


E4 - 9602

O.Dumitrescu

UNIFIED MODEL FOR FISSION
IN THE FRAMEWORK
OF THE FOUR PROJECTORS THEORY



1. INTRODUCTION

After the appearance of the paper '“ the macrosco-
pic-microscopic approach, which has made so many contri-
butions to our understanding of nuclear fission, nuclear
masses and various types of coliective properties of
the nuclei, is now being applied to the dynamical descrip-
tion of the fission or to the heavy-ion reactions leading
to the synthesis of compound nuclei.

In the last ten years the number of the scientific
papers devoted to this problem seems to be growing
exponentially for a number of reasons: a) the increasing
experimental interest (the search of the superheavy
nuclei, the search of other nuclear density gquasistable
states and so on), b) the applicability of different methods
belonging to the different branches of physics, ¢} the
gathering of the different nuclear models into the super-
unified model, describing not only statically but dynami-
cally also the motion of the two complex nuclei coming
into collision or going on from the mother nucleus, d) in
connection with the points b) and c¢) we have to choose
the important degrees of freedom and formulate the
equations of moticon (inertias, and forces both conserva-
tive and nonconservative}.

The aim of the present paper is to apply the Franz
theory of decaying nuclear systems to the fission process
using the four projectors *=#-91 theory andthe fragmen-
tation dynamics in the nucleon-nucleon collision o=l

/2,47



An explicit expression for the fission width (hence, the
fission half-lives) is obtained. The fission width corres-
ponding to the particular fission mode is a product of
the corresponding penetrability factor "'*~2!  withapre-
formation factor (i.e., the probability that the fission
products are already formed). The last factor repla-
ces ‘227 the usual characteristic frequency factor (number
of assaults) estimated by a statistical model.

From our theory results that the preformation factor
depends linearly on the fission yield as a function of the
mass and charges of the fragments. In our treatment
the most important degrees of freedom to get the pre-
formation factor are the collective mass-fragmenta-

tion ‘%’ and charge-fragmentation '° degrees of freedom.

2. FRANZ THEORY

The idea of Franz > is that what is common to all
unstable nuclear systems is that the production and the
measurements are macroscopic manipulations, and thus
for instance it is impossible to fix the time of the begin-
ning of the measurement microscopically. Therefore we
have to work with the statistical operatorsdescribing both
the prepared states of the unstable nuclear systemand the
space of localizing the nuclear system. The firstoperator
is the operator describing the density of the incoherent,
normalized to unity prepared states [/\k > of the still
undecayed nuclei:

pai:]r\pw(k)(.)\kt, (1)

where (k) is the weight of the corresponding |4, > state
and the second operator

—-iHt

(2)

R .
Y(t)= [ dxe]Hl]x><x[e

projects onto the nuclear spatial domain defined so that
all the spatial coordinates of the nucleons [x|< R (the

nuclear radius of the mother nucleus). As an observable

determining the decay law is assumed to be the ra-
tio /4,8,54./,

P(1)- trace [pW(T+ )1  N{T+t)
trace { p W (T )} N(T)
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of the number N(T+t) of the undecayed nuclear systems
at the time T+t to the number N(1) of the undecayed
nuclear systems at the time T. The time T denotes
the macroscopic time in which one is sure that the decay
products (fission fragments) are inside the spatialdomain
R. As a nuclear system we understand the system of
the A -nucleons belonging at the beginning to the mother
nucleus.

Many authors assume different models for the so-
called prepared states that are going to decay. These
states must describe the localized nondecayed instable
nuclear systems for a macroscopic time T. It is natural
to assume that such states are superpositions of bound
states %835  embedded in the continuum (BSEC) in
their different forms (doorway-, hallway-states, etc.),
generated by the asymptotic channel Hamiltonian that
describe the motions of every pair of fission fragments
(decay products). This assumption is a natural applica-
tion 6f the causality principle in the quantum mechanics.
These BSEC-states give birth to the poles /**=2' in
the second Riemann sheet by including the residual
interactions.

3. ASYMPTOTIC CHANNEL HAMILTONIANS
OF THE FISSION FRAGMENTS

The collective potential describing the fission frag-
ments in the decay process is obtained in the framework
of the microscopic-macroscopic model /?-21:37-42/, It
contains three terms

A
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The first term (V,y ) is frequently calculate& tiy_

means of the liquid drop model or the droped model ’
with some corrections due to the finite range of the
nuclear forces 73742/,
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In the case of a spherical nucleus the nuclear macrosco-
pic potential energy must have the expression

2/3

o SURE 2t a
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+(Al/2+;i) c, exp(—-aﬂAl'R), (6)
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where A is the number of the nucleons in the mother
nucleus, .

e, =a [1-x( Ny

) A
in which 2.4 is the surface energy constant and ~. the
surface asymmetry constant (a_ = 24.7 MeV, x = 4.0),
fo=1.16 fm, a - 1.4 fm.

The integration in eq. (5) is over the volume of the
shape. The densmes p(r’) are obtained by an averaging
procedure:

lthp(f’):fdr‘l’*(xl...xA)ﬂ‘P(Kl X,0) ("
Wil

p =a§; d(r —7 ). (8)
Here
6
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are the total intrinsic many body wave functions, norma-
lized to unity, glven by the asymmetric two center shell
model (ATCSM)/#Y" As is pointed out in the papers’?—12/
these functions depend not only on the distance between
the two centres of the fragments (R), butalso on the other
collective coordinates: the mass- fragmentatlon 9 (n) ,
the charge-fragmentation’'%/(; ), thq \jurface vibratio-
nal and rotational coordinates (« ?ll ) of the fission
fragments, and so on.
Thus, the V,,y -term given by eq. (5) is a function
of all these collective coordinatess
[A] BY

Viom™ Vi Bonam, | %2

.o (9)
The second term in eq, (4) is usually called the
Strutinsky correction ¥’ term

/\Vm_= 2 f” - f c{mdn, (10)

where ¢, are the single particle ATCSM -energies and
7(n) - the smooth energy curve ° - \V_, also depends
on the collective coordinates mentxoned m eq. (9), because
of the¢,, dependence on those coordinates.

Finally, the third term

= -E 11
Avl!l‘ E p(' F IJ(‘ ( )
is the pairing correction term, where
Ny, I 2N 2 N A
s ) A\ oy .
E =2(% (v2 - "X g fvios Ty a2
TR R TS T TN T (12)

and E,,.. is the pairing energy of the uniform distribution
of the levels. The summations are over the pairs of par-
ticles considered in the pairing interaction untill

N
N =% fl— —.._k.- (13)
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Here A is the pairing gap, A is the BCS Fermi energy
and "E is the probability that the level k is occupied by
a pair.
It is easy to see that AV _ -term depends also on the
same collective coordinates as V;,. term in eq. (9).
Thus

L\] fAl
. 14
Veor™ Veou B 17, - ey ) a4)
We construct the Hamiltonians describing asymptoti-
cally the motion of the fission fragments ass[uinin%\}hat
all the motions correspondingtothe R, #,7,.a
collective degress of freedom are performed adiabatxcally,
i.e,,

H:))‘H (R)+H( (n)+H (7? J+Hy (“m }+H (a {M )-
(15)
The first term
(s) W2
(R) = —5—#—; Vot vV, (R) (16)

describes the relative motion of the fission pairs (s). The
potential is obtained as follows:

\ . PY TPV
VR = lim min (R,y, 7, e ,a },
s N am (] COLL 1 2
> 1 %2
M Mzg )
where
-1, (s} {s) (s) (s)
n_=AT (A} =Ay )i A=A +A, (18)
- (s) (s) . (s} . (s)
n,=Z (Zy -Z5 ) Z=Z7+Z)” . (19)

The second term

2
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H =-—0B Y B PN \% ,
o (M=-—B_ 5 8m 3. 8m . (n) (20)

where B,, mass parat/neter is obtained in the framework
45
of the cranking model °
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and the potential’®’
) . Al (Al
V (p) = lim min 1 R,n.9 ,a, ,a, X
s R+R, a[lz\], a2[A1 covt z 1 2
7,7 (22)

The third term
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where B and V,(y, )have similar expressmns with those
given in eqs (21) and (22), respectively, with interchanged
7 and n, collective coordinates °

The last two terms have the classmal expression
given in the text-books 4647/

The spectra of H (am ) are discrete spectra.
Using the recent mformatlon/l 1-13/ the other two Hamil-
tonians H(“(q) and l-l“‘s (n, ) present discrete spectra
also. The only Ham1lton1ans producing both discrete
and continuum spectra are H‘S’(R) because the potentials
(17) are of the Gamov-type 0753/ with strong attractive
part at the medium distances, with strong repulsive part
at very short distances and a Coulomb-ty e behaviour
at large distances. Combining all the partlal ~8/ spectra
we obtain in the total spectrum of the H( -)-asymptotic
Hamiltonian bound states, BSEC-states and continuum
states distributed in different channels of the pair-frag-
mentation (s).

Following the procedure of refs. we introduce
in the channel fyagmentatlon (s} four projectors onto
subspaces of R o -States

/48,54

P, =1b,s><b,s]|; Q. _Ejdelqb '><q5 |
(s)
q =12 q P +Q +q +A =1, (24)
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The states }b,s> are BSEC-states /6.8:35,54/ paving the
eigenenergy Eos) in the nearest vicinity of the decay
energy () » Q. projects onto the “active” open channels
(the matrix elements of HS =H —n,* between these
channel states |pts) > and|b,s> Wwe 0 onsider to be of the
girst order, they describe the most intensive transitions
from the mother nucleus into the fission channel fragmen-
tation (s} ), qa projects onto the »passive”’ open channels
(the corresponding H, matrix elements are of the second
order of magnitude as compared with the above mentioned
ones) and A, projects onto the rest of (closed) channels.

4. DYNAMICS OF THE FISSION

Inserting eds. (1) and (2) into the expression trace
pW we obtain

R —illt 2
tracepW(t)=Zw(k)jdx\<x\e Y (25)
k
As is pointed out in §2 the prepared state |Ay> i8S
a superposition *

\)\k>=2<s\k >i{b,s> (26)
of BSEC-states of H(E) asymptotic Hamiltonians cOrres-
ponding to the fragmentation (s), those BSEC-states men-
tioned in eq. (24).

Using the Pgharp resonance” condition we can
neglect }4-8,32-36/ the contribution to the integral over
% i eq. (25) of the vectors <xl(Qﬂ+qs+A5)e"'H" 1A s
hence ’

~iflt -
|

<xle )\k>=2<s\k><x\b,s> as(t), @n

* The contribution of other BSEC-states is natural, but

for the large times thelr contribution to the expression
(25) is negligibly small.

EE T

as(t) =<b,sle ~iit |b,s > . (28)

The vector |b,s> is sufficiently nice in the sense that
d <b,s{Ex |b,s>falls off exponentially, where dE) is the
spectral measure associated to H, then /6.8,34,36/

.

as(z)=(2ﬂi)" [ e iebs [G(2) b5 (29)
{

when ¢ isa contour running from ip+e~ t0ip— > and
the resolvent

o(2) = (2= (30)

defined in the complex 2 plane sO that has no singularities
lying above C. To compute the residuum we write G(z) in
our four subspaces /4-8,54/

A
G(z)=PG G+ G+AG—_-——-._--_-____--+
=) +Q h 2z -Ho-AH’ A

ca, @ ——
r

(z)+ 1, ()0 (2}~
z-—HO-qVq f ' 9,

Q

. _——Q

J— (z)Q (z) +Q, ()0 (z)x
eyt TR B A

|

Q z 0 (z)f ), @h 31

xQq, @y TPRP Y ag M @b
where for the sake of simplicity we have omitted the
index s, denoting the pair of fragments. The ’right”
and "left” Q -operators are defined by

Q. (2)=14 ———=-H:Q (z):H’.._.-—A_..
A z——HOaAH’A Ag z—H - H'A

(32)

+1,

1"



e, (z)=14+—--3>L — V: 0 (z2)-V—u3d 11,
r

z—HO——qVq I z—H —qVq

(33)

Q. @=1+— V; Q. (z=¥ Q 1

2 “H,—QWQ Q 2—H —-QWQ

3
with 34

i A

; v — ’ H H” 35
H -H —-AHA (35)

WaVaV 9> v, 36

! z—H —-qVq (36)

Q
R -W+W — W, (37
TN TR QR ‘

Here the resolvents corresponding to the projected
subspaces must be understood as the solutions for example
of the eq.

(2 =Hg—AHA) cmemu A (38)

2—H, AW A

Inserting eqs. (31), (29) in eq. (27) we obtain

{b)

- -1 —i X
<x|e 1H1|/\k >S(2ni) [dze =ty gks( ) ,
c Y Z_E(S) ~R (s) (Z)
0 bb

(39)

where
g (x)=<s|k><x|b,s >, (40) .

ks

R::';(z)= <b,s | R(z)|b,s>. (41)

12

The complex operator R(z) given by eq. (37), may be
broken up as follows

R(z) = L(z)— %—F(z) (42)
with

T(z)=Ty +Ty + 7, (43)

Iy =27R*Q8(z-H,)QR, (44)

["'W =27V +q 8(2-—H0)qW, (45)
[ <third and higher order in ¥ terms. ‘ (46)

Taking into account the smallness of the widths s

eq. (39) can be replaced by ) bb
(b
~iH -1 —-tzt %
<xle™ N, > 2(2a1) T fdze _a_ﬂs;(_f‘___, 47
¢ zZ-c, + 2D
where o f
. (9) ,
Fe=3ry, (48)
with
r® =2, 5 1< R b,s5? (49)
bb ¢ csf f
and
(s} (s)
e, =Eg + L) (50)

Here we have neglected ([y)y, and (I'"),, -terms (see
eq. (45), (46)) as small terms. We have assumed also
that in every channel fragmentation there is fulfilled
eq. (50). This fact is based on the experimental data.
Neglecting the small contributions to the other peoles and
the cuts eq. (47) becomes

<x‘e-m1,\k>;;>; git:(x)]exp!—i(ef-zi—Ff)ti. (51)

Introducing eq. (51) in (25) we obtain

13



trace p W(t) "'Sm(k)f dx[E gk (x) exp f—1i( € --—l" )tH
| (52)

and finally the ratio (3) becomes

P(t) Fexpi-17t 3 (53)

5. FISSION WIDTH

S48
Following the treatment of ref,

(37) can be factorized as follows:

the R operator

R(ff }= QQ?(c[)H’QAr(cf) + Q.QP(('. }H'QAr (ff)fmflﬁ—\/ﬂ (e

(54)

We can neglect the second term from the r.h.s. in
the braket by virtue of the made approximations. Thus
the fission width (48) becomes

(=)

N ‘o 2
0y =27 fc‘<n+ “f)‘?scsf |Hs9A,(Er)!b’S*’l - 09

Q
We define the new initial and final states as follows

(s) .
107 > =0, (e )1b,s> (56)
and
(s) + (s)
I‘PM' >---QQ[’(ct.)lthMf > (57)
or
(s)
le, ~Q(H+H")Q}|¥ T > =0, (58)
ey
where
H"-H'A—23 __AH +vq—B¥ _____qv,
€4 - AHA ¢ -~ H,—qVq
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The Hamiltonian Q(H+H"")Q that generates the new
channel function (57) may be interpreted as a generalized
optical model Hamiltonian containing the local terms
the nonlocal terms and the imaginary terms’*’. The
channel function (57) can be obtained in terms of the old
basis by using the coupled-channel techniques /*°~%!/

: |</:M > (60)

py s k!
C(f
The new initial wave function is a solution of the fol-
lowing eq.

e, ~(APHAPI L0 sate. ~(HaH —A__H) {0,
{ ‘f”AHA bh
(61)
The terms from right hand side of this eq. can be neg-
lected on the strength of the made untill now approxima-
tions/ %8/ Thus

(=) e
!tb.q >= 3 Q('n)
n

: h| n,s>, {62)
where the [n,s> states are, besides the |b,s> -BSEC
state, other BSEC-states of the H ") -asymptotic Hamil-
tonian. We may neglect also the contribution of the closed
channel states.

In the following we denote by

(=) ~

NI\1(R) RNi.(R)YLM(R) (63)
the normalized to unity bound state eigenfunction of the
Hamiltonian (16), by

(=) 2y 1 2p, »
B ke R~ v 5 (KGR, () (64)

the scattering {continuum) eigenfunction, normalized to
the Dirac delta function in energy, generated by (16),
where F; ((k .R) is the regular radial soluti opnormahzed
to a smfunctlon at large distances, by ¥ (n) — the

15



norm l zed to unity eigenfunction of the Hamiltonian (20),
by ¥, (r] ) - the normallzed to 1ty ei enfunctlons of the
Hamlltomans (23) and by o' (4 , - the nor-
malized to unity elgenfunctlons of the last two Hamiltonian
in the r.h.s. of eq. (15). The ensemble of quantum numbers
n and ¢ is defined by

n= N LMy v, o} (65)

non "7,

and
¢ | LMI/VZ ol. (66)

Assuming a surface delta-interaction at the scision
point R=R, for the H’ -interaction in the braket ®’
H hzk BR300, 0801, -1, ) (6D
ce ™ /e e T,
¢ 2p F L. t-. RYG, S(k By

the fission w1dth becomes 22

qzc ‘Pi ;’ (f r 0) (R()l ‘_ v L-q )v (68)
where
2!( R
P e R = gt (69)
o U[,'g(ff,Rn) :
is the channel penetrability factor corresponding to the
fragmentation s G|y (e;: Ry~ is the irregular

radial solution of the relative motion of the fission frag-
ments, normalized to a cos-function at large distance and

hz 1/2 (8) _(s)
)’c,S(R O’T?S’ nzs)= [___"‘_"2_] Q ’CQ

2p Ry e’n

-1 g
G (e RI6 s (e R Un ), (D ¥ ) ¢

(a) (s)
X‘Pvzn (nzs)mNnLn (RO)S L M M Sa'an (70)
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is the amplitude of the reduced width (the probability of
the formation of the fission fragments). (s)

Fo(r)the spontaneous fission, only the lowest ¥ "(7)
and ¥, (»,) should be taken into account. In ref. M7 4t s
shown that

(-“-) 2 (-.)
WL )b Y (y, ) _ (71)
where Y(H) (qH)is the fission mass-yield and
( ) 2 {s)
|w " 1, WYy ), (72)

where Y(, =) (r,, ) is the fission charge-yield. Taking egs.
(71) and (72) “into account we rewrite the eq. (68) as fol-
lows

a AN (q)

i =X JL_’H (e RyIY (n, )Y (r] )[,8 0,7} 7, ) (’?3)

5,0
where the quantity

2 1/2 (s)
BLS(RO ns,n ) (—_—_2_) 2 Q
R0 c¢’\n

{s)
Q Gl‘-}GI S

s) (=) ~1/2 . (=) /2 ()
( MY, G ¥S (r: )iY ,,,QH 1,,n(ns)><-

()
(r] D1, (RO Byrw Po o, (74)

n

must be a smooth function on =z, and U, . From the
exper1mental data /%/, we see that the formation probabi-
lity y of a certain palr of fission fragments, varies
within 4-5 orders of magnitude. Thus different channels
contribute differently.

Finally we conclude that the usual calculations of the
fission half-lives /14-21/ are very rough estimations of
these quantities, becausethe I'; is determined practically
only by one channel (fission mode) through the penetrabi-
lity factor, while no variations are permitted on the pre-

17



formation factor, this factor being estimated statistically
only.
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