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1. INTRODUCTION

At present, one of the most compllcated
problems describing heavy 1ion reactions
arises from the fact that there is a high
probability for excitations of more than
100 MeV. At these excitation energies the
level density is too large to use, €.&.,
the quantum coupled channel method for prac-
tical calculations. The simpler distorted
wave Born approximation cannot be used
because individual cross sections for certain
partial waves are soO large that the Born
approximation fails to work. To overcome
these difficulties, method of quantum sta-
tistical mechanics has been applied recent-
1y to the problem of heavy. ion reactlons.
From the quantum many- -body equation.of mo-
tion of two colliding heavy ions a classi-
cal description of the motion of nuclei is
derived by introducing d18513at1ve forces,
as, e.g., a frictional force’ ‘47”

For instance, Beck and Gross and
Gross/5/started with the general many-body
Schrodinger equation for colliding heavy
ijons and deduced a classical equation of
motion including a frictional force. The
resulting classical model reproduces many
general features of deep ;gﬁlastlc colli-.
sions between heavy ions’



A more detailed theoretical formulation
of the same/problem has been given by Hofman
and Simens/8 who started with the linear
response theory to construct a differential
equation for the relative motion, in which
the nucleonic degress of freedom appear
implicitly as dissipative and conservative
forces. '

On the other hand, Kan and Griffin/4ﬁ/
started with a non-linear time-dependent
Schrddinger equation to describe a quantum
system with friction. In their formulation
a priori a frictional potential proportional
to the velocity potential of the wave func-
tion is added to the usual Hamiltonian.

A classical dynamical model including dis-
sipative forces also has been considered
by Bondorf, Sobel and Soeker (see’?”/ and
further references therein).

In spite of the fact that the origin and
nature of the dissipative forces seem to be
well understood there exist no quantitative
estimates for the dissipative forces start-
ing from a reasonable semi-microscopic mo-
del for the description of colliding ions.
Here we intend to put forward such a formu-
lation of the problem. Using a model fami-
liar from the nugleaf structure calculations
to describe the intrinsic nucleonic degrees
of freedom, some probléms in deriving the
effective equation of the relative motion
containing dissipative forces are investi-
gated. ' 7

Especially, if the effect of the. coup--
ling of the relative motion on the intrinsic
nucleonic degrees of freedom is treated we
should distinguish between processes which
have a very short relaxation timer and pro-
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cesses which relax only very slowly during
the collision time t g4 A ’
In the first case(r <<t ) it is pos-
sible to deduce a frictional force propor-
tional to the velocity of the relative mo-
tion/8/.To this end it must be assumed that
the considered nucleus is heated up during
the collision process and that its tempera-

“ture T changes very little during the rela-

xation time 7.

However, as we will see later not all
dissipative processes can be expressed in
such a simple form. Especially, those terms
which give non-vanishing contributions to
the dissipative force for T=Omust be worked
out in detail, and terms which are not local
in time must be discussed more rigorously.
We hope to give some clarifying discussions
in this paper.

Another problem is- the treatment of pro-
cesses with a long relaxation time (r>>Tgq )
e.g., the slow collective motion. Hofmann
and Siemens‘a/pr0posed that the slow collec-
tive motions should not be considered as
friction, but must somehow be taken into
account explicitly. In this work, we pay
a special attention to the contribution of
the slow collective motions to the dissipa-
tive processes which seem to be important
in the (phenomenological) model calculation
of nuclear friction’/39/,

To make the whole problem rather trans-
parent, we consider collective (large rela-
xation time, r>>t, ) and non-collective
(r<<t,) excitation modes in a simple mod?l.
In section 2 we use the eguation of motion
to find the time dependence of the relative

5



coordinates and the operators describing
the inner motion and to get an expression
for dissipative force.

In Part II a more rigorous formulation
of the problem is given by using the method
of Zubarev-McLemnon to construct a non-
equilibrium statistical operator which
solves the Liocuville equation. Concluding
remarks can be found in Part II.

2. DERIVATION OF A CLASSICAL EQUATION
OF RELATIVE MOTION OF TWO COLLIDING IONS

2.1. The Quantum Mechanical Description
of the System

To simplify the subsequent derivations
and discussions we do not take into account
the intrinsic structure of one of the col-
liding ions that means, we consider the des-
cription of the inelastic collision of the
mean field of the first ion with nucleons
of ‘thé second ion producing excitations
of the intrinsic degrees of freedom in the
second ion. Effects which are connected
with the possibility that nucleons of one
nucleus could be scattered by the nucleons
of the second nucleus are not taken into
account in our considerations. Such ‘an ap-
proach seems to be possible when the col-
liding ions do not overlap too much. The
total Hamiltonian H suitable to our problem
takes the form:

~ ~

H=HR+H0+vint" (2.1)

where Hg is the Hamiltonian of the_reiative
motion, Hy describes the internal motion
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of the nucleus and the coupling between the
relative and internal motion is given by
Vi -In more detail we have:

H he 2 R .2

HR=——2—M— VR+U(R), (2 )
where UR)is the empirical nucleus-nucleus
potential given by the real part of the
average optical model potential and M
stands for the reduced mass. The Hamiltonian
of the internal motion is written in the
picture of elementary excitations described
by phonons in the form:

0 St +. 4 + 5
Hos?mibibl.+j{,gwikg(bjbkbp +b[7bkbj ) e (2.3)

wherebnb.) are the phonon creation (destruc-
tion) operators. Higher order terms are
neglected in (2.3), however, if occasion
arises we will have in mind that in (2.3)
there is an infinite expansion series in
terms of phonons. The interaction part

takes the form

~ o 4 —_ had + —— + -
B, = = V.(R)(D] +b )+ EVik(R)(bj b )by + by )
’ ’ (2.4)

- - - + -
L3 Vg (R)B] +by )by +B )by +bp ) +eee
ik¢ !
where Eidenotes the time conjugate opera-
tor of b; .

Due to the interaction part of Hg the
phonon excitations have a finite lifeftime
which we will denote by 7j- If we consider
the behaviour of different phonon modes
during the collision process ve must dis-
tinguish between two cases: modes with
a life-time which is comparable or larger



than the collision time UJ 2teoll ) and
modes with a very short life-~time (r, <<t0“ ).
In the first case (rj >ty ) e’ will
call the modes collectlve ones. It will be
proposed, that these collective modes are
located in the discre;e low-energy part of
the eigenspectrum of Hyp . »
In the second case(r Kty ) we will call
the modes non- collectlve ones. The energy
spectrum of these non-collective modes has,
besides the discrete part, large contribu-
tions from the continuous spectrum, too.
Because of the different relaxation pro-
perties the effect of V;,, on these two
types of excitations (collective and non-
collective ) must be considered separately.
Our aim is to obtain an effective clas-
sical equation for the relative motion of
two ions. Such an equation of motion can’
be deduced rather easily by starting with
the Helsenberg equatlon of motion for the
operator R:

IR i > ih 2 : |
575{;—[H,R]=--‘M- Vi , (2.5)
a°R__ | 1g >

and averaglngvover the intrinsic degrees of
freedom of one nucleus which structure is
described in our model by phonon-excitations:

9°R > > > > o + —
MLt P Vu@- 1 Vv eb] 45 >
e 3T B <]+ by +Bk)>+.z‘Z Ve (2T

x < (b +b, )by +b Y +Bp)> = F +F,

where the effective force F containg, bg-
sides the usual conservative force F ==V UUU
terms(Fﬂ which are due to the coupllng of
the relative motion to the intrinsic deg-
rees of freedom. It was shown /3:8:9/ that
F2contains among further correction to the
usual force a dissipative one which is
connected with the irreversible energy
transfer from the relative motion into the
intrinsic motion of the nucleus. In other
words, we have constructed a differential
equation for the relative motion of the
ions, in which the nucleonic degrees of
freedom enter implicitly in terms of dis-
sipative and conservative forces.

Note, that in (2.7), the functlon.Vw(Ru»
which depends viaiﬂt) on time, is still an
operator in the space of the relative mo-
tion. To obtain the classical limit which
we are interested in eq. (2.7) must be

~averaged over a wavepacket |0>. This wave-

packet has to_ be so narrow that for any
operator O(ﬁ P &) the following relation

4 O(R,P)|> =O(<|R|>,<|B|>) (2.8)

can be used.

To obtain the effective equation of mo-
tion in more detail it remains to solve
the Heisenberg equation of motion for the
operator b'(b) and to average the procedure.
Of cource, this can be done in an approximate
way only. In the next section we are dealing
with the non-collective modes, while in
section 2.3 +the collective modes will be
discussed.



2.2. The Treatment of the Non-Collective
Modes

To obtain a_ more convenient expression
for the force F and to extract the dissi-
pative part we must know equation of motion
for the operator b+(b ). That can be done
by using the correspondlng Heisenberg
equation of motion, which in our approach
is given by: ‘ '

in dbT@ b+2W by bl +25 W bb+V+
de % [ fkj ¢ Y, jkl

+ 7 . + T + o
v+zf‘vjk(b'k +bk)+3kzéwikg (bk+bk)(b€ +bﬂ) .

The solution for the latter equation can be
of-an approximate nature only. We envisage
it in the form: '

——i—wjt )
, o © {2.10)

b () =C (t)e

i i ,
where the function Cjﬂ)in a perturbation
treatment of the problem takes the form:

| ’,

C,(0=b 'F [ dre B (VHE)+2E V@)t L+

(2.11)
+3k2E Ve (ke 1 )+ ),

where we, have introduced the abbreviatibn

S S i t -
t,eh=(e  FUibT _eFO b.)-
Solving eq. (2.9) higher order terms of"ﬁo
have been neglected because in the lowest
order these terms give no contribution to
F2 By using (2.10) and (2.11) we find
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BH O+ b (©) i, tho 2 [ dt” sin D (t—e ) {VE (€Y 4 -
i (0 +D; =1], _}l_;{o smh—‘(t—t ){Vj(t Y+

+22V ,(t’){k’t’}~+ (2.12)

+32 V. kg'(t’){k TSR R I AR S TR
(b (t)+b (t))(bk(t)+bk(t)) ={j,titkt}- 11- fdt Sln—h—(t—t I
xtjth {VF( )+, ;_F_fgt"sin-_hx.(t-t'){v;(t')+...;x(2 .13)
x{k,t"}.

Now we can insert the expression (2.12)-
(2.14) into (2.7) and perform the averaging
procedure. In the sense of a perturbation
treatment we take only the diagonal matrix
elements. In general, a more complicated
averaging procedure should give a similar
result, if one assumes that after the short
relaxation time r. the phases of the non-
diagonal matrix elements are randomly dis-
tributed, so that their sum is negllglble
with respect,to the diagonal ones. In so
doing, the result for the first two terms
(2.12) and (2.13) is:

- 0 L
+ . Wj
<bj(t)+ b]. (t)>=-ﬁ—;[wdr sin —l-]l r {V"j‘(t+r) +

(2.15)
+ 3 E,ij,k(t+r')(1+2nk,(t+r)) }
and
<(B5(0+B (N (bL©)+b, (D> = 8, (1+n ()=
(o ~wy) (2.16)
—F-fdrsn—lh—-—— {V (t+r)(n (t+r)— nk(t+r))},
711



where n.(t") are occupation numbers of the
non-collective 'states. In the simplest
gquasistatic approximation we can neglect
the time dependence in nﬁf) in the sense,
that we are considering the nucleus heated
after a certain time and n; are determined
by the temperature of nucleus. Or in other

words, we look at the motion of the colliding

ions for a rather short time At around

a time t and neglect the change of the nuc-

leus temperature in the time interval At

when evaluating some important properties

of the whole system of colliding ions. This

guasistatic approach has been used by Hof-
~ man and Siemens /3/ and it permits one to

express the dissipative part through a term

proportional tq’the velocity R -That means

that the force F, becomes local in time.

To calculate the effective force we have

to insert (2.15) and (2.16) into (2.7) and

if possible to perform the integration.

As proposed by Hofmann and Siemens the
function Vﬁu+r) in the second term of
(2.16) can be expanded into a power series
of r aroundt. In sense of the quasistatic
approach such an expansion is reasonable,
because the relaxation time 7§ ‘should be
small in comparison with the collision

timetcm[.The expansion reads

ij (R(t+r ))=Vjk R()H+R V Rij RO 7 +

5> 2 2
VR) Vk )§—+...

i

+((.R;'§R ij)+(

Inserting this expansion into (2.16) and
performing the integration, we see that the
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first term of (2.17) gives no rise to an
effective force, because it is proportional
to a 6 ~-function of the type (w;-wy)- A non-
vanishing contribution to the force'?2~can
be expected only from the next terms of
(2.17). Especially, the second terms in-
serted into (2.16) yield

8 Ry VRO [0 10 ()
Rjzk aR-——-[n](t) nk(t)]-{or drsm—Lh-—-rz

o . : (2.18)
=167h RjEkV Yk RO n () —n, ())&~ (0, -»,).

As is-seen from (2.18) this term gives rise
only to a dissipative force for finite. tem- -
peratures T(t)>0. From the structure of the.
expression for the dissipative part propor-
tional to R it can be seen that the discrete
spectrum in the lowest order gives no rise,
because the argument of the 8§ -function is
never zero. That means that we can expect
contributions to the dissipative force,
which is in our “case a simple friction
force, only.- if in the non-collective excita-
tion there are "admixtures from the conti-
nuous spectrum.

At the beginning of the process, if T=0,
the main contribution to the dissipative
force comes from (2.15),

2 0 .  ; .
FLOdr Sln(~FLr)Vj*(t1-r) (2.19)

so that the nucleus will be heated up to

a finite temperature in the initial state.
However, this contribution cannot"bg.rep4
resented by a term proportional to K,etc.,
because an expansion in a power series gs 1s
done above (2.18) makes no sense. In spite
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of the fact that the integral could be
calculated as soon as %(t+r) is known, all
single terms of the power series are equal
to zero as long as the ground state is sepa-
rated by a gap. After insertion of (2.15)
into (2.7) the resulting force becomes not
local in time but contains a dissipative
part connected with the excitation of the
internal degrees of freedom due to the time
dependence of the interaction Vjﬁl Finally,
it should be mentioned that the solution

of the effective equation for the relative
motion must be performed in a self-consis-
tent way. That part of the force connected
with (2.15) is not local in time and must
be calculated from the whole history of

the collision process. Also the part is
coming from (2.16) which is proportional to
R but it depends on the temperature T(t)
via n(T(t)), which must be determined by the
history of the collision process as will be
pointed out in part II.

2.3. The Treatment of the Collective Modes

It has been mentioned above that the col-
lective modes must be treated in a somewhat
different way because their relaxation time
is larger than the collision time. . In this
case it is necessary to work in an adiabatic

representation of the collective motion. Then

we can distinguish more directly between the
dissipative and conservative part of the
effective force.

To do this we neglect the higher order
terms in Hg and V;,, and consider a Hamilto-
nian H of the form

14

H::Hé-fo

ot o=+
i =§wjbj bj + j{ ij (bj +bj )(bk+bk)+

J .
+IV. (b4 ). (2.21)
i J ] J" .

Because higher orders in Hgare assumed to
be small it is reasonable to diagonalize-

the Hamiltonian by means of a canonical
transformations:

+ + p : ‘
b= 3 (U, B+ VB | o (2.22)

As a result
. hond + o ’ g
}(=?wi[R(t)]Bij +jEVj[R(t)](Bj++Bj). (2.23)

The transformation coefficients Ujx and V.,
are time-dependent via R(t) ang thé resulting
Hamiltonian H (2.23) emerges to have a time-
dependent eigenspectrum. v

The Heisenberg equation of motion for .the
operator ﬁ;(t) re‘ads '

. dgt C v ~
in LO g v, BTGB, (0+VFO  (2.24)

and its solution is given by

B0, 0B - La(0f a Ve, (2.25)
where we have introauced |
_é.-_fla)j(l')dl’
aj(t):e — . : (2.26)

The effective force takes now the form

—>___, —a_ > -~ - ot = -
F = VRLHR) ? VRV“RO»’Bj,+ﬂj>' (3.27)
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The averaging procedure in (2.27) is perfor-
med in the same manner as in Section 2.3.
and we get

_ 0 T ~
<,Bi+(t)+,3i(t)> = E—_{odrsin(}lr({aj(t')dt')vj*(tﬂ)- (2.28)

This expression inserted into (2.27) gives
the lowest order contribution to the dis-
sipative part of the effective force due to
the consideration of the collective modes.
The force connected with (2.27) contains

an effect of memory and is determined by
the whole trajectory R(t+r) in the past.
This seems to be a reasonable result,
pbecause the relaxation r; is large. Note,
that the dissipative force due to (2.28)
does not depend on the temperature T(t). Thus,
in the lowest order we obtain a non-vani-
shing contribution to the dissipative force
due to the excitation of the collective
modes for T=0. Such a result could be expec-
ted because of the large relaxation timerj.
Tn the course of collision the collective
modes do not equilibrate and therefore it
makes no sense to speak in this case about
a temperature of the nucleus. For further
clarifying discussions we refer to the next
part.

As in the previous section it seems to
be rather desirable to obtain an explicit-
expression for this type of force in depen-
dence on R(t) and R(t) at least approxima-
tely. This might be done in some special
situation only.

One possibility consists in the follow-
ing. We can again expand V*(t+r) 1in a power
series of r as done in (2.17) and at the
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same time take in the sin of (2.28) the
whole time-dependent function as an argu-
Qent. Thus, the term proportional to h'
is of the type

2 37 0 -
B—RVj*(t)_{ordrsm(Tl]—Qj(r))dr (2.29)

whichvafter integrating (if possible) gives

no 8§ -function or its derivatives. '
Another possibility is connected with

t@e use of special trial function for the

time-dependence of V.*(t+r) and Q.(r). For in-

stance, a special exbonential gr'gaussian

form for VX(R(t+r)) and @ .(R(t+r)) permits one to

calculate 'the integral. Of course, these

p?ssibilities proposed for extracting a dis-

sipative part from (2.29) must be proved

more rigorously at least by numerical cal-

culations related to the special situations.
Up to now we have taken the Hamiltonian

H in its simplest form neglecting the

higher order terms. Thérefofe, we'shail

e;pect that“thqumain effect leading to a dis-

sipative force is taken into account by

(2.29). Considering higher order terms in

H a term will be obtained which is similar

to that discussed in section 2.2. For instance

a term appears which is of the form ’
0 ., O twp —w;
f¥ (t+r7)sin( k72f

-—00

)rdr[nk(t+r)+ nft+r)—  (2.30)
. —4H(t+r)]

which can be discussed by the analogy with
the term (2.18) in the previous section. If
we assume that at least one of the energies
©; belongs to the continuous spectrum, we

can again find a connection of (2.30) with

R. However, it must be provided that an ex-
pansion in a power series ofr is reasonable.
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