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1. INTRODUCTION

To calculate the eigenvalues and eigenfunctions of the
kernel of the Faddeev equations’!/ is important at least
far two reasons, firstly for the search for resonances in
three-body systems and secondly for the separable ex-
pansion of the three-particle amplitude.

The theoretical investigation of three-particle reso-
nances represents a2 poor elaborated branch of the three-
particle problem as compared, e.g., with the study of
the bound states. This is caused, on the one hand, by
mathematical difficulties in solving the corresponding
Faddeev equations and, on the other hand, by the absence
of unambiguous experimental indication of the existence
of such resgnances in nonrelativistic systems. In brief,
the experimental situation in systems with A =3 ‘2.9 may
be characterized by the fact that if resonances exist,
then they are produced with very small cross sections
and, probably, have large widths. Up io now it is difficult
to understand the experimental results from the theore-
tical point of view, since it is very little known on the
conditions under which three-particle resonances appear
and on the sensitivity of their physical characteristics
to a change of the two-particle interaction paramaters.
Concerning the importance of the investigation of three-
particle resonances one should remember that at present
such systems are the only maultiparticle systems with
several decay channels for which, starting from a given
two-particle interaction, accurate calculations of reso-
nance states can be performed. Moreover the question
of three-particle resonances is of interest in elementary
particle physics to explain the existence of mesons like
Ay o ,CDE, ., on the basis of our knowledge on tie in-

teraction between the elementary particles.



As to the second point mentioned above, concerning
the separable expansion of the three-particle amplitude,
it is of great importance in connection with the solution
of the four-body problem, since the three-particle ampli-
tude forms the kernel of the Faddeev-Yakubovsky equa-
tions for four partlcles/3/The separable expansion of these
kernels allows one '4:5/ to essentially simplify the com-
plicated four-particle equations. The separable expansion
may also be used for the calculation of vertex coupling
constants of three and four-particle systems which are
imiportant characteristics of bound states, tegether with
the binding energy and the mean square radius.

The properties of resonances in a system of three
elementary particles have been studied in papers - on
the basis of a relativistic version of the Faddeev equa-
tions. The authors have found a considerable sensitivity
of the eigenvalues to the shape of the two-particle inter-
action. Resonances in a model approack with one heavy
particle (’nucleus’) and two light ones (n,p) for negatlve
total energy have been investigated in deail in papers !°
Eigenvalues and eigenfunctions of a system of modified
three-particle Lippmann-Schwinger equations with Gaus-
sian- ty})e two-body potential have been calculated in pa-

pers‘®/. The existence of resonances in a system con-
51st1ng of three neutrons has been investigated in pa-
per/19/ Two opposite cases with respect to the two-par-

ticle mteractlon have been considered: a large-range
square well potential and a § -potential. Resonances were
shown to be absent in both cases. A promising approach
in the study of three-particle rescnances permlttm% an
extension to the relativistic case was proposed in *'1/
Starting from the three-particle unitarity relations and
using the N/D-method an integral equation has been
derived for the scattering amplitude describing the
scattering of a particle on a two-particle resonance.
This integral equation turned out to be very suitable
for the investigation of tiie conditions for the existence
of three-particle resonances.

As is known, the mathematical difficulties in the
investigation of three-particle resonances consist in the



fact that at positive total energy there appear moving
singularities of logarithmic type in t.. kernel of the
Faddeev equations. Recently methods have been preposed
for sclving this problem /12:13.'4/ However, up to now
these methods have been applied only to scattering
problems and not to resonances.

In the present paper we caiculate the eigenvalues and
eigenfunctions of the Faddeev-kernel for a system of
three spinless particles interacting via separable Yama-
guchi potential using the mathematical methods ' !3:!%/ |
In Section 2 we present the initial equations and give
a definition of the three-particle resonances. In Section 3
we show for a sufficiently general class of separable
potentials that it is possible to transform the kernel of
the integral equation in such a way that after interpola-
tion of the solution the remaining singular integrals
can be calculated analyticaily. In Section 4 we present
the numerical results of ‘he calculation.

2. THE HOMOGENEQUS FADDEEV EQUATION
AND THREE-PARTICLE RESONANCES

We start from the amplitude T(f.k: ic'o,z,‘) describing
the following process )
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For three spinless particles the Faddeev equation’!/
may be written in the form

T(f’k;ko’z:;): !s(f:p2o}zz )¢d (P10)+




where zg3 is the total c.m.-energy of the three-particle
system (in what follows zy takes any complex value),
Fy= 2y (302 /m)k 2, Byg=(KeKo/2) , Pag =(K/24Ky )

K+k'/2), ﬁz_(k/2+k ) , ¢4 is the wave function
o‘f the two-particle state (”"deuteron”) and m - the nucleon
mass. The symmetrlzed two partlc;e t -matrix is defi-
ned as t (K K, 12 9)= t(k’,kK;z9+ t(~k". K.z, ). The matrix
elements t(k K .z, oObey the equation

di- v Kk kK Lz .
X ’ 2 - (@)
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where v(k’k)=<k’|vlk > with ~k "|k>=(27)*(k ~k) . The quan-
tity v is the two-particle potential. Separating the
angular variables and allowing for interaction ornly in the
S -state we can reduce eq. (1) to the following equation
] k+k’/2
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Here L 1is the total angular momentum and P; (y) the
corresponding Legendre polynomial. For the two-body
t -matrix ty; we have
t (k “k,z )::V (k’,k) ...1_.? k-dk v (K, l; )to(k kzy )
'h
Z

The inhomogeneous term T@ w1ll not be specified in
detail, since in what tollows we will deai with the homo-
genecus equation only,

- (4)




We restrict ourselves to separable potentials of the
form

ve(k K)=-rg(k g(k). (5)

Then we have for the t -matrix

ok kz V= glk D gk) r(Vz,), (6a)
where
— ~ 2 2 -1 —_—
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The condition !m(zz)/z >0 defines the physical sheet of the
two-particle t -matrix.
Inserting eq. (6) into (3a) we get

T 0 kit g, gDV, ) @

where F,‘(k,z:*) obeys the one-dimensional integral equa-
tion

Folkz)-F "0 ek . (8)
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We define resqgnances as poles of the amplitude T, ([.kik .z 3)
in the complex #,;-plane. From eq. (7) it is clear that
one should distinguish two types of poles:

— - 2
]) r(\/iz); r(sz—Z——m—k2)=w Z2=fl,(2,...

2) FL(k,Zg):x.



The first type of them is due to poles in the two-particle
amplitude. These poles correspond to bound states or
resonances (on the unphysical sheet in the z,-plane) of
the two-body subsystem. The three-particle amplitude
will contain these poles at any energy z, under the condi-
tion that k is given by k =(2/h )((m/})(z3 -, ))A .

The second type of poles arises at those energies
zy for which the homogeneous equation corresponding
to (8) has a solution. Unlike the first type the positions
of the poles of the function F (k,z;, depend only on the
total energy zj; and are independent of the kinematical
variables. Due to the fact thai eq. (8)is an integral equation
of Fredholm-type the positions of the poles of F in the

z, -plane form a discrete set of energies(z (3” z g‘),,,, ).

A part of these poles corresponds to bound states of the
three-particle system. We call the remaining ones three-
particle resonances. The statement that the three-par-
ticle amplitude contains all the poles of the two-particle
amplitude, in addition to the true three-particle poles,
is not restricted to separable potentials but holds in
general. This fact can be proved as follows. As is known,
in the vicinity of a pole the two-particle amplitude has
the form
G, (k )G, (k)

Chikzy)m —an o (10)
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Inserting eq. (10) into eq. (1) we have

2G_(F)
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The graphic representation of (11) is



(12)

From eq. (1i) and the graph (12) it follows immediately
that the three-particle amplitude contains all the poles of
the two-particle one. If one regards the three-particie
amplitude with three free particles in the initial state,
then its amplitude will have additional poles corresponding
to two-particle bound states and resonances in the ent-
rance cihannel.

It is difficult in practice to find resonances because
the poles corresponding to resonances are located on the
unphysical sheet of the emnergy plane z,. The integral
equation, however, is formulated on the physical shcet.
This means, to find three-particie resonances the calcu-
lated quantities must be analytically continued tc the
unpnysical sheet. Theanalytical structure of the amplitude

F{k,z;) 1is shown in Fig. 1.

phys.region z3=E3*iO
23 2402

———
—

4
e ———— ——
|, —

bound states 233) ?5«)

/
resonances
Fig. 1. The analytical structure of theamplitude F(k,za) .
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The analytical continuation is performed in such a way
that at first one calculates the eigenvalues A,(z3) on the
physical sheet according to the following equation

Ay @M E (z)>=K| F (z3)>. (13)

where K is the kernel of eq. (8). Thel. .ne complex func-
tions A (z3) can be continued numerically to the ursphy-
sical sheet where one looks for th se energies 4 for
which the condition holds A (Z S =1. We w1ll regard
only resonances which are '10t very far from the physical
sheet. For them there exists a domain on the physical
sheet where the condition holds

Rer =1, |Imi [<<1] (14)

Our numerical search for resonances will rest upon this
criterion.

3. NUMERICAL SOLUTION

Here we present the procedure for the numerical
solution uf eq. (13). We use the notations

LY Z3 . ly | = 3
C ’ 3 _4 ’
.__Cz
m (15)
Moreover the integration over p is substituted by the
integration over y using relation (3b). Then the homo-
geneous equation reads

4
Cz\/—;ﬁ%[za""=c’

R0y )= K xR, (), (16a)

,2)

where —
L, N , 3
KL X ,}’3)=WL(X,X ,)/3)7'(\/}/3 _'Zx

(16b)

-1 £, (x,x7,
Wo(xx5y V== dy fplox’y)
L 3 X -1 Y'—q(X,X’,ys)
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£ (xx%y ) =g (py(xx 'y NP (y) 8(p(x'xy)),

3z ya—%x 2x2
Py (x.x%y) —/x 2 %— +xxy, q(xx ’,y3)= 3

Xx”~

Now we consider the singularities of the kernel K(x,x’ y. )
in the x’ -plane. The function Wy (x,x’, y; ) has loga-
rithmic singularities at the points

(1,2,3,4° X BERT)
z, (x) = 7 + \/y3 l--74--x . )
The function r ((y3 - (3/’4))(‘2 )A ) has two square-root

branch points and two poles (if the two-particle system
has a bound state). The branch points and the poles are
located at

2 — 2 2

z =1"j:'_\/Y3’ 12b| =1,z% '—”i\/-'/"l--\/v —T"j' (18)
v3

For the case Reyy>0, 0<Imy; <<l and V3/2<x <1 the
singularities of x° are shown in Fig. 2.

dimyx'

b P

/ .
./ contour
--“of integration

i
Fig. 2. The singularities of the kernel K(x,x’ 'Yy y in
the x’ -plane.
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The singular integral equation (16a) has been solved
by generalizing the methods propused in refs. 131*" o
complex energies. At first the function W(x,x") is divided
into a smooth part and a singular one

1 .
. X’ F(x,xy)—g(x,x ") x’ .
W{(x,x )-[--’-(—;f] dy y—q(:,x’) }.- ;—fq(x,x ) x
(19)

X J e = W (20X ) +W{’ (x,x ") Q, (q(x,x ")),

where Q. (q) is the Legendre function of the second kind
which contains all the logarithmic singularities. As is
shown in the Appendix, the function in the first integral
is smooth, if fq(x; X ') is taken as follows

: , df \
[0 )=f 0x g ) (qmy ) Sy (20)
{ dy Y=Y
where Req -1 ZReq<1l
Ve~ 1 for Req > 1
-1 Re q <~1
On account of the special choice (20) of the function
f, (x L we need not continue function f(x,x",¥ ) to
complex values of y i
The second functlon r (( yr,—(S/fi)X )y ) in the
kernel (16b) is splitted as follows
3 2 Res, r Res, r
" (Vy B R B e 2t
3 3 4 X'—z X~z
P p
Res 21
=7 (x )+~__.__.P__. (@1
X’ --Zp
Here Re s, 1 is the residue of r at the point zp .
After subtr ap‘,tlon the function r,(x") still contains a pole
at the point -z ,, which may influence the accuracy of

the numerical integration under the condition that |z P << 1
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i.e., for energies z; in the vicinity of the two-particle
threshold. For the energies considered in the present
paper the presence of the pole at —z has not noticeably
affected the results of the calculations.

Inserting expressions (19) and (2i) into the first
of eqs. (16b) we have

K(x,x )~ K™ ox)s™ (xx ), (22)

n M*-

where
g (D (1 )
(x,x")=W (xx )7 (x Y, S (xx)=1
KPox =W (xx)Res, 8 Hxx)-
’ TR @)

(3) 3
K700x™) = W 0ax)r (), S (x0x)=Q ylalxx )

4 (xx") =W, (x,x)Res, 7 § M ixx)= _9_0_(3_(1‘."_1)

P X -z

Mo1eaover the integral (16a) can be rewritten in the form
N hi
{ dx "K{x,x YF(x’ )—' [ dx” Ki{x,x ") F(x"). (24)

=1 a;

The limits a; and b ,of the integration are taken m such
a way, that in the mterval (a; ,b; ) the function F "(x ")
can be approximated with suff1c1ent accuracy by the
Lagrange interpolating polynomials
; 4 .
F(l) x)=3 1 :.') X"

n=0

(25)

. .
In an analogous way the smooth parts K m)(-‘\',K ) of the
kernel (22) have been represented in the form of poly-
nomials

(i) 3 () r

K" xx)~- 3K )X . 26
- 2K G (26)

Having applied formulae (25) and (26) we are left with
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the following integrals which contain all singularities
of the initial integral equation

{n) .ox"
J7 e dx — ,
p x’—zp

(m (27
J M= [ dxx’ n.QO(q(x,x’)),

on Quatxx)

p X —Zp

The integralsl(") .and l('{") cali be solved analytically.
The integrals ' !l,'}' have been calculated by means of
an approximation procedure with high accuracy. For all
the three types the integrals for different o have been
calculated by recurrence formulae.

4. RESULTS

In the calculations the form factor (5) has been
choosen in the Yamaguchi form

12
g(k)= ;%)Tx” . {28)
+
Then we have for - (p)
2
r(p) = —h A= .E_((_lf_ﬁ_.)_ (29)
[1— (& 3 2 i 7?2
’ A-1p

For « and {4 we have choosen the usual triplet parz-
meters

@a=0.2307fm " | B-145fm "' . (30)

The behaviour of the first two eigenvalues for L =0 and
I.=1 is shown in Figs. 3 and 4, respectively.
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Fig. 3. The energy dependence of the first two eigen-
values of the Faddeev-~kernel for L =0.
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Fig. 4. The energy dependence of the first eigenvalue of
the Faddeev-kernel for L =1.

The calculations were done for energies of the form
z,=E +il0 -%,i.e., we consider the region just above the
cuts (cf. Fig. I). The sensitivity of the eigenvalues as
a function of the imaginary part of the energy is shown
in Fig. 5. The typical behaviour of the first eigenfunction
for L-0 and L=1 at different energies is represented
-in Figs. 6 and 7, respectively. The Tables 1-3 give the
eigenvalues in more detail.

5. DISCUSSION AND CONCLUSIONS

The results obtained can be summarized as follows.
From Figs. 3 and 4it is clear that in the nonrelativistic
system of three spinless particles interacting via the
Yamaguchi potential with triplet parameters there are no
resonances in states with the total orbital momentum
L =0 and L=l.In the figures we showonly those eigenva-
lues which have a modulus of the order of unity, since only
these eigenvalues are of interest for the search for reso-
nances (comp. (14)). As canbe seen from Fig. 3 the curves
Re A |(E;) and ReA,(E,) intersect unity at negative

16




L-0
17K

1.6F S

- ~
1.35 \

i.lo ™ \~\
1.3 ~

1.2

e ReA;

Llllll
01231.5

Imz,/ MeV

Rezg = 5MeV

Fig. 5. The dependence of the first eigenvalue on the ima-
ginary part of the energy.

energies with the imaginary part of the eigenvalues being
zero in this region. This corresponds to a bound and an
excited state of the sysiem. The last result as well as
the behaviour of the eigenvalues for energies below the
two-particle threshold is consistent with the resulis from
refs. /16.17/ It we exclude the region near the two-
particle threshold, we can state that the dependence of the
eigenvalues on the energy is rather smooth in the interval
of several dozens of MeV. An analogous conclusion has
been made by the authors of ref. /107 1t is interesting to
note that in the relativistic three-body system 1/ the
behaviour of the greatest eigenvalues is not so monotonous
(in its own energy scale,i.e., in an energy range of several
pion masses).

17
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F](x) L= 0

. "'—REF1(X)
0.1} == =ImF(x)
——- E+4=5MeV
-0-1 = \\%_” -

0.2 \
0_‘[ d E3=-1MEV

0.2

0.1

0 l I !
0 1.0 2.0 30 4) x

Fig. 6. Typical behaviour of the first eigenfunction in
different energy regions (1. =0).

E=-255MeV

Finally we will discuss the reliability of the numerical
calculations. Besides the methods described here, the
eigenvalues have been calculated by two other independent
procedures. The first is based on the Gaussian integra-
tion and works for not too small Imz,. The second one (the
results will be published independently) is based on the
subtraction of the moving logarithmic singularities in
a similar way like usually the pole singularity is extracted

18



(this computer code works for Imz; =+ 0 ). All the three
procedures led to the same results within the range of
their applicabilty. The accuracy of the calculated eigen-
values has been checked by comparing the results with
35 mesh points with those with 40 mesh points. Tables 1
and 2 give the digits which coincide in both cases.

Fx) A L=1
03
0.2
0.1

0

-0.1
-0.2
0.2
0.1
0

0.4

0.2
0

0 10 20 30 40 x

Fig. 7. Typical behaviour of the first eigenfunction in
different enevgy regions (L =1).
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Table 1
The eigenvalues for L =0

EyMeV [ Rea, | ImA, |Red, im?A; (Eg/Me¥ Red, | ImA, | ReA, | ImAy

-30.0 0.927 | O 0.24 84 -1.0 12.26 2.46 1 0.80 [0.86
-25.5 0,990 | O 0.25 | ¢ 0.5 13.88 2,24 10.49 10.96

-20.0 [ 1.11 o) 0.28 ] 0 -0.1 [1.67 2.25]0.09 |0.91

-15.0(1.26 { O 0.32 | 0 0.3 1.64 | 2.09)6C.1» [0.79
-10.0711.51 | © 0.39 } © 0.6 1.62 11.9610.25 !10.71
- 6.0]1.90] O 0.50 | © 1.0 }1.56)1.91}0C.25 )0.65
-4,0(2.357 0 0.62 | 0 2.0 [1.42 | 1.82[0.26 {0.55
~ 2.5 3.47{ © 0.91 { © 3.0 {1.30 {1.77{0.25 (0.5

~2.314.081 0 1.05 | 0 5.0 1.12 | 1.69 | 0.21 | 0.45

- 2.2]5.27 ) 0.447)1,26 }0.07 |} 8.0 |0.928 ) 1.61 | 0.17 | 0.42

- 2.1 4.79 {1.57 |1.23 [0.26 J11.0 [0.790 | 1.54 ] 0.16 {0.39
- 1.8 3.72 | 2.40 [1.13 {0.51 H14.0 [0.678 | 1.48} 0.13 ]0.37

APPENDIX
The integrand in (16b) can be splitted into a smooth and
a singular part ( q -complex)

f(y) _ fn=-f@) . fla) (A1)
y—q y-=9 Y=

. This splitting is not suitable since it requires the exten-
sion of the domain of deiiniidon of the function f(y) to
complex y. This considerably complicates the protiem
since we imust investigate the analytic structure of each
form factor used. To avoid these difficulties we replace
the function f(q) by a function f  defined as
- df —y D
quf(yq)+(T;)yq (q-y, .
where

20



Re q -1 < Req <1

* y = 1 for Req > 1 (A.2)

-1 Req <~1

Table 2
The eigenvalues for L =1

|
Ex/lleV ReA, | ImA, ,E3/Hev ReAs [Im

-25.5 "0032 O -1.2 -0.&7 -0.16

-20.0 |~0.35 0 -0.7 |=-0.64 |-0.19

-15.0 }-0.38 | © 0.5 |=0.60|-0.23
-10.0 |~0.42 | © 1.0 |-0.58|-0.25
- 6.0 |0.48 | 0 2:0 |=~0.57 |-0.26
- 4.0}0.53| 0 3.0 [=0.55 [~0.27
- 2.5-0.60 | © 4.0 |-0.54|-0.29

- 2.2 0.65 F2:10% 5.0 |~0.52 [-0.30

-~ 107 "’0071 —Ooog 10..0 .0.46 "0-33

In the vicinity of Y, the function f(y)may be written as
fly) =f( ) a~(—gi) (y-y, )+ —L(—difT) (5 -y Yo, -(A.3)
a. dy "yq 1 2 dy=7rq q

Hence it follows
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roaZa mease g

f(y)—f df 1, d% (y-y )2
A 2o X NI 1 ¢ 4 - g .
— ( Ty )yq v ( dyz)yq y=a (A.9)

It is easy to see that the function in (A.4) is in fact
a smooth function of y in the vicinity of the pole.

Table 3
The eigenvalues in dependence on the imaginary part
of the energy (Rez,=5 MeV,L=0)

Imz3

MeV Rez\l Imi, ReA, ImA 5

0 1.123 1 1.69 | 0.21 {0.45

1.0 1.154 [ 1.61 [0.23 |0.44

2.0 1.170 | 1.53 | 0.25 |0.42

3.0 L1761 1.45 | 0.25 {0.40

4.0 .172 11.38 |0.26 {0.38

5.0 «160 | 1.31 [0.26 |0.35
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