


1 Introduction

Tools to deal with many-body fermionic systems at finite temperature were
developed long ago for applications to large samples like solid crystals; mag-
netic materials, quantum liquids, etc. The thermal perturbation theory, ther-
mal Green function method, random phase approximation (RPA), functional
methods and many others are presented in the textbooks [1, 2]. The math-
ematical accuracy of all these approaches is based to a certain extend on
the thermodynamic limit. Actually, these methods are widely applied to fi-
nite fermionic systems like hot nuclei [3] with temperatures of an order of
several Mev’s and also to the metal clusters {4, 5] produced by hot molecu-
lar beams of low-point-boiling metals. There are many diﬁ'erehces between
these two physical objects, but also some similarities could be shown like
the shell structure, deformation, collective excitations (es‘pecjally,‘giant res-
onances). However, for the finite systems the fluctuations around the most
probable values of physical variables are ‘signiﬁcant. Thermodynamic limit
does not exist. Therefore, well-known statistical methods as applied to the
finite systems have to be treated with special care. ‘

In this paper, we consider N fermions in statistical equ111br1um (T
const) interacting via two-body forces. The RPA for a system of that sort is
reexamined as a quasiboson approximation. In comparison with othef works
treating the same problem [6-8] the following aspects of the present approach
have to been underlined:

o Self-consistent mean field depends on the temperature from the very
beginning

o This mean field depends also on the parameters descrlblng the collective
vibrations o

e The Pauli principle is included into the formalism in a more proper
way than in the usual RPA approach. The commutation rules between
operators take their fermionic structure into account [9].

All calculations are performed within the thermo field dynamics (TFD)
[10] approach. These calculations are equivalent to the minimization of the
grand canonical potential (the condition for a system to be in statistical equi-
librium) but look more compact and convenient. In sect. 2, basic equations
for thermal self-consistent RPA are derived. Sect. 3 provides a summary and
discussion.
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2 Derivation of basic equations

We assume only the two-body interaction and thus we write the N-body
Hamiltonian as -

>~ Vizaaaf af agas (1)

1234 .

' 1
H= E t12afa2 + -
12 4

where a*,a are fermion creation and annihilation operators,

t1z = Tha — Ab12

/\ is-the chemical potential, T3, is the kinetic energy matrix.

Usmg the Wick theorem one can expand the Hamiltonian (1) in normal
order (: ... :) with respect to the temperature dependent ground state |¥(T'))
and obtam for one- and two-body operators the following expressions:

afa, = (afa2)+ : aqug :

af af asas = (af a3)(af as) — (af as)(af as) — (af as) : afas : +

(d]"a;;) afay: +{afaq) s afas: ~

We denote

(afas) :ataq: +:afatasas: .

pij = (atai) . : (2)

where (...) is the statistical average. In the TFD the thermal expectation
value corresponds to the expectation value with respect to the temperature
dependent ground state |¥(T')).
We can write
afa; = pji+ 1afa;:
afa'{am;;# p31Paz — Pap3z — Pa1:azas: +
p31:a3as: +pag: al a3:—pa: afas: +: a;"a'{a‘;a;;

The Hamiltonian looks like

H=ho+ hi1+ k2,

where

e i U e et

ho = Ztmpm + = Z V1234P31P42 )
S 2

hy = Ztl2al az + Z pazafaz :

1234 -

+
hay =: = Z V1234(11 a, ‘14(13
4 1234

To diagonalize the hy;-part of Hamiltonian quadratic in ¥, a operators,
one has to perform the unitary transformation:

ot — x4

a; _‘Zleaka
k

al=Zleak;

where DDt = D¥D = I, and a+ @ are new fermlomc operators. The
result of this transformation i is the followmg

hin =) [E tmeszk'] afop +3 [Z Vizaapss D} Doy | af ey = . (3)
Kk’ L12 k&' L1234

If we require hy; (3) to be diagonal we obtain the following system of
equations for the matrix D elements and for the single-particle energy €,:

> (tn + Z V1324P4$) Dys5 = esDs " (4)

2

with the auxiliary condition (conservation of the average number of par-

tlcles)
XI:P]] =N. , o (5)

At this stage of calculations, the structure of the matrix p cannot be giveﬁ
explicitly because |¥(T')) is still unknown. It is clear, that the omission of

" the residual interaction:

h22 =='0

leads to the standard temperature dependent Hartre-Fock (HF)‘theofy. The -
term h,; transformed to the a*, a quasiparticle basis has the form :

— P
hag =: Z Z U1234011 Qp Qg3 o,
1234



where .
Uit = Y V1234D}; D5, D Dy . (6)
: 1234
It is simple to prove that the matrix U possesses the same symmetries as
the interaction matrix V.
Following the TFD methods [10] we take into account the thermal degrees
of freedom by doubling the dimension of the initial Hilbert space. In the
whole space the operator (thermal Hamiltonian)

H=H-H
is considered: The properties of the system could be obtained by diagonali-
sation of this thermal Hamiltonian H. Therefore,

E U1234(011 012 aqo3 — & ;&45‘3) co (7

1234

H= Eﬁl(al 011—011 al)‘|'4

To consider the collective excitation modes of the system it 1s convenient
to use a new temperature dependent Fock space. This space is produced by
action of the thermal quasiparticle creation operators g%, B* on the corre-
sponding thermal vacuum |O(T")) [11, 12] ‘

o; = =0 + yiBt
- C®
of = z:8F +yifi

where

T; = 1—'n1 ;y,:\/rT,‘,
1
ng=-————
14 exp(—l)
and g; are solutions of the system of equatlons (14),
ﬂ,IO(T)) ﬂ,IO(T)) =0. = )

The thermal Hamiltonian (7) can be transformed to the thermal quas1—
particle basis (8). The structure H as H(S%, 5, B*,B) (see App. A) prompts
the structure of the collective excitations. Namely, the operators

"A-lkz—ﬂil-ﬂz’ v A =Fb

can be exploited as the building blocks to construct the excitation wave

functions of the system.
The main approximations of the present approach are:

1. To take, from the r.h.s. of the exact commutator

(A2, 43| == 615620 — 6158 BF — 62481 B |

only c-numbers (9, 13, 14]. Thus one assumes that

[Alz, A;;] = §13624 (1 - q1 — ‘12) s
where

(BF B2) = (Bt ) = 61241 ; (10)

2. To choose a certain structure of the thermal ground state for the whole
Hamiltonian (the intrinsic structure of this vector will be described
below) by neglecting the anharmonic terms in H .

" The substitution [9, 13, 14]

b12 = *ﬁ— bt = Al &11
S Vmm 0 T e W
where '
Q12 =q1 + ¢

leads to the following commutation rule

[b12yb;-;4] = 013024 ;

-

ie. b, bZJ are pure boson-operators.
The harmonic part of the thermal Hamiltonian H is a form quadratic in

the b}, bix operators (see App. A), which can be exactly dlagonallsed by the
bosonic Bogoliubov transformation: :

b, = Z¢12Q+ + ¢12Qu )

bz =Y ¥hQ. +65,Q7F

with the unitary conditions
‘ E 1/);/2"/’t‘2 - ¢'112¢t‘2 =06y, (12)
12 :

Now, the structure of the approximate thermal vacuum state can be re-

quired as the solution of the following equation:

Q.¥(T)) =



The equation of motion for the Q} operators

[H,QF] = w,Q) (13)

allows one to get the system of equations for the amplitudes ¢f2,¢f2 and

frequencies w, (see App. B).

d)“ Z Urzaay/1 = quay/1 — qaa(n1 — n2) Py _ —:2‘ - (19

2:1:4 Y31 y2$4

where

: T2Y4
€12 = €1 — €2 y ¢54 - ¢42

Difference between (14) and the standard thermal RPA [7, 8] .is due to the
existence of the /1 — q13 , v/1 — g4 — blocking factors connected with the
Pauli repulsion.The matrix U depends on the HF transformation matrix D.

To couple equations (14) to the equations for the optimal mean field, one
has to calculate the single particle density matrix p;;, when the structure of
the |¥(T)) state is known [9].

p1z = (¥(T)|a3 a,[¥(T)) = ;DEkDu(IiQk + yi(1 — qx)) (15)

where the thermal quasiparticle occupation numbers are given by (see App.C):

g =S4  s)
vk .

The \}vhole solution of the self-consistent thermal RPA problem may be
gathered as the following coupled system of equations:

> (tl2 +>, V1324P42) Dys =€5Dy5 (4")
2 34
ZPU =N, (5")

I — B _ S
. 1 —_ — - w, . 14’
L +5 ZU1234 1-—qs g2a(n1 — n3) vots w - (14")
qi = Z[¢{k o, , . (16’)
. » vk ) N ‘
where p;; is given by formula (15) and Uz depends on the interaction
matrix and the element of D-matrix (17) -

TR ——
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3 Summary

The problem of unified description of the single-particle and collective exci-
tations of a hot finite fermion system has been solved as general as possible
within the harmonic approximation. The advantage of the present method
consists in:

e the interplay between smgle—partlcle and collective (phonon) excitation
branches of the system is seen;

e this method allows one to understand the role of the Pauli };finciple in
hot finite fermionic systems;

e intrinsic structure of the thermal collective states is treated more ac-
curately by taking the fermionic orlgm of the bosonic operators into
account [9].

Under the standard thermal RPA assumption that the‘n.ﬁmbers of virtual
thermal quasiparticles in the thermal ground state vanish (i.e. all ¢; = 0),
one can decouple the system of equation (4',5,14',16') as two independent
systems: the first, describing thermal a mean field in the HF approximation
and the second describing collective excitations in the usual thermal RPA.

The model calculations to illustrate the results of the present article are in
preparation. The discussions with A.V. Avdeenkov and Prof. A.I. Vdovin are
acknowledged. This work was partially supported by the Russian Foundation
for Basic Research (grant 95-02-05701) (D.S.K).and by polish grant KBN No2
P302 01804 (W.N.)



Appendix A
The therma.l Hamiltonian (7)

H = 261((11 o) — Cll (11) + - Z U1234(Cll (12 Q403 — &‘1’-&-{&4&3) =
1234

Eel(al ay — a*al) +7 E Usgas(ei aaa;‘“a4 — &fasata,)
1234

can be expressed in thermal quasiparticles (8):
a; = zifi + w7,
of = z:BF +yib; .

"The term bilinear in quasiparticles looks like:

Ol;ras = 1'1-7:3,3;-,33 + zlyaﬂfﬁ;ylzsﬁlﬂa + ylyaﬁlﬁéf

By omiting the anharmonic terms in the thermal Hamiltonian one can
obtain:

Ho~ Ee;tﬂf’ﬂl - Bh)+
1

+ E Ui234 ((Ilysﬂ ﬂa + ylzaﬁlﬂa)(zzyﬂﬁi + y2z4ﬂ~254) - (t.c.)) :

4 {734
where (¢.c.) means the tilde conjugation operation {10]. Now the Bose op-
erators b, and b; are defined via eqs. (28). One can easily check that
two-fermion terms A+ and ﬂ+ﬂ satisfy the same commutation rules as their
boson images:

BFBi=Y" A , BB = bty (A1)
k k
Finally, the harmonic part of the thermal Hamiltonian has the form:

H= Z €1zb;r21712+

12

+ E Ur234\/1 — q13y/1 — qas [(zlysbls + y1$3b31)(1'2y4b24 + y2z4baz)—

4 {334
—(z1y30%; + y1Z3b13)(T2y4dF, + y2$4bz4)]

~where ]
€12 =€1 — €2

Appendix B

The system of equations for the collective amplitudes results from the equa--
tion of motion (13) for the Bose operators. The amplitudes ¢, ¢ and friequen-
cies w obey the equations '

1 v . 14
€243 + B > Uaaay/1 — qu3y/1 — qaazoya(z1y3dys + n1zats) ) —
3

1 ) 14 ‘ v v
) Z U1234\/ 1- qQ13y/ 1 — gaaz4y2(Tay1 933 + Yaz193,) = w3y
13
1 N P
€120y + > > Urzaayf1 — q13y/1 — q2aay2(21Y3673 + 112395, ) —
13 . g
1 / v v v
) Z U1234\/ 1—qzy/1— 92472ya(Zayr1 673 + Ysz19¥3,) = ~w, P, -
13

The linear transformations of this system give rise to the following system:

: 1 v v
€24 X754 + 5 Z Ur23sy/1 — quay/1 — g24(n1 — n3) X35 = w, X3, ,
13
1 v v
€24Y5 + 3 Z Urzaqy/1 — quay/1 — q24(n1 — na3)Y3 = w, Y5,
13 .

where

X3y = m(lﬁu ) , Ya= -m(d)u + ¢42)

The last two equations are uncoupled. Therefore one can put that
X =Yy,

and finally, the phonon amplitudes and frequencies are the solution of the
following equations:

I ¢ P4
¢42 EU1234 1—qiay/1— ‘I24(n1 - nz) e y;; ’

2$4

12y4

’/’24 =

R



Appendix C
The thermal quasiparticle occupation numbers (10):
= (Y(D)IBF B:]¥(T)) == (¥(T)|B; B:| ¥(T))

can be expressed in termes of the bosonic termal averages by using (A1)
formulae. It means that

(‘P(T)IB+BII‘P(T) (2(T)] Zb bk | 2(T))

Substituting b, b% by the QF, Q, and using the conditions

Q.¥(T) =0
one obtain simply [9] that
q = z [45:"1: 2.
vk .
10
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