to subtract from the tota]. phase-shift §°(k) the pure Coulomb one 63(k)

and then to redefine the effective-range function in the form of the entire function of k7.

This method was used by Breit, Condon and Present [6] to define of scattering length’

in the proton-proton scattering for the superposition V. These authors introduced the

concept of the Coulomb-nuclear phase-shift
8 (k) = & (k) — &5(k) (M)
and proved that the relevant Coulomb-nuclear effective-range function
K§*(B) = (KCu(n) )* ( k cotan 55" (k) + h(n) ) (8)

should contain the analyticaﬂy known Coulomb factors [7]

Ce(n) = 2° exp(—77/2) [T(¢ + 1 +in)|/T(20 +2), (9)‘
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() = hig}/ RCE ). hy) = Re (i) —Ingy (10)
providing the desired asymptotics
K (B) ~ —1/ag® + k2 vy (2 — kA rgs PE° L k=0 (1)
As far as both the expansions (6) and (11) have an analogous functional dependence on
k2, the cocflicients .
ag"(k) = lim tan 65°(k)/ | K(K*Celn)? ] . (12)

ror and P77 are usually called {3, 8] the Coulomb-nuclear scattering length. effective range
and shape-paramcter, respectively.

The problem of defining the scattering length for the superposition V' = Ve 1741
of the Coulomb and long- and short-range potentials occurred to be very complicated.
The total scattering phase-shift 615”(13) generated by V* can be expanded in two different
ways:

8 (k) = 8(k) + 87 (k) ; - (13)
SE7(k) = 5 (k) + & (k) 8¢ (k) = 65(k) + 67 (k) . (1)
It should be emphasized that both these decompositions are mathematically equivalent.
However, Irom the physical point of view, there is a nonequivalence of the following
conceptual meaning. The phase-shift 5;""(1:-) characterizes the joint influence of the two
interactions V! and V* on the scattering in the Coulomb field V<, whercas the phase-shifi
52’"5(13) is the contribution generated only the short-range potential 17* acting in the long-
range field Ve = Veqyi, Therefore, to extract the information on the structure of V* from
the measured scattering phase 65°*(k), one needs a reliable method of separating of the
phase-shift 5;l’s(k) and constructing its low-energy asymptlotics. These problems are very
general and important. In fact, these problems arise in studying a role of a given short-
range potential responsible for nuclear forces in molecular, atomic and nuclear collisions
running at extremely low encrgies and, vice versa, in extracting the information on the
nuclear forces from the measured cross-scctions in the corresponding collisions.

'The low-energy scattering of a charged projectile (atom, ion, molecule or nucleus)
by a target with an extended charge or magnetic distributions can be described using
the effective two-body a.pproximation. In this approximation, the total interaction is
represented as the relevant superposition V¥ of the pure Coulomb interaction Vo long-
range electromagnetic correction V* to this interaction, and short-range potential 17

responsible for the pure nuclear interaction.



The electromagnetic corrections are due to the long-range potentials having the asymp-

{otics (3) with d = 2,3,4.... For example, the magnetic-moment correction [9]
V"‘(T)=—(3(/71~F)(ﬁ2-r“)r"2~-(ﬁ1-/72))r‘3, (15)

describes the interaction of the magnetic moments /i, and ji; of two nucleons and has the

inverse-cubic r~dependence; the polarization correction V? describes the interaction of a

charged projectile with the electric moment of the deuteron (considered as a point-like

particle) and has the asymptotics (10]

VP(r) ~ —a /2R, >R, (16)

where a. stands for the deuteron electric polarizability.

A detail theoretical investigation of the scattering by the superposition V* for a class
of the long-range potentials with asymptotics (3) was made by Berger and Spruch [I1]
and by Berger, Snodgrass, and Spruch [12]. As was proved by Berger and Spruch, in the
case V¢ > 0 and d > 3, the phase-shifts 6;'*(k) and &;'(k) of (13) and (14) vanish as
k — 0 more slowly than the Coulomb-nuclear phase-shift 65‘5(k) of (7),

815 (k) ~ 851 (k) ~ (= Vg /2R K B(d - 1,1/2), k=0, (17)
where B is the beta-function [7], and, therefore, the direct analog
a5 = — lim tan 65 /¥ CH(n) = = lim K>~V exp(n [k R) (18)
k—0 k—0

of the Coulomb-nuclear scattering length (12) is infinite and a physically meaningless
value. Thus, the problem of defining the scattering length for Vs has arisen. To resolve

this problem, Berger, Snodgrass, and Spruch used decomposition (14), introduced the

appropriate analog
K (E) = (KCg(n))* (kcotan 5;’vf(k) + k() (19)
of the Coulomb-nuclear effective-range function (8), proved the asymptotics
K" (E) ~ —1/ad" + K2 rig*[2 = kg PP, k=0, (20)
and defined the relevant modified scattering length

051’5 - _ Ilcmétan 6;1,s(k)/ k(kl Clcl(n))2:| s (21)
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effective range r&:°, and shape-parameter P{"* as the coefficients in-(20). The modified
scattering parameters thus defined characterize the influence of V* alone on the scattering
for Veis.

Though the above problem was resolved from the conceptual point of view, the Berger
and Spruch and the Berger, Snodgrass, and Berger formulae for the coefficients in expan-
sion (20) are too complicated for practical calculations. Moreover, in their method, the
factors C§'(n) and h§'(n) are expressed in terms of the defined integrals containing the
regular and irregular scattering wavefunctions for V<. These integral representations are
also very complicated to be used for both the analytical and numerical studies of C§'(n)
and Ag(n) as k — 0. ‘

The consideration of the scattering length for Vs was renewed by Kvitsinsky and
Merkuriev [13] in 1984. As they noted in {14], due to.the proton-deuteron (pd) polar-
ization interaction (16) the dublet and triplet pd-scattering lengths defined by (18) have
no physical meaning. After this, the polarization effects in low-energy nuclear collisions
where analyzed in an number of papers (see [15] and {16] and references therein). The
most complete low-energy scattering theory for the Coulomb plus the long-range polar-
ization potentials was constructed by Bencze et al. [17]. As a power method they used the
variable phase approach [18, 19]. For the S-wave scattering (£ = 0) by V" with V! = V7,
Benze et al. gave a mathematically rigorous proof that, when at least the modified scat-
tering length is considered, it is possible to replace C§'(n) by Ce(n) in (21) and then use

the resulting relation
&5 = limtan 85 (k)/ [ k(K Ce(n))? (@

as a physically correct definition for the modified scattering length.

However, the Benze et al. theory is incomplete, because the main theoretical questions
were unsettled. These questions are: what is the structure of the factors C§' and A<
in (19) and how shéuld one calculate the coefficients r&;® and P in (20) There are still
no reliable and simple methods for calculating these values. -

The main goal of this work is to present such a method in the Coulomb repulsion
(V¢ > 0) case. Following our previous work [1], we use the system of units i = 2u = 1.
We also introduce the dimensionless variable £ = r/R and parameter ¢ = kR and present

the studied Schrodinger scattering problem as differential equations
(82—t +1)z72 —V(z)— V() +¢* ) uF(z,q) =0, z€R", (23)
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for the sought regular (u}) and irregular (u;) wavefunctions obeying the corresponding

boundary conditions:

u;lt(I7 q) = O( Ii(l_H/Z)-H/Z) , -0 (24)

K

uf(z,q) = sin(p —nln2p — (20 + 1 F 1)w/4 + 65(q) + u(q)), ¢ — 0, (25)

Here, R* denotes the positive half-axis, p = kr = gz, 7 = 1/2¢, and &,{¢) stands for the
phase-shift generated by the potential V in the repulsive Coulomb field V° = 1/z. We

assume that V is an arbitrary central potential so that

This relation is sufficiently general [4] and valid for a wide class of the short-range poten-
tials obeying (1), long-range ones having asymptotics (3) with d > 2 and, certainly, for
the sum V' of the above potentials. When it is necessary, we will specify the potential
Voas Ve, Vior Vi, )

As far as we be dealing with the specifics low-energy (¢ — 0) expansions for the
auxiliary (Coulomb and amplitude) functions and the wave.functions7 it is necessary to

make some things clear. All the expansions will asymptotic infinite series of the form

Sla,q) = N(a) " 5ula), g0, zERY, (21)

n=0
where N(g) denotes the normalization factor and, what is very important, the argument
z is separated from the vanishing parameter . We expand each studied series S of (27)

in two parts: the finite sum S®) and residual term (M) S:

M
§=8M Mg 5z q) = N(q) Y ¢ Sal)- (28)

n=0

We would like to point out that such a reliable and simple (from the computational
point of view) meihod for constructing expansions (27) for the two-body scattering wave-
functions is unknown in the present scattering theory [4]. We would like also to stress that
the low-energy representations for the three-body wavefunctions and their phase-shifts are
not constructed [20] yet. To derive these representations, one need to know the low-energy
expansions for the two-body subsystem wavefunctions, because these functions are con-
tained in the physical boundary conditions for the Faddeev components of the studied

three-body wavefunction.
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For these reasons, the analysis of the ordinary two-body scattering problem (23)-(26)

- with ¢ — 0 is also.important. Therefore, in Sect.2, we will pay a special attention to

the complete study of the structure of both the solutions u}t of this problem. We hope
that this analysis will contributes to present scattering theory and also will be useful
to treat analytically the three-body problem at comparatively small total energy. One
of the interesting problems of such a kind is a study of the role of magnetic-moment
interaction (15) in the neutron-deuteron (nd) and proton-deuteron (pd) scatterings. The
matter is that this interaction generates the neutron analog [21] of the Ramsaucr effect
in the triplet nn-scattering [22]. Therefore, it seeins to be quite reasonable to expect that
some new peculiarities caused by the long-range part (15) of the total nucleon-nucleon
interaction will be found in the slow nd- and pd-collisions.

However, before discussing the asymptotical method for the three-body problem. we
have to finish our investigation of the ordinary two-body problem (23)-(26). In Sect.d.
we'will exemplify how the expansions for the auxiliary and wavefunctions wE can be used
in solving sotne problems in two-body low-cnergy scattering theory. As the examples.
we will give a new proof for expansions (11) and (20) and propose simple relations for
calculating their coeflicients.

2. Low-energy expansions for auxiliary and wavefunctions

The linear form (in fact it is equivalent with the varying constant coefficients [23. 24]) of
the variable phase approach [18] is a powerful method for studying the various solutions -
of the Schrédinger equation. In [25] Calogero formulated the lincar form in terms of the
amplitude functions for calculating the regular scattering wavefunction and its phase-
shift. Recently, this form was completed in a simple way for constructing the irregular
scattering wavefunction {1], in studying of the artificial and physical resonances [26] and
was combined with the complex coordinate rotation method [27] for calculating the Jost
function [28].

We extend now the linear form of the variable phase approach for coustructing all
low-energy expansions for problem (23)-(26). First, we will remind how this problem is
reformulated using this form and recall some basic formulae and facts proved in [1].

2.1. Reformulation of the initial problem '
The sought wavefunctions u,i are represented in terms of the amplitnde ((1i and %) and

Coulomb (F; and Gy) functions as follows:

";-(qu) = N{+(q) U;(I»Q) 5

-1



W (aeq) = 5 () + adg) wf(ag) . a7 (evg) = N (@ U7 () (29)

UE(z,q9) = ci (,9) Felp,n) + 57 (2,9) Ge(psn) - (30)
The cotangent of the phase-shift é,(¢q) and the normalization factors NE(gq) and a.(q)

providing the asymptotics (25) are defined as the limits

A(q) = lim A(z,q) (31)

T—00

of the relevant functions A(z,¢) given by

cotan &(z,q) = cj(:z:,);)/sj(z,q), / (32)
2 2\ ¥1/2 -

Nf(z,q) = ((C?(x,q)) +(52L(I,q))) , (33)
ar(z,q) = —cf(z,9)c;(2,9) — 57 (z,9) s7 (2, 9) - (31)

By definition, the amplitude functions obey the Lagrange identity [21]
Folp,n) 0xcE(z,q) + Ge(p,n) Ocsf(z,q) = 0

and satisfy the two sets of the ordinary first-order differential equations (the first one for

¢, s} and the second one for ¢, sg )

c(za) | VU (x +Ge(p,m) 35
. ar{ (@) }"q Vv ’q){ —Filpym) )

with the corresponding asymptotical (z — 0) boundary conditions
+ y £ +G N .
o | )i, q—‘/ vy rem | T Y )
st (2,q) 0 0 ~Fe(p,n)
e (z,q) ~ c;(z0,q)+q" / V(t)Gi(p,n)dtL,
z0

sp(zq) ~ 1—q°! / " V(1) Felpn) Gelprm) dt (37)

that ensure the asymptotics (24) of functions (29). In (36) and (37), p = tq and if
V(z)GF(p.m) € Ly, then 7o =0 and ¢ (0,¢) = 0, otherwise zo is an arbitrary, however
fixed paramecter so that zo > z and zog < 1. In this special case, the value c; (20,q) 1s
defined from the Wronskian relation

f (z,9) 57 (z,9) — ¢7 (2,9) 57 (z,9) = 1 (38)
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for problem (35)-(37) as follows. The values ¢} (zo,q) and s7(zo,q) found using (36)
and (37) are substituted into (38). Then the obtained equation is resolved in respect to
¢; (20,9).

So, for constructing the solutions uj of the initial problem (23)-(26) by formulae (29)
and (30), one should solve problems (35)-(37) and then find the limit (31) for each func-
tion (32)-(34). Equations (35) are the linear first order differential equations. Such
equations are comparably simple [23] for the analysis using various asymptotical meth-
ods [29, 30}, e.g. using the method of separating of an argument from a parameter. To
apply this method to the total problem (35)-(37), we should firstly represent the Coulomb
functions as series of (27). Therefore, we will rewrite the two known formulae for these
functions in the form that we need.

2.2. The Coulomb functions
In nonrelativistic quantum mechanics {5], the Coulomb functions Fy(p,n) and G(p,7)
with real n > 0 and integer £ = 0,1, ... are well-known as the exact regular and irregular
solutions of the Schrédinger scattering problem (23)-(25) with V = 0 and the repulsive
Coulomb potential V¢ = 27/p. ‘ ‘

As was shown by Lambert [31], the function G, is the sum containing the entire
function O, of the squared scattering momentum (42) and the function F;. We rewrite

this sum (Eq.(3.25) of Ref. [31]) as

Gelp,n) = Gelp,m) + h°(q) Felp,1),  Gelpin) = Ou(z,4)/CHa), (39)

Ci(q) = q'Celn), h°(q) = h(n)/qCo(q), : (40)

where Cy(n) and h(n) are given by (9).

The known Bessel-Clifford expansions (see the formulae 14.4.1-14.4.4 of [7]) for F,
and G, are the infinite series in the polynomials b,(n) of k2 and the modified Bessel
functions I,(z) and K,(z) of the variable z = 2z'/2. Combining the terms with the same

k-dependence in these series, we obtain the series in the form of (27):

Fep,n) = qCelq) Y ™" fen(2) s Gelpyn) = C7H (@) Y 4% gen(2), (41)
2 fea(x) — o—2n - m1 Lpmii(z)
=2 Apn 2 P N 42
{ 21+ 1) gen(2) } m;n { (=1)™™ Katyms1(2) } “
9



where the coefficients a,,, are energy-independent and obey the recursive chains

(m =2n,...,3n for each n =1,2,.. .) of equations
2m Anm + 2(2[ + m) An—1,m-2 + An-1,m-3 = 0 5 (13)

in which ago = 1 and apm =0, if n > 0 and m < 2n or m > 3n.
The finite sums (28) S™M) = F}M), GgM) of the series S = Fy, Gy of (41) can be casily
constructed via (41)-(43). As is known in WKB-approach [29], the estimates [7]

OD Fyp,n) = O(¢M > Culq)),  MGelp,m) = O(4"*?/Celq)) (44)
of the residual terms of these decompositions are uniform in p, if
p < pi=n(1+(L+LL+ 1)/, (45)

where pS stands for the Coulomb turning point.

In the above case of V = 0, the solutions uf = Fy and u; = G¢ of problem (23)-(25)
are related by (39) and the functions F and @, = G, are series (41) in even powers of the
parameter ¢ and functions (42) of the variable z. Do the solutions u of problem (23)-(26)
have the analogous properties in the case V' # 07 How can one generalize the Lambert
and Bessel-Clifford representations in this case? In further, we will answer both thesc
questions for the potential V obeying (26).

2.3. Amplitude functions
According to (39)-(41), the Coulomb functions contain the factors h(q) and Cy(q) with
nonanalytical g-dependence (In(n) and exp(—=/27) ). Evidently, the objects of that na-
ture should generate the nonanalytical terms or factors in the sought low-energy cxpan-
sions for the solutions of problem (35)-(37). Hence, to construct these expansions, we
first have to resolve an essential problem: How to separate explicitly all the nonanalytical

terms and factors? For this purpose, we use the special ansatz
¢t (2, 0) = & (2,9) = h(g) 5¢ (<, 9) (46)

for cli and look for E?: and sli as the series

) | _ ] @@) T ] @) i
s (z,9) (4CH(g)) " ;q st(z) | o
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Now, we substitute " and G in the form of (39) and (41) and c[i and s¥ as (46) and (47)

into (30) and (35)-(37). Then, separating ¢ and z in the obtained relations. we derive the

representations

Uf(z,q) = ¢"PCE(g) Y ¢ Uk(),
n=0
Ui(@) = Y (cEu(@) fem(a) + 5E0(2) gem (7)) (48)

m’4+m=n

and obtain the infinite (n = 0,1,...) set of the equations

+ .T T
ar cln( ) — V(I‘) Z l/[j:n,(l') +glm( ) (19)

+
sln(‘r) m/+m=n “flm(-T)

. . . 4 + ..
for the new sought functions ¢, and s, and the explicit formulae

(‘}tl(-l') - énO n Z /:‘ V(t)f (t) +gfm(/) d .
82";1,(1:) 0 mit+m=n o o —ffm (1) " (OO)

@@ ~ bt 3 [ VO gl gm0

m/+m=n
@) ~ b= 3 [ VO S gl (51)
m'4+m=n

describing the asymptotics of these functions as 2 — 0.

In (50) and (51), énm is the Kronecker symbol, zo = 0 and 0 =0 V() €
E[lo,b]v otherwisc zy is an arbitrary, however, fixed parameter so that & < vy < 1.

LEmploying the Peano theorem [23], one can show that problem (19)-(51) for ¢}t . s}
(or for ¢,, sg,, in the case of ¢ (0) = 0) has the unique solution belonging 1o the CE(’, )
class of functions. In the case of |c, (0)] = oo, an appropriate and unique set of .th('
functions ¢, and s, is constructed by using the special recipe [32], which is based on the

hift of boundary conditions. In our case, this recipe is realized as follows. We find the

values cf (o), s£,(z0), and sz, (zo) by solving (49), (50) and integrating (51). Then. we \

substitute these values in the relation

Z (C;'m,(a‘.) sg (2) — o () szn(:l')) = S,,(, R .

m!4+m=n
which we derived by inserting (47) into (38) and subsequent separating g. As a result. we

obtain the equation defini - T > i = - N
1 fining cz,(w0). Thus, we find o lTo) and sy, (ry). For r < ry. we

L1



represent the functions c7, and s, as (51). For # > 1y, we define them as the solution of
Egs. (49) with the boundary conditions at z = zo > 0.

Let us discuss the structure of the total problem (49)-(51). Lach particular (n =
0,1,...) problem of (49)-(51) for cj,, s, (or for ¢, s,) with the fixed n contains neither
¢ nor c}tm., sfm at m > n. Moreover, Egs. (49) for cfn, sfn and c}fﬂ, sE at n # m
differ only by the inhomogeneous terms. Duc to this structure of the total problem (19)-
(51), some analytical properties of ¢ and s (for example, their asymptotics as ¥ —
sc) could be established by induction and, moreover, the calculation of c}tn and Si at
n=0,1,...,M < oo is reduced to the subscquent (n = 0,1,.. ., M) integration of the
coupled pairs of Egs. (49) written in the increasing order of the index n and completed
with the corresponding boundary conditions (50) or (51). Hence, both the analytical and
numerical investigations of the finite sums of series (47) can be easily performed. However,
mathematically, these series are only the formal asymptotic expansions [29] with the form
of (27). Hence, to complete the study, we have to find the sufficient conditions for the
approximations S = S™) and estimate the residual terms Mg,

For these purposes, we decompose the series S = Ef, s of (47) as (28) and reduce
problem (35)-(37) for ¢f, s§ (or for ¢, 57) to the two mutually coupled problems: the

problem (49)-(51) for ¢/, s, (or for ¢, s7,) at n < M and the problem for

(M), (gt
(or for My (M7 The latter, being written in a more compact way, has a form of the

two sets of cquations

(M) I e ) {
=0 s (1 VU; - 0; sy (0 (52)
( )Se —Fg Se
with the corresponding boundary conditions
Mg =5-sM  Ss=ct sF -0, (53)

that can be casily disentangled using (36), (37), (50) and (51).

Now, we reformulate problems (52), (53) under conditions (45) as follows. In (52),
we rcpreé(:nt S-series (27) for Fy, _G'l, c[i, and s[i as the relevant decomposition (28).
Then, we rcplace.F[(M), G’EM) and c}t(M), sf(M) by the sums of the first (M + 1) terms of
the corresponding series (41) and (47). To estimate the residual terms (M, and MGy,

we employ (44) and take into consideration the inequalities Ik |, |sg.| < oo valid, when

0< v <ooandn <M< oo. After the estimation we use the substitution

—1+1)/2
ME(2,q) | e ] (@C2HD) Ty (z,0)

- (54)
s (2,q) (aC3@) ™ 4 (=.9)

and, in the obtained equations for the functions yE and yE, we omit all the residual term

of the order of ¢ as ¢ — 0. Thus, we reduce problems (52), (53) to the asymptotical
(g — 0, zq < pj) equations

vi(z,9) +900(z)
3, ~ folz + geo(z) ¥3 (2)
yzi(:v,II) ( l () gulz)v: ) — fio()
7 (2)
+ V() ! (55)
N #@
with the ¢g-independent functions
% (2) +gwo(2)

() ?fl,M+1( z) cg(z) + gemi1(2) sp(2) ) ()

+ Y Uk +9en (<) (56)

m'+m=M+1 —flm(z)

and explicit asymptotical (g,z — 0) boundary conditions

i (,9) ‘) bom®) |, |
L o (8 dt, (57)
y;($7 Q) m’+mZ=M+1 /0 ( ) ( ) —f[m(t)

yl_(zvq) ~ y($0,4)+ / glm’ glm(t)dt’
’+m—M+1 *o
yp(z,q) ~ — Y / t) fem (t) fom(t) dt . (58)
m!+m=M+1

In (55) and (56)-(58), 7o = 0 and 7 (0,9) = 0, if z=#V(z) € EEO’,,], in the other case, zo
is an arbitrary however, fixed parameter so that z < zo < 1.

Following the known asymptotical method [30], we write Egs. (55) in an integral form
and iterate the obtained integral equations. As V obeys (26) and fon, gen of (42) and 2
of (56) are finite, when 0 < z < oo, the iterations of these integral equations converge

uniformly on the finite interval 0 < z < pg. Therefore, all the functions y¥ are limited on

13



this interval and do not identically vanish as ¢ — 0. Hence, if ¢ — 0 and gz < pS. then

the residual terms (54) can be estimated as

Mci(x,q)
sy (x,q)

(aCH)) ="

— 2M+2
B O<q (¢CH(q)) =V

(59)

2.4. Wavefunctions
Substituting U of (48) into (29), we obtain the desirable formal asymptotic expansions

for the wavefunctions:

) > UL (), (60)

n=0

0)" Y U, (61)
Vi) = Y (ko) fom(@) + stn(@) gen(s) ) - (62)

mi+m=n

uf (z,q) = qCil(q) N}

iy (z,q) = (Celq) N}

Let us analyze the structure of the obtained expansions (60)-(62). The representa-
tions (41) and (60) for F, and u/} are completely identical in structure. They are the
products of the factors qCy(q) and ¢C¢(q)N, (¢) (depending only on ¢) and the infinite
series. The latter contain the integer powers of ¢* and the functions fe, and U} of x.
Therefore, gCi(q) N, (q) and U} are the analogues of qCi(q) and fy,, respectively. The
representations (39) and (61) for G¢ and u; have also the identical functional form. They
are the sums of the two terms. The first terms, i.e., G; and its analog %, , being divided
by Ce(q) and Ce(q) N; (g), respectively, turn out the entire functions of g% The second
terms, i.e., h°(q) Fy and its analog q,(q) uf, describe the admixture of the regular solutions
Fy and u} into the irregular solutions G, and uy , respectively.

Thus, we generalized the Lambert and Bessel-Clifford representations in the case, when
the total potential V4 V' contains an arbitrary nonzero term V obeying (26). However,
the question concerning the approximation S =2 S™), where S denotes the infinite series
u} and @y of (60)-(62) and StM) is the finite sum of this series, is still open. To answer
this question, in (29), we replace each series (41) and (47) for S = Fy, Gy and S = &, sF
by the relevant decomposition (27). Employing estimates (44) and (59) in the equalities

Mug = NE(OOFEGMD 4O G0 400 b 10D 52 G,

2M+2 0
(1£1)/2v+1 2nyrt

£ gUCE S0 U ) + oM+

n=M+1 ¢ Uy
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thus obtained. we find that condition (45) is sufficient for both the approximations

A s ¥
uf ~ uﬂ D and TP u[( ) with the absolute accuracy

Myt (z,q) = ()(q”’+3 Cg(q)) and Miz(z,q) = O(qz“”?/(‘/(q)) .

M L (M : . .
As we have shown, the sums uj(‘ ) and u(( ) can be found in practx(‘o by using the

following algorithm: calculating C¢, fen, and.ge, (n = 0,1,.... \l) using (9) and (43):

+

solving the recurrence chain (n = 0, 1,....M) of (M + 1) problems (49)-(51) for ¢/,-

st and then lor cg ., sp; constructing UE using (48); solving problem (35)-(37) for <.
st and then for ¢, s;; defining NF and a¢ by using (31), (33), and (31). and. finally.
constructing u,HM) and @iy ™ via (60) and (61).
In further. we will clarify how expansions (17) and (60)-(62) earlier proved can be
applied.
3. Effective-range function
To present. all our [ormulae in a more compact and uniform way, we introduce two mutually
coupled superscripts a and @’. The symbol A (x, q) with the superscript ca and a = s. 11«
stands for the considered function A(z,q) describing the scattering for the sum 1 with
the same a = s,{,ls. The symbols A*'(q) with the superscripts @’ = c.s. a = c.l, and
o = ¢l, s containing the comma will refer to the contributions 8 (k). b';‘l(k). and 5:’1“"(/\‘)
to the total scattering phase-shift §*(k), corresponding effective-range functions Ki*.
and 1\'51'5 and the coefficients of their asymptotics that now we want to derive. First. we
cousider the case, when the potential V obeys (26) and rapidly vanishes at large distances.
3.1 Short-range potential
Let V = V*, a = cs, and @’ = ¢, s. Using (40) we rewrite the Coulomb-nuclear eflective-

range (unction (8) in the more convenient and dimensionless form
K¢'(q) = R KE(E). (63)

Lel us now prove the asymptotic representation

M
K7 th K& +0(¢*M?), M<oo, g—o0. (6:1)

n=0

the formulae [or its three first coeflicients

\[0 = cm‘(oo)/a *(o0), 1\[1 (c“(oo) I\?o sh(00)) sk (2

1";2 = (C£+2u(°°) 1‘(0 “12 *(o0) — [\11 q11 % (o0 ))/sfuq(w)v (63)



and. finally. the relations

’ 27 ra' ’ 12, ral ’ - su' + .
af = —RVKG, rs, =2RVVKE O P = —RYUKYL [y (66)

defining the Coulomb-nuclear scattering parameters (a' = ¢,s) as the simple algebraic
combinations (65) of the limit (z — co) values ¢;*(c0) and s3?(00), of the functions ¢},
and s}, obeying problem (49), (50) with V = V* and n =0, 1,2.

To begin with we, expand the half-axis R* in the point
b=bg)=z2=(sla), 2/3<p<1, (67)

on the inner (z < b) and outer (z > b) regions. By this definition, b depends on ¢ and
b/z. — 0, while b — oo as ¢ — 0. Hence, when ¢ is sufficiently small, relations (45) and

(59) are valid in the inner region and the integral (26) satisfies the inequality
Li(b,z) <InV3 (68)

in the outer region. Under this condition, perturbation theory of Ref. {1] can be applicd
to Egs. (35) at = > b. Now, we sketch the scheme used for constructing of this theory
and recall some key formulae. It is necessary, because to analyze problem (55)-(57) we
will follow the analogous scheme. '

In [1], using the substitution

E(z,9) = exp(+Bau(bz,9)) vi(z,q),
sy(z,q) = exp(—Bu(b,z,q)) yi(z,7q), (69)
Ba(b,2,q) = ¢~ / “V(t) Epn) Golpyn) dt (10)

I2qs.(35) with the boundary conditions shifted to ¢ = b were reduced to more simple
equations, which were rewritten as the integral Volterra-type ones [33]. The integral

cquations were iterated in the outer region. The Klarsfeld inequalities [34]
F(p,m)/q < z(27/(2¢ +1))'/?, (1)

[Fo(p',n) Gelpy )| < 272’z /(20 + 1)), pl=qa' < p=gqz (72)

were used as the key ones to prove the uniform convergence of the iterations under the
conditions (26) and (68) and to esiiinatc the convergence rate of these iterations (see

bounds (35) in [1]).
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Now. we substitute V, f, and b given by (1), (26), and (67) to the above bounds and

use estimates (59) taken at z = b. After the simple transformations, we find that for
z>band ¢ — 0

(¢t (2,0) — < (5,9 1s£(2,) — sF (b a)| < O exp(—pRe™) )

(67 (2,0) — < (b,o)] < O Cr* (@) exp(~2uRa™) ) (73)

Then, we study problems (49)-(51) with the fixed n consequently (n=0,1,...). We
use the scheme which is slightly different from the given above-mentioned. There are
only two differences. First, for the substitution we use an analog of the zero-energy limit
(g = 0) form of (69)
ct(z) = exp(+Bu(b,z,0)) v1a ()

e:zp( _BIS(b7I,0)) y;n(x) 3 - (74)

il

52 ()
where, owing to (41) and (70),
Bes(b;,0) = l ’ V(1) feo(t) geo(t) dt .
Second, as the key inequalities, we use the bound relation
/t FE@) V(£ dt < |VoR/4x|b'/* exp(—pRb+ 26'%),
b

which is valid due to (1) and the asymptotics of fwo(z) at z > b > 1. And finally, we
making in use also the limit form of (72), i.e.,

1/2

|fzo(1') gro(z)] < (2n2'z/(20+1)) " .

By induction, we prove that, for all z > band n < oo, all the functions yE are finite and,
. . i
moreover, we find the explicit estimates for the differences yi(z) — y&,(0). These results

allow us to conclude that, for all z > b and M < oo, functions (74) are also finite and are

so that
- ~t
|Cfn($) — & () <0 (q—(6M+1)p exp(-—uRq“2” +-2q"’)) . | (75)
|55 (z) = s7(0)]

Therefore, for each finite sum SM) = Ef(M), s,i(M) of series (47), one has the corresponding
asymptotic (¢ — 0, = > b) relation:
0 (@, q) — &M, = o (¢ (aCH@) )
5500z, g) — sEM (G, q)] = o (4P (4CHa) V) . (76)

17



As the next step, we write each residual term M) S of series (47) as the identity

(M)S(zaq) = (S(Iv Q) - S(ba q)) + (S(b’ q) - S(M)(bvq))
+ (5™(b,q) - 5™(z,q)) .

Then, we estimate three differences included in the brackets by means of (73), (59), and
(76), respectively. As a result, we find that estimates (59) are fulfilled for any M < oo
and all z > 6.

Now, we substitute ¢ as the sum (46) into (32), decompose series (47) for the functions
&} and s} as (27) and take z — o0o. As we showed early, in this limit, the functions ¢, and
$7, are restricted and estimates (59) are valid. Therefore, the above limit is transformed

to the asymptotic relation

cotan 57(g) = (4 GF(a) ) ( ool 4 o(amen)) ey

( Yoo 4¥"s7(0)

which ensures the desired formulae (64) and (66). Comparing them with the standard

expanusion (11}, we find relations (66). Thus, the calculating three Coulomb-nuclear scat-

tering parameters ay”*, rg;, and P;"* is reduced to the consequent (n = 0, 1; 2) integration

of three energy-independent problems (49), (50) with V = V. As we will show in further,

for V = V*, the recipe for calculating the modified scattering parameters is complicated.
3.2. Sum of long- and short-range potentials

Now let V = V!4+ V* where V* vanishes as (41) and V* has the long-range asymptotics 3)

with d > 3. Let us prove that the function l

K:(0) = (CdaNE (@) (gcotan (a) + gale) ) "

is related with the modified effective-range function (19) by (63) and has the asymp-

totics (64) with coefficients (65), where now a = cls, ' = ¢l, s and ¢}%*(c0), 552 (00) are

some finite values, which will be determined in the proof. .

. We will solve the initial problem (23)-(26) with V = V% step by step. An idea of the
two-step solution was mentioned in [17] and discussed in a more detail way in [15]. Her
we now realize this idea as follows.

+el

As the first step, we find the auxiliary wavefunctions u} *

, which are the solutions u}
of problem (23)-(26) in the case of V = V' a = ¢l, a’ = ¢,l. To construct these solutions

and their low-energy expansions, we apply the method described in Sect.2.
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Using this method. we obtain the representations

utd(z,q) = N UF(2.q) s

.~ r—cl pr—cly .
up(z, q) = iy (z,9) + of (QJuf(x,q) . ag(z,9) = N "V (x.q).
UE e, q) = E (@, q) Filpom) + 577 (2,) Gelp. 1) » (78)

+el
where the amplitude functions ¢,

lems (19)-(51) with V = V! and the factors NEY(q) and af'(q) are limits (31) of the

and sf  stand for the solutions & and st of prob-

relevant functions (33) and (31). Let us notice that, according to (25). the Wronskian

relation for functions (78) reads as
- . 1 o el o\ . (7
u; Nz, q) Duf(x,q) + ut(z,q) Ozu;%(2,9) =q. +20. (79)
Then, we construct the low-energy expansions

M c 2 +c1
uf(z,q) = qCelq) N} (q an(]in z

n=0
c n —cI
a7z, q) = (C(q)N“ Zqz Upt(a
n=0
U;‘:f’(z) = Z (Cf,il( r) fem(x )+91m'(1)gfm( ) (80)

mitm=n

in which the functions c[ind and si¢ are defined as the sotutions cE and s,i” of prob-
lems (49)-( 51) with V = VL

In the sccond step, we reformulate the initial problem (23)-(25) with V" = VU by using

a generalized linear form of the variable phasc approach [18] as follows. Ilirst. we write

the asymptotics (25) for the sought function u®, a = cls in the form corresponding to

decomposition (14) of the total scattering phase:

s ¢ . s Y
Wt (z,q) ~ cos&? (@) uf(x,q) + sin & (@) uy " (r.q)

~ sin(p—7nln2p+ 55 (q) + 6;['3((1)) ., r—o00. (81}

i o asic tions instead of F and
Then, we use the found functions w7 and w;“ as the basic functions instead P

1s
G, vespectively. We look for uf™ as

W (a,q) = NP UF ()
Ut (o) = (e ) ui (o) + 57 g ). (¥2)
19



where. by definition. the generalized and sought amplitude functions ¢f* and sF%* obev

the Lagrange identity

Duct (z,q) uf(z,q) + Oesf* (z,q) u;%(z,q) = 0. (83)

23

Subsmulmg (82) mito {23)-(25) and taking into consideration (79) and (83), we prove

that the above amplitude functlons obey the equations

+cls —ecl
p g (z,q) “11/s ols +u, (=,
%\ =g V() U (2,9) ‘ ,( Y (81)
s¢7°(2,9) —uf“(z,q)
and the simple boundary conditions ¢f* = 1, s = 0 at z = 0. Comparing the

asymptotics of wavefunction (82) as £ — oo with its required form (81), we find the

relation defining the relative phase-shift 6;1‘5(q):
cotan &*(g) = lim (2, q)/s}(z,q) - (85)

To separate explicitly the nonanalytical terms in the low-energy expansions for the

generalized amplitude functions, we look for them as

(2, q) = & (z,9) — a§(q) 57 (z,q) (86)

cls n +cls
+ (I q) = Zq2 CZII(I),

n=0

q(cl N+cl Z q2'n Sz;lcls (87)

i

+cls( T, q)

Substituting (80) and (86), (87) into (84) and separating z from ¢, we arrive z.xt, the

recursive (n = 0,1,...) equations

+els —cl
rI Ciy;[s(x) - Z U+c(s +Ulm (.’E) ,
s (z) mipm=n ~Ujt(z)
Ul-:cls(l_) C = Z (UI-I—CI(I)C-}-CI.;(:C) + U_CI(I) S+Cls($)) (88)
m’/+m=n )
for the functions ('+°[’ and 57 and define their appropriate boundary values as

G0) = bpo,  sEP(0)=0. (89)

Using the iteration method [23], one can prove that all these functions are limited on

R*,if V* obeys (41). We omit the proof of this statement, because it is too curnbersome

20

and rather tedious than interesting. Moreover, this proof actually repeats those given in
Subsect.2.3.
To come to our main goal, we insert c;<* of (86) into (85) and let & — oo. The

obtained limiting relation is easily transformed into the desired formulae (77). The letter

~+cls +cls

defines the dimensionless effective-range function in terms of the functlons & and s;
taken at = = co. Expanding series (87) as (27); we prove relations (64) and (65), in which
a = cls, a’ = cl,s and ¢;*(00) and 5% (00) are the limiting values for the solutions of

problems (88), (89). Comparing (19) with (77), we find the relations
Ci(n) = Ca(n) NF*(a), k() = ki (q) (90)

and formulae (66) for the modified scattering parameters with superscript @’ = ¢, s.

Now, we can answer the questions that have been unsettled in [17].

First, it should be emphasized that definition (22) suggested in [17] for the modified
scattering length is not quite correct. In fact, this definition does not contain the normal-
ization factor caused by the long-range potential in the Coulomb field. According to (64),
(66), and (77), the correct definition of the modified scattering length is

i = ~ Jimtan &2 () [ KCK Cen) N (K) ] .

This definition differs from the Bencze et al. [17] relation (22) by the existence of the
squared normalization factor N} Owing to estimates (37) of Ref. [1], this factor is
close to unity, when V* is sufficiently small. Only in this case the relation (22) gives an

1,
approximate value of ag”’

As we have shown, to calculate C§' and A§ from (19) using (90), one should solve
problem (35), (36) with V = V! and find limits (31) of the relevant functions (33) and
(34). In our method,the calculation of the modified scattering parameters is reduced to
the consequent solving of problem (49)-(51) with V = V!, n=0,1,2 and problems (88),
(89) with n = 0,1,2. All these problems are the energy-independent linear differential
equations with simple boundary conditions. The practical solution of these equations does
not met any certain difficulties and, moreover, can be performed with a high accuracy.

4. Concluding remarks '
Our main results are the following: the algorithm for constructing the analogies of (61) and
(60)-(62) to the Lambert (39) and Bessel-Clifford (41) representations and formulae (77),
(90), and (66) for the modified effective-range function (19) and nuclear scattering pa-

clys _cls cl,s
rameters a; °, rg;” and P,
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ans- aHanmuqecxoro ¥ YHCIIEHHOTO uccnenosauuu pa:mwmbtx Huaxoaneprerm
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Pupyshev V V ,
“Low- Energy Expansnons
for the One Dlmensronal Shrodlnger Scattermg Problem

The regular and 1rregular scattermg wavefunctlons for the superposrtlon
of the’ repulsrve ‘Coulomb’ potential and the central potentlal that decreases more
raprdly than the centrifugal one are represented as an infinite. serie$. wrth the distance.
rand momentum separated The constructing of the " finite- sums . that uniformly:
approxrmate these “series “under’’ well defmed condltrons 1s reduced to solvmg
the srmplest differential problems G : ; ~ :
The‘derlved representatlons of the wavefunctrons can be successfully used
for analytlcal and numerlcal treatments of varrous low energy asymptotrcs m two-
‘bady collision problem : ' o
A specral attention is pald to the concept of the scatterrng length and constructlon
of'the ‘modified effective-range funchon for the: scattering by the superposmon
of the repulsrve Coulomb and long- and short-range potentlals SRR
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