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1. INTRODUCTION 

To calculate the eigenvalues and eigenfunciions of the 
kernel of the Faddeev equations ' ' / is important at least 
f nr two reasons, firstly for the search for resonances in 
three-body systems and secondly for the separable ex
pansion of the three-particle amplitude. 

The theoretical investigation of three-particle reso
nances represents a poor elaborated branch of toe three-
particle problem as compared, e.g., with the study of 
the bound states. This is caused, on the one hand, by 
mathematical difficulties in solving the corresponding 
Faddeev equations and, on the other hand, by the absence 
of unambiguous experimental indication of the existence 
of such resonances in nonrelativistic systems. In brief, 
the experimental situation in systems with А =-."S 2 9 may 
be characterized by the fact that if resonances exist, 
then they are produced with very small cross sections 
and> probably, have large widths. Up to now it is difficult 
to understand the experimental results from the theore
tical point of view, since it is very little known on the 
conditions under which three-particle resonances appear 
and on the sensitivity of their physical characteristics 
to a change of the two-particle interaction parameters. 
Concerning the importance of the investigation of three-
particle resonances one should remember that at present 
such systems are the only multiparticle systems with 
several decay channels for which, starting from a given 
two-particle interaction, accurate calculations of reso
nance states can be performed. Moreover the question 
of three-particle resonances is of interest in elementary 
particle physics to explain the existence of mesons like 
A, n C D F ,.. nn the hnsis of our knowledge on the in-
teraction between the elementary particles. 
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As to the second point mentioned above, concerning 
the separable expansion of the three-par t ic le amplitude, 
it i s of grea t importance in connection with the solution 
of the four-body problem, since the three-par t ic le ampli
tude forms th'j kernel of the Faddeev-Yakubovsky equa
tions for four p a r t i c l e s / 3 / . T h e separable expansion of these 
kernels allows one / 4 ' 5 / to essentially simplify the com
plicated four-par t ic le equations. The separable expansion 
may also be used for the calculation of vertex coupling 
constants of th ree and four-part icle sys tems which are 
important charac te r i s t i cs of bound s ta tes , together with 
the binding energy and the mean square radius. 

The proper t ies of resonances in a system of three 
elementary par t ic les have been studied in papers 7 on 
the basis of a relat ivis t ic version of the Faddeev equa
tions. The authors have found a considerable sensitivity 
of the eigenvalues to the shape of the two-particle in ter
action. Resonances in a model approach with one heavy 
par t ic le ("nucleus") and two light ones (n,p) for negative 
total energy have been investigated in detail in papers ' 5 . 
Eigenvalues and eigenfunctions of a system of modified 
three-par t ic le Lippmann-Schwinger equations with Gaus
sian-type two-body potential have been calculated in pa
pers 8 • The existence of resonances in a system con
sisting of three neutrons has been investigated in pa
p e r / ю / . T W 0 opposite cases with respect to the two-par
ticle interaction have been considered: a la rge- range 
square well potential and a S -potential. Resonances were 
shown to be absent in both cases . A promising approach 
in the study of th ree-par t ic le resonances permitt ing an 
extension to the relat ivist ic case was proposed in '• 
Starting from the th ree-par t i c le unitarity relat ions and 
using the N/D-method an integral equation has been 
derived for the scat ter ing amplitude describing the 
scat ter ing of a par t ic le on a two-part icle resonance. 
This integral equation turned out to be very suitable 
for the investigation of the conditions for the existence 
of th ree-par t ic le resonances . 

As is known, the mathematical difficulties in the 
investigation of th ree-par t ic le resonances consist in the 
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fact that at positive total energy there appear moving 
singularities of logarithmic type in thw kernel of the 
Faddeev equations. Recently methods have been proposed 
for solving this problem /i2,i3,l4/ # However, up to now 
these methods have been applied only to scattering 
problems and not to resonances. 

In the present paper we calculate the eigenvalues and 
eigenfunctions of the Faddeev-kernel for a system of 
three spinless particles interacting via separable Yama-
guchi potential using the mathematical methods ' , 3 ' U / 

In Section 2 we present the initial equations and give 
a definition of the three-particle resonances. In Section 3 
we show for a sufficiently general class of separable 
potentials that it is possible to transform the kernel of 
the integral equation in such a way that after interpola
tion of the solution the remaining singular integrals 
can be calculated analytically. In Section 4 we present 
the numerical results of the calculation. 

2. THE HOMOGENEOUS FADDEEV EQUATION 
AND THREE-PARTICLE RESONANCES 

We start from the amplitude T(f,k; k 0 , z 3 ) describing 
the following process 

К 
For three spinless particles the Faddeev equa t ion / l / 

may be written in the form 
T ( f > k ; k 0 , Z 3 ) = t s ( f , ^ o , z 2 ) ^ ( p 1 0 ) + 

/ dk' . ts^PVynp^iW 
i 2 n f [H - i! (kVkk' Л - 2 » 

л Я! 

(1) 
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where z 3 is the total cm.-energy of the three-particle 
system (in what follows z { takes any complex value), 
•I, = z , -p/4)( t i 2 /m) к I , p, ft=(lT+ k'o/2) , p 2 0 «(b'/2 + k*„ ) , 
p"=( !c+k ' /2 ) , p 2 = ( k / 2 + k ' ) , <£,, is the wave function 
of the two-particle state ("deuteron") and m - the nucleon 
mass. The symmetrized two-particje t -matrix is defi
ned as ts(lT', k,z 2 )= t (k ' ,k*,z^+t(-k' , £ z 2 ). The matrix 
elements t(£',£ ,z£ obey the equation 

«(£ ;k,z2)=v(k;k)+ / Jkl. j U L ' O ^ L - i i l , <2 ) 

( 2 ^ 2 * ! k " * 
1 m 

where v(k',k )=<£'] v|k •> with к 'jk>= (2^):,Й(к -к). The quan
tity v is the two-particle potential. Separating the 
angular variables and allowing for interaction only in the 
S -state we can reduce eq. (1) to the following equation 

T (f,k;k ,z ) = T ( 0 ) + /°JLjLl k /pdp x 
1 0 4 i 9 

t^,p 2(p),y)P L(y)T L(p,k';k 0 ,z,) 

z „ - . l ! ( P

2

+ i - k ' 2 ) 
J m 4 

(3a) 

w lie re 
.2, 

y = i l J ! ^ _ : , p ( P ) = V p ^ f - k - ' - f ^ (3b) PldLr^ ' /A n ^ _ ./ «2. з ,,.a_ _3_ h 2 

kk' 
Here L is the total angular momentum and Pj (y) the 
corresponding Legendre polynomial. For the two-body 
t -matrix t n we have 

t 0 < k ^ - T 0 ( k * U ^ [ i - ^ ^ . (4) 

The inhomoganeous term T v u ' will not be specified in 
detail, since in what follows we will deal with the homo
geneous equation only. 
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We restr ict ourselves to separable potentials of the 
form 

v 0(k' fkb-Ag(k')g(lc). (5) 

Then we have for the l -matrix 

t n ( k ' , k , z j - 8 ( k ' ) g ( k ) r ( v r 2 ) , (6a) 

where 

r (>/~J = -U-'* 7 ^ M P !~' ЬлуГЧ)(6Ь) 
0 I n 2 _ Л 1 к 2 l 

'2 m 
I/ 

The condition !m(z ) / 2 ~>Q defines the physical sheet of the 
two-particle t -matrix. 

Inserting eq. (6) into (3a) we get 
T i ( f .k ;k o , z . i )=g( f ) r ( v / r " )F | (k ,z . i ), (7) 

where Fj (k,z ) obeys the one-dimensional integral equa
tion 

F.(k,z,) - F ( 0 ' + ~ - fk" 2dk' ,• (8) 
'' •' 2я 2 о 

•» in 4 

We define resonances as poles of the amplitude Tr_(f,k;k0,z.,) 
in the complex z

{ - p l a n e . From eq. (7) it is clear that 
one should distinguish two types of poles: 

2) F L ( k , z 3 ) = o.. 
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The first type of them is due to poles in the two-particle 
amplitude. These poles correspond to bound states or 
resonances (on the unphysical sheet in the z 2 -plane) of 
the two-body subsystem. The three-particle amplitude 
will contain these poles at any energy z.( under.the condi
tion that к is given by к = (2/n )((m/3)( z'., - t„)V • 

The second type of poles ar ises at those energies 
z 3 for which the homogeneous equation corresponding 

to (8) has a solution. Unlike the first type the positions 
of the poles of the function F L (k ,z 3 ' , depend only on the 
total energy z 3 and are independent of the kinematical 
variables. Due to the fact that eq. (8) is an integral equation 
of Fredholm-type the positions of the poles of F in the 
z 3 -plane form a discrete set of energies( z

 (

3

! ) ,z 3

2 ) , . . . ). 
A part of these poles corresponds to bound states of the 
three-particle system. We call the remaining ones three-
particle resonances. The statement that the three-par
ticle amplitude contains all the poles of the two-particle 
amplitude, in addition to the true three-particle poles, 
is not restricted to separable potentials but holds in 
general. This fact can be proved as follows. As is known, 
in the vicinity of a pole the two-particle amplitude has 
the form 

* - G ( k ' ; G (k*) 
t (k ', k, 7. 2 ) ~ — 2 - L.2LL_'; z 2 ~ с п . (10) 

Inserting eq. (10) into eq. (1) we have 

2G„ ( f ' ) 

3 n i.2 " 2 0 d 1 0 
T ( f , k ; k 0 1 2 3 ) . - L - j f G n ( p 9 „ > ^ ( P , „ ) + 

(11) 

z - — ——к 
3 4 m 

+ r & ' G n ( P 2 ) T ( { ? ! , £ ' ; к 0 , z 3 ) j 

( 2 ^ ) 3 [ z 3 - l - ( k 2 + k k ' + k ' 2 ) ] 

M2k2 

4 
m 

Z q - f „ О П 

The graphic representation of (11) is 
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G n(?) 

-* 

TXf.kil^.Zg) = 
k ° 

From eq. (11) and the graph (12) it follows immediately 
that the three-particle amplitude contains all the poles of 
the two-particle one. If one regards the three-particle 
amplitude with three free particles in the initial state, 
then its amplitude will have additional poles corresponding 
to two-particle bound states and resonances in the ent
rance channel. 

It is difficult in practice to find resonances because 
the poles corresponding to resonances are located on the 
unphysical sheet of the energy plane z 3 . The integral 
equation, however, is formulated on the physical shuet. 
This means, to find three-particle resonances the calcu
lated quantities must be analytically continued to the 
unphysical sheet. The analytical structure of the amplitude 
F{k,z3 ) is shown in Fig. 1. 

resonances 
Fig. 1. The analytical structure of the amplitude F(k,z ) . 

(12) 
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The analyt ical continuation is per formed in such away 
that at f i rs t one ca lcula tes the eigenvalues ^ n ( z 3 ) on the 
physical sheet accord ing to the following equation 

A n ( 2 3 > l F „ ( z

; ! ) > = K | F ( Z ; l ) > . (13) 

where К is the kerne l of eq. (8). Thei. ле complex func
tions A n ( z 3 ' ; can be continued numer ica l ly to the unphy-
s ica l sheet where one looks for those energ ies z 3

( r r H ' for 
which the condition holds л „ ( z a ) = ! • We will r ega rd 
only r e sonances which a r e not very far from the physical 
sheet . Fo r them the r e ex i s t s a domain on the physical 
shee t where the condition holds 

P.eAn = l , |lmAn | « 1 (14) 

Our numer i ca l s e a r c h for r e sonances will r e s t upon this 
c r i t e r ion . 

3. NUMERICAL SOLUTION 

Here we p r e s e n t the p r o c e d u r e for the numer ica l 
solution of eq. (13). We use the notat ions 

'-v*£l',l ."f'--f.*-jb t . lr,l-f-
m (15) 

Moreover the integrat ion over p i s subst i tuted by the 
integrat ion over у using re la t ion (3b). Then the homo
geneous equation r e a d s 

F (x , y;i ) = / dx ' К t (x,x ' ,у з ) F L (x ', y 3 ), (16a) 

where 

K L - - , x ' , y 3 ) = W L ( x , x ' , y 3 ) r ( V y 3 - ^ - x ' 2 ) 

v ' 1 f, (x,x',y ) 
•W (x,x',v ) — f / d y b * ' ' y / 

L 3 X _ , y _ q ( X ; X ; y ) 

(16b) 
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fL(x,x',y )= g (p0(x,x',y ))PL(y) g(P0(x',x,y )), 

2 '2 

p0(x,x',y) =y/x' + _ + x x ' y , q(x,x',y ) = 
XX 

Now we consider the singularities of the kernel K(x,x', y 3 ) 
in the x ' -p lane . The function WL(x,x', y3 ) has loga
rithmic singularities at the points 

. (1,2,3,4\ 
M- -f ± Vy3 - f x 2 • 

.И 
(17) 

The function г ((y 3-(3/ '4)x' ) ) has two square-root 
branch points and two poles (if the two-particle system 
has a bound state). The branch points and the poles are 
located at 

s - ^ v ,2b'2 = 1 - v ± ^ 3 + j 4 ^ - ( 1 8 ) 

For the case Кеуз>0, 0 < l m y 3 « l and V3/2 < x <1 the 
singularities of x' a re shown in Fig. 2. 

> \mx' 

f'-zfflfl 
-Zr 

• Z P 

:p(x) / Rex' 

/ contour 
--'of integration 

Fig. 2. The singularities of the kernel K(x,x',y ) in 
the x ' -plane. :i 
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The singular integral equation (16a) has been solved 
by generalizing the methods proposed in refs. 1 3 , ! 4 to 
complex energies. At first the function W(x,x) is divided 
into a smooth part and a singular one 

m / ' \ Г X ' r J f ( * . X '.У)~ f n ( x . x ' ) i X' e , 
W(x,x ) = [- i - f dy ' ^ f ' -_L ].. f-f (x,x ')x 

- l y—q(x,x ) x ч 
(19) 1 dv x / 2 J L _ _ 3 W (x,x') +W (x,x')Q (q(x,x')), 

_i y~q(x,x ) s f -<o 

where Q 0(q) is the Legendre function of the second kind 
which contains all the logarithmic singularities. As is 
shown in the Appendix, the function in the first integral 
is smooth, if f (x ,x ') is taken as follows 

f (x,x M ( x , x ' , y ) + ( q - y ) d . f ( x - x ' y l | , (20) 
ч q ч dy >=><, 

where ( Req - 1 < Re q < 1 
у = < 1 for Req > 1 
4 i 

1-1 Re q <- l 
On account of the special choice (20) of the function 
f (x,x' ) we need not continue function f(x,x ,y ) to 
complex values of у . у 

The second function r (( У з ~(3/4)x'' ) 2 ) in the 
kernel (16b) is splitted as follows 

3 2 г % 2 R e s z r Res Z t l r 
r ( V v - - i x ' 2 ) = [ r (Vv - 1 - х ' ) _ f £ _ ] + _ _ £ _ = з 4 v -3 4 X —Z X - Z 

p p 

/ >s R e 4 r <2 1> 
= r (x ' )+ E— . X - Z p 

Here R e s z ? is the residue of r at the point z p . 
After subtraction the function f

g ( x ) still contains a pole 
at the point -z p , which may influence the accuracy of 
the numerical integration under the condition that |z j « 1 , 
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i.e., for energies z ; j in the vicinity of the two-particle 
threshold. For the energies considered in the present 
paper the presence of the pole at -z has not noticeably 
affected the results of the calculations. 

Inserting expressions (19) and (21) into the first 
of eqs. (16b) we have 

K(x,x-)= v K < n , ! ( x , x ' ) S ( n , , ( x . x - ) . (22) 
m= 1 

where 

K U ) ( x , x ' ) = W (x,x')r (x">, S (x,x')=l 

K ( 2 ) ( x , x ')=W (x,x')Res. r , S < 2 \x ,x ')= —I 
p x - Z

P (23) 

K ( 3 > (x ,x - ) = W p (x ,x ' ) r (x ' ) , S ( ' l >(x,x-).Q 0(q(x,x-)) 

„(4) , . , „ , , . . „ c ш, ,N Q ( )(q(x.x')) 
К (x.x ) = W (x,x )Res r , S (x,x )=—-^ 

• *P x ' - z 
p 

Moieover the integral (16a) can be rewritten in the form 
Г dx'K(x,x')F(x')=-. 1 I dx- K(x ,x ' )F(x ' ) . (24) 

<> i = l «j 
The limits a> and b jOf the integration are taken in such 
a way, that in the interval Ы, ,b( ) the function F ' (x ' ) 
can be approximated with sufficient accuracy by the 
Lagrange interpolating polynomials 

F ( 0 ( x ' ) = I H ( i ) x ' » . (25) 
n-=0 n 

In an analogous way the smooth parts К (х,х) of the 
kernel (22) have been represented in the form of poly
nomials 

frnl ^ Ьп) Г 
К r n ( х . х ' Ь 2 К г ( х ) х ' . (26) 

Having applied formulae (25) and (26) we are left with 
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the following in tegra l s which contain all s ingular i t ies 
of the initial integral equation 

J ( n ) = / dx' 
P X - Z p 

(27) 
J f

( n ' = / d x ' x ' n . Q o ( q ( x , x ' ) ) , 

J = J dx x . . 
fp x - Z P 

( n ) , ( n ) 

The in tegra l s 1 ( and If can be solved analytically. 
The in tegra ls I } have been calculated by means of 
an approximation procedure with high accuracy . For all 
the three types the in tegra ls for different n have been 
calculated by r e c u r r e n c e formulae. 

4. RESULTS 

In the calculat ions the form factor (5) has been 
choosen in the Yamaguchi form 

g(k ̂ I ^ i i / . (28) 
к f/Г 

Then we have for r (p) 

2 
r (p) „ Zh ; A - JSJLIILL (29 ) 

n - ( « i £ - ) 2 i " 2 

/ r l - i p 
For a and ft we have choosen the usual t r iple t p a r a 
m e t e r s 

a = 0.2307 f m - 1 , p = 1.45 fm " ' . (30) 

The behaviour of the f i rs t two eigenvalues for L =0 and 
L = l is shown in Figs. J and 4, respect ive ly . 
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Fig. 3. The energy dependence of the first two eigen
values of the Faddeev-kernel for L =0. 
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-10 -5 £ н 

i i u 
0 5 E 3

/ M e V 

i i i ч % ^ i ч % ^ 

-1.0 L = 1 

- -1.5 ----imA] 

Fig. 4. The energy dependence of the first eigenxxilue of 
the Faddeev-kernel for L = 1. 

The calculat ions were done for energ ies of the form 
z

5 = E 3 + ilO" , i . e . , we consider the region just above the 
cuts (cf. Fig. 1). The sensi t ivi ty of the eigenvalues a s 
a function of the imaginary par t of the energy is shown 
in Fig. 5. The typical behaviour of the f i rs t eigenfunction 
for L=0 and L = l at different ene rg ie s is r ep resen ted 
in Figs. 6 and 7, respec t ive ly . The Tables 1-3 give the 
eigenvalues in m o r e detai l . 

5. DISCUSSION AND CONCLUSIONS 

The r e s u l t s obtained can be s u m m a r i z e d as follows. 
F - o m Figs. 3 and 4 it is c lea r that in the nonre la t iv is t ic 
sys tem of th ree sp in less pa r t i c l e s in teract ing via the 
Yamaguchi potential with t r ip le t p a r a m e t e r s the re a r e no 
resonances in s t a t e s with the total orbi ta l momentum 
L =0 and L^ l . In the f igures we show only those eigenva

lues which have a modulus of the o rde r of unity, s ince only 
these eigenvalues a r e of in t e res t for the s ea rch for r e s o 
nances ( с о т р . (14)). As can be seen from Fig. 3 the cu rves 
R e A , ( E 3 ) and ReA 2(E.,) i n t e r sec t unity at negative 
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L = 0 
1.7 4 R e z 3 = 5MeV 

ч 1.6 4 
4 

s 1 .5 _ 4 
i - « / 4 

4 ImA, 
1.4 4 ' 

ч ч 
1.3 - N . 

1.2 
1.1 ReA, 

1 П I „ . 1 1 1 ! 
I .U 1 2 3 4 5 

lmz3/MeV 

Fig. 5. The dependence of the first eigenvalue on the ima
ginary part of the energy. 

energies with the imaginary part of the eigenvalues being 
zero in this region. This corresponds to a bound and an 
excited state of the system. The last result as well as 
the behaviour of the eigenvalues for energies below the 
two-particle threshold is consistent with the results from 
refs. / 1 6 . 1 7 / , if we exclude the region near the two-
particle threshold, we can state that the dependence of the 
eigenvalues on the energy is rather smooth in the interval 
of several dozens of MeV. An analogous conclusion has 
been made by the authors of ref. / • It is interesting to 
note that in the relativistic three-body system / 7 / the 
behaviour of the greatest eigenvalues is not so monotonous 
(in its own energy scale, i.e., in an energy range of several 
pion masses). 
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0.1" 

0 
-0.1 

0.2 

0.1 

О 

0.2 

0.1 
О 

О 1.0 2.0 3.0 4 J х 
Fig. 6. Typical behaviour of the first eigenfunction in 
different energy regions (1. =0). 

Finally we will discuss the reliability of the numerical 
calculations. Besides the methods described here, the 
eigenvalues have been calculated by two other independent 
procedures. The first is based on the Gaussian integra
tion and works for not too small lmz 3 >The second one (the 
results will be published independently) is based on the 
subtraction of the moving logarithmic singularities in 
a similar way like usually the pole singularity is extracted 
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(this computer code works for Imz3 = + 0 ). All the three 
procedures led to the same results within the range of 
their applicabilty. The accuracy of the calculated eigen
values has been checked by comparing the results with 
35 mesh points with those with 40 mesh points. Tables 1 
and 2 give the digits which coincide in both cases. 

0 1.0 2.0 3.0 4.0 x 
Fig. 7. Typical behaviour of the first eigenfunction in 
different energy regions (L = 1). 
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Table 1 
The eigenvalues for L =» 0 

S^ttev Нел, I n * , Be*, Im^ a Ej/MeV Be Я, Ima, КвЛ г 
1а'лг 

- 3 0 . 0 э .927 0 0 .24 0 - 1 . 0 2 . 2 6 2 . 4 6 0 . 8 0 о . 8 6 

- 2 5 . 5 Э.998 0 0 . 2 5 0 - 0 . 5 1 . 8 8 2 . 2 4 0 . 4 9 0 . 9 6 

-го.о 1.11 0 о.га 0 - 0 . 1 1 .67 2 . 2 5 0 . 0 9 0 . 9 1 

- 1 5 . 0 1 .26 0 0 . 3 2 0 0 . 3 1 .64 2 . 0 9 0 . 1 ? 0 . 7 9 

-го.о 1 .51 0 0 . 3 9 0 0 . 6 1 .62 1 . 9 6 0 . 2 5 0 . 7 1 

- 6 .0 i . 9 0 0 0 . 5 0 0 1 . 0 1 . 5 6 1 . 9 1 С.25 0 . 6 5 

- 4 . 0 г.35 0 0 . 6 2 0 2 . 0 1 .42 1 .82 0 . 2 6 0 . 5 5 

- 2 .5 3 .4? 0 0 . 9 1 0 3 .0 1 .30 1 .77 0 . 2 5 0 . 5 

- 2 . 3 4 . 0 8 0 1 .05 0 5 . 0 1 .12 1 .6? 0 . 2 1 0 . 4 5 

- 2 . 2 5 .27 0 . 4 4 7 1.26 0 . 0 7 8 . 0 0 . 9 2 8 1 .61 0 . 1 7 0 . 4 2 

- 2 .1 4 .79 1.57 1 .23 0 . 2 6 11 .0 0 .790 1 .54 0 . 1 6 0 . 3 9 

- 1.8 3 .72 2 .40 1.13 0 . 5 1 14 .0 0 . 5 7 8 1 .48 0 . 1 3 0 .37 

APPENDIX 

The integrand in (16b) can be splitted into a smooth and 
a singular part ( q -complex) 

Ну) , f(y)-f(q) + J152 ( A Л ) 

y-q y - q y - q ' 

This splitting is not suitable since it requires the exten
sion of the domain of definition of the function f (y ) to 
complex y. This considerably complicates the problem 
since we must investigate the analytic structure of each 
form factor used. To avoid these difficulties we replace 
the function f(q) by a function f defined as 

where 
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I 
1 < Re q < 1 

Req > 1 (A.2) 

Req <-l . 

Table 2 
The eigenvalues for L = 1 

E3/MGV ReTv., 1тЛ,, EyfceY Re 9^ I r n ^ 

- 2 5 . 5 - 0 . 3 2 0 - 1 . 2 - 0 . 6 7 - 0 . 1 6 

- 2 0 . 0 - 0 . 3 5 0 - 0 . 7 - 0 . 6 4 - 0 . 1 9 

- 1 5 . 0 - 0 . 3 8 0 0 . 5 - 0 . 6 0 - 0 . 2 3 

- 1 0 . 0 - 0 . 4 2 0 1.0 - 0 . 5 3 - 0 . 2 5 

- 6.0 - 0 . 4 3 0 2 .0 - 0 . 5 7 - 0 . 2 6 

- <-,0 -О.5З 0 3.0 - 0 . 5 5 - 0 . 2 7 

- 2.5 - 0 . 6 0 0 4 .0 - 0 . 5 4 - 0 . 2 9 

- 2 .2 - 0 . 6 5 
-4 -2«1(T 5.0 - 0 . 5 2 - 0 . 3 0 

- 1.7 - 0 . 7 1 - 0 » 0 ? | 10 .0 - 0 . 4 6 - 0 . 3 3 

In the vicinity of у the function f(y) may be written as 

f ( y ) " f (-^ > К Т 7 ] y ( ^ Ч ) + f ( i f ^ v ( У - У / — -CA.3) 
)• ") ' q I d у - J (j Я 

Hence it follows 

for 
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Jhlzi 
y - q - q JV v q 2 d v ^ y 

.(y-yjL (A.4) 
dy уч y -q 

It is easy to see that the function in (A.4) is in fact 
a smooth function of у in the vicinity of the pole. 

Table 3 
The eigenvalues in dependence on the imaginary part 

of the energy (Rez 3=5 MeV,L=0) 

lmz3 
MeV 

Re A, ImA | R e A 2 ImA 2 

0 1.123 1.69 0 . 2 1 0 .45 

1.0 1.154 1.61 0 .23 0.44 

2.0 1.170 1.53 0 .25 0 .42 

3.0 1.176 1.45 0 .25 0 .40 

4 .0 L.172 1.38 0 .26 0 .38 

5.0 1.160 1.31 0 .26 0 .35 
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