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1 Introduction · 

Tools to deal with many-body fermionic systems at finite temperature were 
developed long ago for applications to large samples like solid crystals; mag­
netic materials, quantum liquids, etc. The thermal perturbation theory, ther­
mal Green function method, random phase approximation (RPA), fu~ctional 
methods and many others are presented in the textbooks [1, 2]. The math­
ematical accuracy of all these approaches is based to a certain extend on 
the thermodynamic limit. Actually, these methods are widely applied to fi­
nite fermionic systems like hot nuclei (3] with temperatures of an order of 
several Mev's and also to the metal clusters (4, 5] produced by hot molecu­
lar beams of low-point-boiling metals .. There are many differences .between 
these two physical objects, hut also some s.imilarities could he shown like 
the shell structure, deformation, collective excitations ( especially, giant res­
onances). However, for the finite systems_ the fluctuatimis around the most 
probable values of physical variables are significant. Thermodynamic limit 
does not exist. Therefore, well-known statistical methods as applied to the 
finite systems have to he treated with special care. 

In this paper, we consider N fermions in statistical equilibrium (T = 
canst) interacting via two-body forces. The RPA for a system of that sort is 
reexamined as a quasiboson approximation. lri comparison with other works 
treating the same problem (6-8] the following aspects of the present approach 
have to been underlined: 

• Self-consistent mean field depends on the temperature from the very 
beginning 

• This mean field depends also on the parameters describing the collective 
vibrations 

• The Pauli principle is included into the formalism in a more proper 
way than in the usual RPA approach. The commutation rules between 
operators take their fermionic structure into account (9]. 

All calculation~ are performed within the thermo field dynamics (TFD) 
[10] approach. These calculations are equivalent to the minimization of the 
grand canonical potential (the condition for a system to be in statistical equi­
librium) but look more compact and convenient. In sect. 2, basic equations 
for thermal self-consistent RPA are derived. Sect. 3 provides a summary and 
discussion. 



2 Derivation of basic equations 

We assume only the two-body interaction and thus we write the N-body 
Hamiltonian as 

"""' + 1"""' ++ H = b t12a1 a2 + - b Vi234a1 a 2 a4a3 , 
12 4 1234 . 

(1) 

where a+, a are fermion creation and annihilation operators, 

t12 = T12 - >.812 

>. is the chemical potential, T12 is the kinetic energy matrix. 
U~ing the Wick theorem one can expand the Hamiltonian (1) in nor~al 

order(: ... :) with respect to the temper.ature dependent ground state IIJl(T)) 
and obtain for one- and two-body operators the· following expressions: 

at a2 = (at a2)+: at a2: 

atata4a3 = (ata3)(ata4) - (ata4)(ata3) - (ata4): ata3: + 

(at a3) : at a4 ·= +(at a4) : at a3 : -(at a3) : at a4 : + : at at a4a3 : 

We denote 

Pii = (aja;) . (2) 

where ( ... ) is the statistical average. In the TFD the thermal expectation 
value corresponds to the expectation value with respect to the temperature 
dependent ground state IIJl(T)). 

We can write 
a; ai = Pii+ : a; ai : 

at at a4a3.= p31p42 - P11P32 - P41 : at a3 : + 

p31: ata4 : +p42 : at a3: -p32 : at a4: +: at ata4a3 : 

The Hamiltonian looks like 

H = ho + h11 + h22 , 

where 
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1 
ho = E t12P21 + 2 E Vi234p31P12 , 

12 · · 1234 

h11 =: E t12at a2 + E P12at a3 : , 
12 1234 

1 
h22 =: 4 E Vi2;34at at a4a3 : . 

1234 

To diagonalize the h11-part of Hamiltonian quadratic in a+, a operators, 
one has to perform the unitary transformation: 

+ """'D* . + al = b lkak ' 
k 

a1 = E D1kak , 
k 

where DD+ = D+ D = I, and a+, a are new fermionic operators. The 
result of this transformation is the following: 

h11 =: E [E t12D;kD2k,] at ak, + E [E V1234p12D;~D2k,] at ak, : 
kk' 12 kk' 1234 

(3) 

If we require h11 (3) to be diagonal we obtain the following system of 
equations for the matrix D elements and for the single-particle energy c:1 : 

E (t12 + E Vi324p43) D2s = c:sD1s 
2 34 

(4) 

with the auxiliary condition ( conservation of the average number of par­
ticles) 

EP11=N. (5) 
I 

At this stage of calculations, the structure of the matrix p cannot be given 
explicitly because IIJl(T)) is still unknown. It is clear, that the omission of 
the residual interaction: 

h22 =· 0 

leads to the standard temperature dependent Hartre-Fock (lIF)·theory. The 
term h22 transformed to the a+, a quasiparticle basis has the form : 

. 1 
h -• """'U · ~+n,+~ n, •' 22 -. 4 b 1234'-<I '-<2 '-<4'-'3 . ' 

1234 
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where 
Uijkl = L Vi234D;;D;jD3kD4I . (6) 

1234 
It is simple to prove that the matrix U possesses the same symmetries as 

the interaction matrix V. 
Following the TFD methods [10] we take into account the thermal degrees 

of freedom by doubling the ~imension of the initial Hilbert space. In the 
whole space the operator (thermal Hamiltonian) 

H=H-H 
is considered; The properties of the system could be obtained by diagonali­
sation of this thermal Hamiltonian H. Therefore, 

+ -+ - 1 + + -+ -+ - -H =: Lc1(a1 a1 - a 1 a1) + 4 L U1234(a1 a 2 a4a3 - a 1 a 2 a4a3): . 
1 1234 

(7) 

/To consider the collective excitation modes of the system, it is convenient 
to use a new temperature dependent Fock space. This space is produced by 
action of the thermal quasiparticle creation operators (J+, p+ on the corre­
sponding thermal vacuum IO(T)) [11, 12] 

a; = x;(J; + YiPt , 
(8) 

at = Xi/Jt + YiPi , 

where 
Xi = ✓1 - n; .· Yi = Jn; , 

1 
n·= 

' 1 + ~xp(¥)' 

and C:i are solutions of the system of equations (14), 

/J;IO(T)) = P;IO(T)) = 0. (9) 

The thermal Hamiltonian (7) can be transformed to the thermal quasi­
particle basis (8). The structure 1{ as H((J+,(J,p+,fi) (see App. A) prompts 
the structure of the collective excitations. Namely, the operators 

+ + -+ A12 = /J1 /J2 · . A12 = P2/J1 , ,· 

can be exploited as the building blocks .to construct the excitation wave 

functions of the system. 
The main approximations of the present approach are: 

4 

t 

1. To take, from the r.h.s. of the exact commutator 

[A12, A:f4] == 813824 - 813fit-Pt - 824/Jt /J1 , 

only c-numbers [9, 13, 14]. Thus one assumes that 

[A12, A:f4] = 413824 (1 - q1 - q2) , 

where 

(fJt /J2) = (Pt P2) = 812q1 ; (10) 

2. To choose a certain structure of the thermal ground state for the whole 
Hamiltonian (the intrinsic structure of this vector will be described 
below) by neglecting the anharmonic terms in 1{ . 

· The substitution [9, 13, 14] 

A12 
b12 = ✓l - q12 

Af2 
+--=- , b12-~ 

where 

q12 = q1 + q2 

leads to the following commutation rule 

[b12,b:f4] = 813824; 

1.e. bij, bl are pure· boson operators. 

(11) 

The harmonic part of the thermal Hamiltonian 1{ is a form quadratic in 
the bti, bik operators (see App. A), which can be exactly diagonalised by the 
bosonic Bogoliubov transformation: 

bf2 = L 1Pt2Qt + <Pi2Qv , 
V 

b12 = L 1/Jt2Qv + <1>r2Qt , 
V 

with the unitary conditions 

. I: 1/Jr2'1/Ji2 - <1>r2<1>':2 = 8v,, (12) 
12 

Now, the structure of the approximate thermal vacuum st.ate ran be re­
qui,red as. the solution of the following equation: . . 

Qv!1l'(T)) = 0, 
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The equation of motion for the Qt operators 

[1i, Qt] = w,,Qt (13) 

allows one to get the system of equations for the amplitudes 'lj;r2 , <1>r2 and 
frequencies Wv (see App. B). 

¢42 1" ~ ~ <Pv cpv 
C:24-- + 2 ~ U1234y 1 - q13y 1-- q24(n1 - n2)~ = Wv_Q_. 

Y2X4 13 y3X1 Y2X4 

where 
c12 = c:1 - c:2 

X2Y4 ,1,,V 
./,V = - - l/'42 
'1'24 X4Y2 

(14) 

Difference between (14) and the standard thermal RPA [7, 8) is due to the 
existence of the ~ , Jl - q 24 - blocking factors connected with the 
Pauli repulsion. The matrix U depends on the HF transformation matrix D. 

To couple equations (14) to the equations for the optimal mean field, one 
has to calculate the single particle density matrix Pii, when the structure of 
the l'11(T)) state is known [9). 

P12 = (w(T)lata1!'11(T)) = I:D;kD1k(xzqk + yi(l- qk)) (15) 
k 

where the thermal quasiparticle occupation numbers are given by (see App.C): 

qi = L [<Pfk] 2 {16) 
vk 

The whole solution of the self-consistent thermal RPA problem may ,be 
gathered as the following coupled system of equations: 

L (t12 + L ½324P42) D2s = csD1s , 
2 34 

LPn =N, 
I 

</>42 1 " ~ ~1 c ) <1>r3 </>42 C:24-- + - ~ U1234yl - q13y .1 - q24 n1 - n2 -- = Wv--, 
Y2X4 2 13 y3x1 Y2X4 

qi= L [<Pikl 2 
, 

vk 

(4') 

(5') 

(14') 

(16') 

where p12 is given by formula (15) and U1234 depends on the interaction 
matrix and the element of D-matrix (17) 
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3· Summary 

The problem of unified description of the single-part.icle and collective exci­
tations of a hot finite fermion system has been solved as general as possible 
within the harmonic approximation. The advantage of the present method 
consists in: 

• the interplay between single-particle ~nd collective (phonon) excitation 
branches of the system is seen; 

• this method allows one to understand the role of the Pauli principle in 
hot finite fermionic systems; 

• intrinsic structure of the thermal collective states is treated more ac­
curately by taking t~e fermionic origin of the bosonic operators into 
account [9). 

Under the standard thermal RPA assumption that the n~mbers of virtual 
thermal quasiparticles in the thermal grou~d state vanish (i.e. all qi = 0), 
one can decouple the system of equation ( 4', 5', 14', 16') as two independent 
systems: the first, describing thermal a mean field in the HF approximation 
and the second describing collective excitations in the usual thermal RPA. 

The model calculations to illustrate the results of the present article are in 
preparation. The discussions with A.V. Avdeenkov and Prof. A.I. Vdovin are 
acknowledged. This work was partially supported by the Russian Foundation 
for Basic Research (grant 95-02-05701) (D.S.K)and by polish grant KBN No2 
P302 01804 (W.N.) 
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Appendix A 

The thermal Hamiltonian (7) 

+ -+ - 1 + + -+ -+ - -1i =: Lt:1(01 01 - a 1 01) + - L U1234(a1 a 2 a4a3 - a 1 a 2 a4a3) := 
1 4 1234 

~ ( + -+ - ) 1 ~ u ( +' + -+ - -+ - ) =: Li C:1 01 01 - 01 01 + - Li 1234 01 0302 04 - 01 0302 04 : 
1 4 1234 

can be expressed in thermal quasiparticles (8): 

ai = xd3i + YiPt , 

at = xd3[ + YiPi • 

The term bilinear in quasiparticles looks like: 

+· +-+ - --+ 
a{a3 = x1x3f31 /33 + x1y3f31 {33 Y1X3/J1/J3 + Y1Y3f31/J3 

By omiting the anharmonic terms in the thermal Hamiltonian one can 
obtain: . 

1i ~ = L c:i(/Jt /31 - fJt /31 )+ 
1 

1~ ( ' +-+ - +-+ - ) + 4 Li U1234 (x1y3/J1 /33 + Y1X3/J1/J3)(x2y4f32 /34 + Y2X4/J2/J4) - (t.c.) : 
1234 

where (t.c.) means the tilde conjugation operation [10]. Now the Bose. op­
erators b7k and bik are defined via eqs. (28). One can easily check that 
two-fermion terms (3+ /3 and /3+ /3 satisfy the same commutation rules as their 
boson images: 

f3t /Ji = L bfkbik -+- ~ + 
/Ji /Ji = Li bkibki. (Al) 

k k 

Finally, the harmonic part of the thermal Hamiltonian has the form: 

1(, = LC:12b{2b12+ 
12 

+~ L U1234Jl - q13Jl - q24 [(x1y3b{3 + Y1X3b31)(x2y4bt4 + Y2X4b42)-
1234 

-(x1y3bj1 + Y1X3b13)(x2y4bt2 + Y2X4b24)] 

.where 
c12 = c1 - c2 
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Appendix B 

The system of equations for the collective amplitudes results from the equa­
tion of motion (13) for the Bose operators. The amplitudes 'ljJ, </> and friequen­
cies w obey the equations 

e24'1p~4 + ½ L U1234Jl - q13✓l - q24X2Y4(X1Y3</Jr3 + Y1X3tp~i)-
13 

-½ L U1234✓l - q13Jl - q24X4Y2(x3y1</>r3 + y3X11P~1) = Wv1P~4, 
13 

C:42¢~2 + ½ L U1234✓l - q13Jl - q24X4Y2(x1y3</Jr3 + Y1X31P~1)-
13 . 

-½ L U1234✓l - q13)1 - q24X2Y4(x3y1</Jr3 + y3X11P~1) = -Wv<P~2 · 
13 

The linear transformations of this system give rise to the following system: 

where 

C:24X;4 + ½ L U1234Jl - q13✓l - q24(n1 - n3)X~1 = wvx;4, 
13 

c24Y~ + ½ L U1234Jl - q13Jl - q24(n1 - n3)Y{i = WvY~ , 
13 

x;4 = ! Y ('ljJ~4 - ¢~2) 
X2Y4 2X4 

y~ = l (1P~4 + ¢~2) 
X2Y4 - Y2X4 

The last two equations are uncoupled. Therefore one can put that 

x;4 = Y~, 

and finally, the phonon amplitudes and frequencies are the solution of the 
following equations: 

¢~2 1 ~ u ~ ~( ) ¢~3 ¢~2 c24-- + - Li 1234yl - q13yl -q24 n1 -n2 -- = Wv--, 
Y2X4 2 13 y3X1 Y2X4 

.1.v __ X2Y4 ,1.,v 
'1'24 - '1'42 · 

X4Y2 
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Appendix C 

The thermal quasiparticle occupation numbers (10): 

q; = (w(T)l,Bt ,B;Jw(T)) == (w(T)ISt Sdw(T)) · 

can be expressed in termes of the bosonic termal averages by using (Al) 
formulae. It means that 

(w(T)ISt Pdw(T)) = {w(T)I 2: bt:biklw(T)) 
k 

Substituting b;k, bfk by the Qt, Qv and using the conditions 

Q.,Jw(T)) = 0 

one obtain simply (9] that 

q; =:' L [¢:'kl 2 
• 

vk 
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