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1. INTRODUCTION 

At present, one of the most complicated 
problems describing heavy ion reactions 
arises from the fact that there is a high 
probability for excitations of more than 
100 MeV. At these excitation energies the 
level density is too large to use, e.g., 
the quantum coupled channel method for prac­
tical calculations. The simpler distorted 
wave Born approximation cannot be used 
because individual cross sections for certain 
par~ial waves are so large tha~ the Born 
approximation fails to work. To overcome 
these difficul~ies, method of quantum sta­
tistical mechanics has been applied recent­
ly to the problem of heavy ion reactions. 
From the quantum many-body ~quation.of mo­
tion of two colliding heavy ions a classi­
cal description or the motion of nuclei is 
derived by introducing dissipative forces, 
as, e.g., a frictional force/I-9

/. 

For instance, Beck and Gross 111 and 
Gross /~started with the general many-body 
Sch rod inger equation for coll idi:hg heavy 
ions and deduced a classical equation of 
motion including a frictional force. The 
resulting classical model reproduces many 
general features of deep inelastic colli-, 

. h . 13 91 sions between eavy ions' · · · 
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A more detailed theoretical formulation 
of the same ;iroblem has been given by Hofman 
and Simens 18 who started with the linear 
r~sponse theory to construct a differential 
equation for the relative motion, in which 
the nucleonic degress of freedom appear 
implicitly as dissipative and conservative 
forces. 

On the other hand, Kan and Griffin 14•6 1 
started with a non-linear time-dependent 
SchrBdinger equation to describe a quantum 
system with friction. In their formulation 
a priori a frictional potential proportional 
to the velocity potential of the wave func­
tion is added to the usual Hamiltonian. 
A classical dynamical model including dis­
sipative forces also has been considered 
by Bendorf, Sobel and Soeker (se~7/ and 
further references therein). 

In spite of the fact that the origin and 
nature of the dissipative forces seem to be 
well understbod there exist no quantitative 
estimates for the dissipative forces start­
ing from a reasonable semi-microscopic mo­
del for the description of colliding ions. 
Here we intend to put forward such a formu­
lation of the problem. Using a model fami­
liar from the nuclear structure calculations 
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to describe the intrinsic nucleonic degrees 
of freedom, some problems in deriving the 
effective equation of the relative motion 
containing dissipative forces are investi­
gated. 

Especially, if the effect of the_. -coup­
ling of the relative motion on the intrinsic 
nucleonic degrees of freedom is treated we 
should distinguish between processes which 
have a very short relaxation timer and pro-

4 

cesses which relax only very slowly during 
the collision time t coll 

In the first case(r «tcoll) it is pos­
sible to deduce a frictional force propor­
tional to the velocity of the relative mo­
tion/81.To this end it must be assumed that 
the considered nucleus is heated up duririg 
the collision process and that its tempera­
ture T changes very little during the rela­
xation time r. 

However, as we will see later not all 
dissipative processes can be expressed in 
such a simple form. Especially, those terms 
which give non-vanishing contributions to 
the dissipative force for T=Omust be worked 
out in detail, and terms which are not local 
in time must be discussed more rigorously. 
We hope to give some clarifying discussions 
in this paper. 

Another problem is, the treatment of pro­
cesses with a long relaxation time (r»T coll),_ 
e.g., the slow collective motion. Hofmann 
and SiemensJ8/ proposed that the slow collec-

• • I • tive motions should not be considered as 
friction, but must somehow be taken into 
account explicitly. In t~is work, we pay 
a special attention to the contribution of 
the slow collective motions to the dissipa­
tive processes which seem to be important 
in the (phenomenological) model calculation 
of nuclear friction/3,9/, 

To make the whole problem rather trans­
parent, we consider collective (large rela-
xation time, r>> t c ) and non-collective 
(r«tc) excitation modes _in a simple model. 
In section 2 we use the equation of motion 
to find the time dependence of the relative 
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coordinates and the operators describing 
the inner motion and to get an expression 
for dissipative force. 

In Part II a more rigorous formulation 
of t~e probl~m is given by using the m~thod 
of Zubarev-McLemnon to construct a non­
equilibrium statistical operator which 
solves the Liouville equation. Concluding 
remarks can be found in Part II. 

2. DERIVATION OF A CLASSICAL EQUATION 
OF RELATIVE MOTION OF TWO COLLIDING IONS 

2~1. The Quantum Me~hanical Description 
of the Szstem 

To simplify the subsequent derivations 
and discussions we do not take into account 
the intrinsic structure of one of the col~ 
liding ions that means, we consider the des­
cription of the inelastic collision of the 
mean field of the first ion with nucleons 
of the second ion producing excitations 
of the intrinsic degrees of freedom in the 
second ion. Effects which are connected 
with the possibility that nucleons of one 
nucleus could be scattered by the nucleons 
of the second nucleus are not taken into 
account in our considerations. Such an ap­
proach seems to be possible when the col­
liding ions do not overlap too much. The 
total Hamiltonian H suitable to our problem 
takes the form: 

" " " H =HR+ H0 + V 
Int ( 2 .1) 

where I-fil is the Hamiltonian of the relative 
mot ion, Ho describes the internal motion 
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of the nucleus and the coupling between the 
relative and internal motion is given by 
½m .In more detail we have: 

" 2 H =- h ➔ 2 ➔ 
R 2M VR+U(R), { 2. 2) 

➔ 

where UR)is the empirical nucleus-nucleus 
potential given by the real part of the 
average optical model potential and M 
stands for the reduced mass. The Hamiltonian 
of the internal motion is written in the 
picture of elementary excitations described 
by phonons in the form: 

" + + + + H =!w.b.b.+! W.k 0 (b.bkbf +bobkb. )+ ... , 
0 j J J l j kf J L J r J 

( 2. 3) 

where b;(b.) are the phonon creation (destruc-
. ) l . tion operators. Higher order terms are 

neglected in (2.3), however, if occasion 
arises we will have _in mind that in (2.3) 
there is an infinite expansion series in 
!erms of phonons. The interaction part 
takes the form 

4 

H. = ! V. (R)( b~ + b. ➔ + - + -
)·+ ! V.k(R)(b. +b.)(bk+bk)+ 

mt j J J J jk l l J 
( 2. 4 ) 

➔ +- +- +-
+! v.kp(R)(b. +b. )(bk +bk )(br +br )+ ..• ' 

jkf l l J 

where bi denotes the time conjugate opera-
tor of bi . ,.. 

Due to the interaction part of H0 the 
phonon excitations have a finite life-time 
which we will denote by r i • If we consider 
the behaviour of different phonon modes 
during the collision process we must dis­
tinguish between two cases: modes with 
a life-time which is comparable or larger 
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than the- collision time (ri >-.t coll ) and 
modes with a very short life-time (ri «tcoll). 

In the first _case (ri >- tcoll ) we will 
call the modes collective ones. It will be 
proposed, that these collective modes are 
located in the discre~e low-energy part of 
the eigenspectrum of Ho . 

In the second case (ri «tcoll ) we will call 
the modes non-collective o~es. The energy 
spectrum of these non-collective modes has, 
besides the discrete part, large contribu­
tions from the ~ontinuous spectrum, too. 

Because of the different relaxation pro­
perties the'effect of Vint on these two 
types of excitations (collective and non­
collective) must ~e considered separately. 

Our aim is to obtain an effective clas­
sical equation for the relative motion of 
two ions. Such an equation of motion can 
be deduced rather easily by starting with 
the Heisenberg equation of motion for the 
operator R: 

➔ aR i ➔ ih ➔ 
at'."'li""[H,R]=-v VR ( 2 • 5 ) 

2 ➔ • aR i ➔ 1 ➔ 1 ➔ ➔ 
--:---;r = i- [ H , R ] = - - V RU (R) - - V RV . (R) at n · M M rnt 

( 2. 6) 

and averaging over the intrinsic degrees of 
freedom of one nucleus which structure is 
described in our model by phonon-excitations: 

a2i ➔ ➔ ➔ ➔ ➔ + -
M --2 = F = - V RU (R )- [ I V RV .(R) < b . + b . > + 

at i 1 1 1 

➔ ➔ + - + - ➔ ➔ (2 7) 
+ I VRV.k(R)<(b.+b.)(bk+bk)>+I VRV.ke(R)x . 

jk l J J jke J 

+- +- +-. ➔ ➔ 
x <(bi+ bi )(bk+bk )(be +be)>= Fl +F2 

➔ 

where the effective force F contains, be- ➔ 
➔ ➔ 

sides ~he usual conservative force F1-=-VRU(R) 
terms (F2) which are d_ue to the coupling of 
the relative motion to the intrinsic deg­
rees of freedom. It was shown~~~/ that 
➔ 

F2 contains among further correction to the 
usual force a dissipative one which is 
connected with the irreversible energy 
transfer from the relative motion into the 
intrinsic motion of the nucleus. In other 
words, we have constructed a differential 
equation for the relative motion of the 
ions, in which the nucleonic degrees of 
freedom enter implicitly in terms of dis­
sipative and conservative forces. 

Note, that in (2. 7), the function Vik(R(t)) 
which depends via R(t) on time, is still an 
operator in the space of the relative mo­
tion. To obtain the classical limit which 
we are interested in eq. (2,7) must be 
averaged over a wavepacket 10>. This wave­
packet has to be· so narrow that for any 
operator O(R ,P •) the following relation 

,.., ➔ ➔ " ➔ ➔ 

<I o < R, P) I > = o ( < I R 1 > , < I P I > ) ( 2. 8) 

can be used. 
To obtain the effective equation of mo­

tion in more detail it remains to solve 
the Heisenberg equation of motion for the 

+ operator b(b) and to average the procedure. 
Of cource, this can be done in an approximate 
way only. In the next section we are dealing 
with the non-collective modes, while in 
section 2.3 the collective modes will be 
discussed. 
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2.2. The Treatment of the Non-Collective 
Modes 

To obtain a➔ more convenient expression 
for the force F and to extract the dissi­
pative part we must know equation of motion 
for the operator b1(bi ). That can be done 
by using the corresponding Heisenberg 
equation of motion, which in our approach 
is given by: 

+ 
ih db (t) 

dt 

+ + + + 
=w.b. +I Wok. bo bk+2IW.kn bnbk+V.*+ 

J l fk L l L kf l L t J 

- - + -
+ 2; vjk (b\ +bk) +3 ~ wjkf (b: +bk )(be +be) . 

The solution for the latter equation can be 
of an approximate nature only. We envisage 
it in the form: 

i --w. t 

b ~ ( t) = C .( t) e h 
1 

J l 
(2.10) 

where the function Ci (t) in a perturbation 
treatment of the problem takes the form: 

i , 
+ · t -w.t 

cl.(t)=b. -~I dt'eh 1 (V~(t')+2IV.k(t')lk,t'I+ 
l n-oo l k l 

(2.11) 

+ 3 I w.kf (t')lk,t' 11 f ,t' I+ ... ), 
kf l . · . 

where we. have introduced the abbreviation 
i i 

-....-<u t + -w. t -
I j , t I = ( e n i b. - .e h J b . ). 

l J 

Solving eq. (2.9) higher order terms of ~o 
have been neglected because in the lowest 
order these terms give no contribution·to 
➔ 

F2-BY using (2.10) and (2.11) we find 

10 

'1•' ,! 

~ 
' 

J 
\\ 

+ - t w. 
(b.(t)+ b. (t)) =lj,tl-J.J dt'sin-1-(t-t')IV~(t')+ · 

l l n-oo h, J 

+2IV.k,(t')lk',t'I+ (2.12) 
k, J . . 

+3I V
1
•k'f(t1lk',t'II f',t'l+•.-•I 

. k'f' 
+ - + - 2 t wk 

(b. (t)+ b. (t))(bk(t)+bk(t))=lj,tllk,t I-,:-- Jdt'sin~t-t')x 
l J n-oo h' 

2 t w 
x I j, t I I Vk* ( t ' ) + ... I- ,-- f dt 'sin--L ( t-t ')I v:i: ( t ')+ ... 1J 2 . 1 3 ) 

n-oo. h l 

X { k,t, I. 

Now we can insert the expression (2.12)­
(2.14) into (2.7) and perform the averaging 
procedure. In the sense of a perturbation 
treatment we take only the. diagonal matrix 
elements. In general, a more complicated 
averaging procedure should give a similar 
result, if one assumes that after the short 
relaxation timer. the phases of the non­
diagonal matrix J1ements are randomly dis­
tributed, so that their sum is negligible 
with respect 4 to the diagonal ones. In so 
doing, the result for the first two terms 
(2.12) and (2.13) is: 

+ - 2 0 w· . 
<b.(t)+b.(t)>=-rfdrsin-h1 rlVj(t+r)+ 

l l n-<X) 
(2.15) 

+ 3 IV , (t+rX 1 +2n ,(t+r)) I 
k, jk k k 

and 
+ - . + -

< ( b . ( t) + b . ( t)) ( bk( t) + bk ( t)) > = o. k ( 1 + n . ( t)) -
l l l l 

8 0 (w. -Wk) ( 2 • 16 ) 
- -h Jdr sin I rlVk (t+r)(n.(t+r)-nk(t+r))I, 

-oo h J l 
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where nj (t') are occupation numbers of the 
non-collective ~tates. In the simplest 
quasistatic approximation we can neglect 
the time dependence in n/t') in the sense, 
that we are considering the nucleus heated 
after a certain tim~ and ni are determined 
by the temperature of nucleus. Or in other 
words, we look at the motion of the colliding 
ions for a rather short time ~t around 
a time t and neglect the change of the nuc­
leus temperature in the time interval ~t 

when evaluating some important properties 
of the whole system of colliding ions. This 
quasistatic approach has been used by Hof­
man and Siemens /B/ and it permits one to 
express the dissipative part.through a term 
proportional to the velocity R .That means 
that the force ¥2 becomes local in time. 
To calculate the effective force we have 
to insert (2.15) and (2.16) into (2.7) and 
if possible to perform the integration. 

As proposed by Hofmann_and Siemens the 
func t i:on Vjk(t+r) in the sec and term of 
(2.16) can be expanded into a power series 
of r around t. In sense of the quasi static 
approach such an expansion is reasonable, 
because the relaxation time ri should be 
small in comparison with the collision 
time tcoll' The expansion reads 

➔ ➔ ➔ ➔ ➔ 

V.k(R(t+r))=V (R(t))+R VRV.k(R(t))r + 
J jk J 

!; ➔ ➔➔ 2 r2 
+ (( R V RV jk) +(RV R) Vik )z- + ... 

(2.17) 

Inserting this expansion into (2.16) and 
performing the integration, we see that the 

12 

first term of (2.17) gives no rise to an 
effective force, because it is proportional 
to a o -function of the type o(w. -u1·i). ➔ A non­
vanishing contribution to the iorce -~ can 
be expected only from ~he next terms of 
(2.17). Especially, the second terms in­
serted into (2.16) yield 

-~~I aVjk(R(t)) [n.(t)-n (t)]f T drsin (wj-<uk) T= 

h jk aR l k -oo h 

~- ➔ ➔ 

=16"h RIV RV.k (R(t))[n .(t)-nk(t}]o' (w. -wk). 
jk J J J 

(2.18) 

As is·seen from (2.18) this term gives rise 
only to a dissipative force for finite tem­
peratures T(t)>O. From the· structure of the 
expression -for the dissipative part propor­
tional to~ it can be seen that the discrete 
spectrum in the lowest order gives no rise, 
because the ~rgument of the o-function is 
never zero. That means that we can expect 
contributions to the dissipative force, 
which is in our ~ase a simple friction _ 
force, only- if in the non-collective excita­
tion there are admixtures from the conti­
nuous spectrum. 

At the beginning of the process, if T =0, 
the main contribution to the dissipative 
force comes from (2.15), 

0 
1.[dr sin(.whi.r)V.*(t+r) (2.19) h-oo J . 

so that the nucleus will be heated up to 
a finite temperature in the initial stat~. 
However, this c ontri but ion cannot ·be. rep­
res eht ed by a term proportional to l,etc., 
because an expansion in a power series as is 
done above (2.18) makes no sense. In spite 
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of the fact that the integral could be 
calculated as soon asVj(t+r) is known, all 
single terms of the power series are equal 
to zero as long as the ground state is sepa­
rated by a gap. After insertion of (2.15) 
into (2.7) the resulting force becomes not 
local in time but contains a dissipative 
part connected with the excitation of the 
internal degrees of freedom due to the time 
dependence of the interaction Vj (t). Finally, 
it should be mentioned that the solution 
of the effective equation for the relative 
motion must be performed in a self-consis­
tent way. That part of the force connected 
with (2.15) is not local in time and must 
be calculated from the whole history of 
the collision process. Also the part is 
~oming from- (2.16) which is proportional to 
It but it depends on the temperature T(t) 
via n(T(t)), which must be determ_ined by the 
history of the collision process as will be 
pointed out in part II. 

2.3. The Treatment of the Collective Modes 

It has been mentioned above that the col­
lective modes must be treated in a somewhat 
different way because their relaxation time 
is larger than the collision time. In this 
case it is necessary to work in an adiabatic 
representation of the collective motion. Then 
we can distinguish more directly between the 
dissipative and conservative part of the 
effective force. 

To do this we neglect the higher order 
terms in Ho and Vint and consider a Hamilto­
nian J{ of the form 

14 

+ J{ = H ' + V ' = ! w b. b. 
0 int j j J J 

+ - + -
+ ! V.k (b. + b. )(bk+bk)+ 

jk J J J . 

+ -
+ ! V. (b . + b . ) . 

j J J J 
( 2. 21) 

Because higher orders in Hoare assumed to 
be small it is reasonable to diagonalize· 
the Hamiltonian by means of a canonical 
transformations: 

+ + -
b j = r ( Ujk f\ + Vik ,Bk) (2.22) 

As a result 

- + - . + -
J{ = ! w. [ R(t) 1,8. /3, + ! V. [ R(t) ](,B. +,8. ) . 

j J I J j J J I 
(2.23) 

The _transformation coefficients Ujk and Vjk 
are time-dependent via R(t) and the resulting 
Hamiltonian J{ (2.23) emerges to have a time­
dependent eigenspectrum. 

The Heisenberg equation of motion for the 
operator ,B: (t) reads 

J " + 
i h ~ = [ H 0' + V.' 

1 
, ,8 +( t) 1 = w. ( t) / ( t) + V .* ( t) ( 2 • 2 4 ) 

d t '" 1 J 1 

and its solution is given by 
+ . t 

,8 .(t)=a. (t),8.+ - .La.(t)f a.(t')V.*(t')dt', 
J J J h J -"" J J (2.25) 

where we have introduced 
. I -t- ( w .( t' )dt' 

a.(t)=e ...;x, J 
J (2.26) 

The effective force tak~s now the form 

➔ ➔ ➔ ➔- ➔ + -
F = -V U(R)- ! VRV. (R(t))"'.,8. + ,8. >. 

R J J J 
(2.27) 
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The averaging procedure in (2.27) is perfor­
med in the same manner as in Section 2.3. 
and we get 

+ - 20 lr -<fJ. (t)+{J.(t)> = h- J drsin(-J ;;-;_ (t')dt')V .*(t+r). ( 2. 28) 
J J -oo . ho J J 

This expression inserted into (2.27) gives 
the lowest order contribution to the dis­
sipative part· of the effective force due to 
the consideration of the collective modes. 
The force connected with (2.27) contains 
an effect of memory and is determined by 
the whole trajectory R(t+r) in the past. 
This seems to be a reasonabl~ result, 
because the relaxation r- is large. Note, 
that the dissipative fo~ce due to (2.28) 
does not depend on the temperature T(t).Thus, 
in the lowest order we ob~ain a non-vani­
shing contribution to the dissipative force 
due to the excitation of the collective 
modes for T=O. Such a result could be expec­
ted because of the large relaxation time ri 
In the course of collision the collective 
modes do not equilibrate and therefore it 
makes no sense to speak in this case about 
a temperature of the nucleus. For further 
clarifying discussions we refer to the next 
part. 

As in the previous section it seems to 
be rather desirable to obtain an explicit 
expression for this type of force in depen-

➔ '4 
denc e on R( t) and R( t) at least approxima-
tely. This might be done in some special 
situation only. 

One possibility consists in the follow-
ing. We, can again expand V *( t+ r) in a power 
series of r as done in (2.17) and at the 
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same time take in the sin of (2.28) the 
whole time-dependent function as an argu­
ment. Thus, the term prop6rtional to l 
is of the type 

2 ➔ - o 1 
-- R V .* ( t) J T d r sin ( -h- n . ( T ) ) d r 
h l -oo l 

(2.29) 

which after integrating (if possible) gives 
no o -function or its derivatives. 

Another possibility is connected with 
the use of special trial function for the 
time-dependence of V.* (t+r) and n. ( r). For in­
stance, a special eiponential cir gaussian 
form for V.*(R(t+r}) and n .(R(t+r)) permits one to 

. J . . J 
calculate the integral. Of course, these 
possibilities proposed for extracting a dis­
sipative part from (2.29) must be proved 
more rigorously at least by numerical cal­
culations related to the special situations. 

Up to now we have t~ken the Hamiltonian 
H in its simplest form neglecting the 

higher order terms. Therefore, we shall 
expect that·th~ main effect leading to a dis­
sipative force is. taken into account by 
(2.29). Corisidering higher order terms in 
H a term will be obtained which is similar 
to that discussed in section 2.2. For instance, 
a term appears which is of the form 

0 wk+we-w-
J1P(t+r)sin( h I )rdr[nk(t+r}+ nift+r)- (2. 30) 

-
00 -n/t+r)] 

which can be discussed by the analogy with 
the term (2.18) in the previous section. If 
we assume that at least one of the energies 
w- belongs to the continuous spectrum, we 
cfin again find a connection of (2.30) with 
R. However, it must be provided that an ex­
pansion in a power series ofr is reasonable. 
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