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1 Introduction 

During last decades, study of charge-nonsymmetric muonic mole
cules attracts a continuous interest both theoretically and exper
imentally .. The first measurements of the yield of -y-rays due·to 
the decay of the Hedµ molecules [1, 2] revive interest in the in
vestigation of this system. In the recent experiments [3] -y-rays 
spectra. of 314Hedµ systems have been measured with very high 
resolution. Besides, the first measurement of -y-rays spectra from 
the 3,4Hepµ - molecules has been done [4]. These results call for 
theoreti~al treatme~t of comparable accuracy: One should em
phasize that these experiments provide direct observation of a 
mesic molecule. In opposite to HeHµ, other mesic molecules can 
be observed only in indirect .experiments. 

All the above mentioned experiments· give evidence of the sig
nificant role of the nonradiative decay channel. Strong isotopic 
dependence of this process was found both experimentally and 
in the different calculations [5]-[8]. 

The production of charge-nonsymmetric muonic molecules 
. plays an important role in the kinetics of muons in media. The 
reason is the comparatively low probability of the direct muon 
transfer from the ground-state muonic hydrogen atom to the he- · 
lium nucleus. Therefore, the muon transfer proceeds via the for
mation of the molecule in the intermediate state [9]. 

The important decay cliannel of HeHµ systems is the nu
clear transition. The investigation of a nuclear reaction at typ
ical mesomolecular energies has a fundamental importance due 
to. absence of any experimental data on the strong interact1ori 
of charged particles in this energy range. This information is 
also significant in astrophysicalproblems. 3Hed interaction is of 
special interest due to the existence of near-threshold resonance 
5Li(!+) (mirror.to the well known 5He(!+) resonance). Generally, 
the near threshold resonances in the interaction of light nuclei: 



t +3He, d +6Li,.d +7Li can lead to enhancement of nuclear tran
sition rate in m~onic molecules [10]. One should mention the ah-
sence of electron screening in the investigation of the low:-energy 
light nuclei interaction ·in muonic hydrides. The treatment of the 
screening effects in. the experiments with colliding nuclei is an es:.. 

· · sential problem [11] and special efforts are needed for the reliable 
consideration. . . 

Qualitatively properties of the HeHµ system can be described . 
as follows. The repulsion in the Heµ + H channel hinders the 
bin~g of the . systems under consideration ~d- only a 3---: body 
reson.ant state can be formed. States like that are support~d by 
the attractive polarization potential in the Hµ + He channel and, 
therefore, are clustered. . . · 

The goal .<?f this pape~ is th~ unified treatment of different 
properties of the 3•4Hc1•2Hµ systems, namely, radi~tive and non
radiative decay rates and eigenenergies for all possible values of 
the total angular momentum. The competition of two decay 
channels and the strong isotopic dependence of the nonradiative 
decay rates are of special interest. A comparison of the calculated 
,-rays spectra with recent experiments allows the determination 
. of the total angular momentum of HeHµ molecules. ·Be~ides, the. 
investigation of the nonradiative decay rate pr<:>vides information 
on the behavior of the-wave function at small distances, which is 

. important for description of nuclear transitions. .. 
As in the previous paper (12], the approach based on tlie hy-

. ·perspherical "surface". fynctions method (13), has been 'applied 
in this paper. A number of three-body systems, such as e+ e-e-, 
e+H, H-, dtµ were successfully described in the framework of this 
method [14]-[18]. This method· allows the r,eliable treatment of 
the posed problems due to the following reasons. The :ri:iethod op
erates with a discrete set of coupled on~dimensional differential 
equations. Physical boundary conditions for their solution can 
easily be formulated. Moreover, coupling of channels turns out 
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to be rather small in the calculation_ of charge-nonsymmetrical 
mesic molecules and allows one to use the decoupled one-level 
approximation. 

The article is organized in the following way. The description 
. of the method will .be given in the .Ii ext section, section 3 contains 

numerical results, section 4 - outlook and discussion. 

2 Method 

2.1 Hyperspherical surface functions approach 

The hyperspherical surface function (HSF) approach is . weH 
known in literature [13]-[18] and there is no need to describe it in 
detail. _ The approach used is mainly the same as in the preceding 
paper [12]. For this reason the.notation and units of this paper 
will be used below. The three-body wave function for the state 
of the total angular momentum L and its projection iW can be 
expanded over the Wigner D-functions 

wLM (x, ii) = L nt 1((/3, ,, 8)<I{(.1:, y, 0), (1) 
]( 

where two of the Euler angles determine a direction of the inter
nuclear vector x. 

Taking into account in (1) only the term with K = 0 one can 
obtain the ansatz 

. WLM (x, ii) = YLM(x)<I>L(x, Y, 0), (2) 

Expression (2) means that the total angular momentum L is 
carried mainly by heayy particles. For L = 0 the ansatz (2) is 
exact and for L =f- 0 this approximation should be reliable due to 
the smallness of mass ratios of muon and nuclei. Indices L and 
M will be omitted below te simplify the notation. 
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In the framework of the- HSF method the following expansion 
of <I> will be used 

<I>(p, n) = p-5
/

2 L Un(P)<t?n(O; p), (3) 
n 

The HSF 9n(n, p) are finite solutions of the eigenvalue problem 

p2 3 q 
[~n - 4 ?; x: + An(P)]<t?n(O; p) = 0. ( 4) 

Note that the functions en (p) = An (p) / p2 play a role of the effec::. 
tive potentials. The channel functions un(P) satisfy the system 
of one-dimensional equations [12]. In this approach, the coupling 
terms 

Qni(P) 

Pni(P) 

(9nll9i), 

(%p<t?nl%p<t?i), 
(5) 

are responsible for the nonradiative transitions. Since the direct 
computation of Qni(P) and Pni(P) is rather difficult, the following 
exact expressions have been used: 

Qni(P) . _.p_(,\i -,\n)-1(9nl. f ~l9i), 
4 s=l s 

Pni(P) = -(Q);i. . 
(6) 

The form ( 6) allows one to avoid the calculation of the derivatives 
of the "surface" functions on the parameter p. 

The variational approach has been applied to solve equation 
( 4). The "surface" functions have been chosen as a linear com
bination of trial functions.from the following set: 

<p~)(au)P1(cos0u), ll = 2,3 (7) 

sin1a3C~~L1 ( cosa3)Pi( cos03), n > 0, n > l 2'.'. 0, (8) 

where 

,1,.(u)( ) R ( lqul a) 'f'nl a = nl -pcos- , 
n 2 (9). 

Rn1(t) = exp(-t/2)t1 L~1!/_1 (t) 
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In equations (7) - (9) Pi(x), L~(x), C:;'(x) are the Legendre, La
guerre and Gegenbauer polynomials. The set of trial functions 
has been chosen in the form (7) in order to describe properly 
the three-body wave-function at both large and small interparti
cle distances .. Expression (7) describes the system separated into 
two clusters. In this case, one of the clusters is a hydrogen-like 
atom and hydrogen~like functions (9) will be proper trial func
tions for a large hyperradius. While <1 = 2 and 3, expre~sion (7) 
is the wave fun~tion of the Heµ and Hµ - mesic atoms, respec
tively. Expression (8) describes .the configuration with all three 
particles close to each other. In this case the kinetic energy _term 
~n dominates in ( 4) and eigenfunctions (8) of the operator 

1 [ 8 ( . 2 8 1 8 ( . 0 8 )l 
□ = -.-2 - -8 sm a-8 + -:;----0 80 sm 80 sin a a . a sm 

(10) 

ar.e used. The set of trial functions (7) - (9) can easily be adjusted 
to the different values of the parameter p. For this purpose num
bers of channel-type functions (7) and hyperspherical harmonics. 
(8) have been changed with changing p. It is necessary to empha
size that the dependence of the numbers of the trial functions on 
the parameter p.has not been exploited in analogous calculations. 
This dependence gives rise to more flexibility of the basis and al-

. lows one to avoid numerical instabilities when solving equation 
( 4). 

As a result of the solution of equation ( 4), eigenpotentials . 
c~(p) and coupling terms Qi2(p), Pi2(p) have been obtained. 
Next, hyperradial e.quations have been solved and the physical 
characteristics have been calculated. 

2.2 He Hµ - resonant state 

The following properties of the systems · under consideration 
should.be taken into account in the calculation of the resonance 

• • • I 

energy and wave function. The dominant cluster structure of the 
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type He + Hµ is a reason to use in this calculation the second 
effective potential c2(p). As it has already been mentioned, this 
potential has an attractive part and supports the resonant state. 

Next, the widths of such resonances are rather narrow. There
fore, coupling with the open channel described by the eigenpo
tential c1 (p) can be neglected. Indeed, the calculated coupling 
terms Q12(p) and P12(p), as it is clear from Fig. 1, are small in the 
region, where the component u2 of the resonant wave function is 

. localized. This considerati~n brings to the well.:.known "un~ou
pled adiabatic approximation" for the-calculation of energy ER 
and the radial wave function u2(p) as an eigenvalue problem: 

{ 
[ 

d
2 

15 ] dp2 - 4p2 - _E2(p) - P22(p) + ER u2(p) = 0 

U2 ( Q) = U2 ( 00) = 0. . 
(11) 

LOO 
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Figure 1: Coupling terms Q12(p),Pi2 (p), the dipole moment distribution 
d~~(p) and the hyperradial wave function u2 (p) for the system 3Hedµ. Units· 
are described in the text; u2 is presented in an a~bitrary.scale. 

2.3 Nonradiative decay rate 

Possible final states in the decay of HeHµ are the scattering ones 
of hydrogen nucleus on the Heµ atom. Eigenpotential c1(p) as-
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ymptotically approaches the Heµ atom ground state energy E1x 

and describes the dynamics in the open channel. 
Following the arguments of section 2.2, the scattering wa,·e 

function u 1 (p) can be found as a solution of the boundary problem· 
at fixed H_eHµ resonance energy E = En: 

[ 
d

2 
15 • ] dp2 - 4p2 - E1(p) - P22(p) + E Ug.(p) = 0. 

(1 ')) 
U1k(0) = 0, ""'. 

ulk(P) P-J sin(kp + 8), 

where k = (E - c100 ) 112
• 

One should mentiori that transition to the channels with th<' 
Heµ atom in the exited states will be suppressed du<' to expo
nentially small overlapping of the initial and final state waw
functions. 

Due to the smallness of coupling the int<'1Thannel transition 
can be defined by the matrix element Ji.1 of the coupling operator: 

00 
·[ d. d ] A1k = j dpulk(P) Q12(p)-d + -d Qi'2(P) - P12(p) u2(p). 

. 0 . p. ,p 
(13) 

The radiationless decay rate ,\ has the form: 

1 2 
,\ = k IMkl . (H) 

2.4 Spectra and total rates of the radiative decay 

The main contribution to the radiative decay comes from the 
dipole transitions. 1-ray spectra and total rates of all dipoh' 
transitions from the states with angular monwnt.a L = 0.1 han' 
been calculated. The final state radial wave functioi1 u1k(P) d<'
scribing relative motion of a hydrogen isotope nucleus and H<'/l -

atom is a solution of equation (12) at _the energy carried by these 
particles ·E = En - E,. 
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Figu're 2: 1-ray spectra of the 3 •4HeHµ system in the initial states with the 
total angular momentum L; = 0. 

The dipole transition rate per unit energy ( spectrum of 1-rays) 
is given by 

d>., 
dE, 

1 (aE,) 3 

---
3 .1rk 

1 
2L· + 1 I: I< w,ll<lllw- > 1

2 

i L1 ' I ' 

(15) 

where a is the fine structure constant, k2 =.ER - E100 - E, and 
Li, L f are total angular momenta of the initial and final states, 
respectively. Dipole operator d is expressed in terms of the scaled 
.Jacobi coordinates x, y 

d 
-( m 2 + m3) - 3m1 2m2 - m3 ( 

6
) = y-;------~-;==== + X---;::::=====. 1 

( m1 + m2 + m3)Jm2 + m3 Jm2m3( m2 + m3) 

The representations (2) and (3) for the initial and final state 
_wave functions Wi, W f reveal the following form of the reduced 
matrix element in (15) 

00 

· < W 1ll<lll'1Fi >= j dpu1k(p)dL1L;(p)u2(p). (17) 
0 

The distribution of the dipole moment dL1L;(P) is an integral over 
angular variables of the dipole operator and HSF of the final state 
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<p1(0,p) ari~ initial state cp2(0,p). The typical behavior of the 
dipole moni~pt distribution can be seen in Fig. 1, where d10 (p) 
for the systelti 3Hedµ is plotted. 
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Figure 3: ,-ray spectra of the 3
•
4HeHµ system in the initial states with the 

total angular momenta L; = 1. 

3 Results of calculation 

The theory described in the preceding sections have been used 
to calculate the binding energies EB = E200 - ER, "(-ray spectra 

of radiative ~ecay a4.i, , radiative decay ~ates .\, = J £aE and 

nonradiative decay rates .\. 
The systems 4Hedµ, 4Hepµ, 3Hedµ, 3Hepµ in the states with 

the total angular momenta L = 0, l, 2 have been considered. 
Calculated values and available results of other authors are 

presented in Table 1. The type and number of trial functions·, · 
interval of radial· integration, masses of particles and resulting 
accuracy of the numerical procedure are the·same as in [12]. 

To demonstrate the isotopic dependence all theoretical 1-ray 
spectra for the decay from Li = 0, l states are presented on Fig. 2 
and 3. 
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Table 1: Calculated binding energies EB(eV) and decay rates X;,\-y (1011
5 - 1 ) 

of the systems 3
•
4He12Hµ, * - present results. , 

system ref. L=0 L=l 1=2 
EB ). \, EB ). \, EB ,\ 

4Hedµ [5] 58.22 1.67 
[8] 58.225303 1.80 

[19] 57.84 1.69 
[6] 77.96 2.3 56.10 2.4 
[7] 78.7 1.85 1.94 57.6 1.38 1.74 20.3 0.9 

* 77.49 0.73 1.76 55.74 1.20 1.58 17.49 1.04 
3Hedµ [5] 48.42 5.06 

[8] 48.420890 5.29 
[19] 70.74 1.75 47.90 1.55 
[6] 69.96 8.0 46.75 7.0 
[7] 70.6 3.58 1.80 48.2 2.77 1.58 9.6 1.54 

* 69.37 2.87 1.64 '46.31 3.22 1.44 7.11 · 1.74 
4Hepµ [19] 50.0 1.92 

[6] 74.36 71 41.17 38 
[7] 75.4 35.4 2.24 45.4 24.8 1.89 

* 80.64 70.7 2.02 47.45 38.5 1.74 
3Hepµ [6] 67.70 100 33.85 46 

[7] 69.0 47.3 2.11 38.1 31.6 1.74 

* 72.76 97.7 1.91 38.82 46.7 1.60 
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. Figure 4: Comparison of the normalized theoretical 1 -ray spectra with the 
experiment for the 4 Hcdµ system. 

counts 

1800 

1500 

1200 

3 

L;~ O ~.. liedµ 

-- L.= I I 
,-.J ,t . ,\ t ,, 

.900 
4111 \i,_ 

600 ~ ~iJl,#l' t;-P. ~ ~ 
300 

O'---~-~~-~-~--~-~ 
50 55 60 65 70 7.5 60 

E7 \keV) 

Figure 5: Comparison of the normalized theoretical -y-ray spectra with t hP 
experiment for the 3 Hedµ system. 

At the moment new and accurate -y-ray spectra from the de
cay of the 4Hedµ, 3Hedµ and 4Hepµ systems arc measured in the 
experiments [3] and [4]. Since the absoiutc yield of ,-ray w,rn not 
obtained in the. experiments and due to the presence of a back
ground, only shapes of the experimental and theoretical sp<'ctra 
can be compared. Taking these facts into' account, 011e can as
sume that the following two-parameter normalization pron'dnre 
shouid be applied to fit the experimental spectrum 

( 
d>. ) · ( d>. ) 
dE n = A+ B dE th ' 

I I 
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Figure 6: .Comparison of the normalized theoretical ·,-ray spectra with the 
experiment for the 4 Hepp system. 

where.the parameters A and B'are determined through the least 
squares- procedure. The normalized theoretical spectra (£t 
for Li = 0, l are presented in comparison with the experiment in 
Figs. 4 - 6. 

4 Outlook and discussion 

The lifetime of the· 3•4He 1•2Hµ systems is determined by a com
petition of two main decay channels: radiative and nonradiative 
ones: It is important that both rates are comperatively small and 
sensitive to the fine details of th~ wave function. In this respect, 
the strong isotopic dependence of the nonradiative decay rate is 
of specialinterest for studying the sihall components of the wave 
function. 

All the calculations ( see Table 1) support the strong iso
topic d~pendence of the nonradiative decay r~te noted in experi
ments [1]-[4]: This rate decreases rapidly with increasing reduced 
mass of two heavy particles. Qualitatively, the muon transfer in 
the nonradiative decay process takes place mainly at small in
ternuclear distances. Du~ to the cluster He + Hµ structure, two 
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heavy particles should pen~trate under the potential barrier to 
bring together. As a consequence, the transition probability de
creases exponentially with increasing reduced mass. Besides, the 
nonradiative decay rate is sensitive to the total angular momen
tum and reduced mass due .to the interference of the initial and 
rapidly oscillating final state wave. functions. 

Opposite to the nonradiative decay channel, the radiative de
cay rate ( as it is clear from Table 1) depends slightly on isotope 
masses. The different isotopic dependence can be explained by 
the different spatial structure of the transition operators. Re
ally, the main contribl!tion to the matrix element of the radia-

, tive transition originates from the region of comparatively large 
p,..., 10-15, wp.ere the initial state wave function is not sensitive 
to the nucleus masses. Considering the position of ,-ray spectra 
presented.in Fig. 2 and 3, one can conclude that the total radia
tive decay rate increases with the ,-ray energy both for Li = 0 
and Li = 1. A change of the spectrum position for different iso
topes is a consequence of a change of the threshold energies for 
the initial and final states. As a matter of fact, the transition 
energy increases slightly with increasing mass of the helium iso
topes due to lowering of the first eigenpotential. At the .same 
time, increasing the mass··of the hydrogen isotope gives rise to-~ 
bit more decreasing .in, the transition energy due to the lowering 
of the second eigenpotential. 

Despite the slow isotopic dependence of the radiative decay, 
the branching ratio for this channel ,-;, = Ar/ (Ar + A) reveals the 
significant isotopic effect due to the strong isotopic _dependence of 
the radiationless decay rate. Since the yield of radiation is mainly 
defined by the branching ratio·,-;,, the isotopic effect appears as a 
signific3:nt difference in the intensities of the experimental radia
tive spectra Figs. 4 - 6. Besides, the ratio of ,-;, for the 3Hedµ and 
4 d c ,-;,(3Hedµ) b . d ..... 
He µsystems~= ,-;,(4Hedµ) = 0.46' was o tame 111 th~ exp,e_r-

13 



C 
I 

iment [3]. Present values are close e?ough to the experimental 
one both for the states with Li= 1 (E = 0.53) and for the states 
with Li= O (E = 0.51). 

. The shapes of ')'-ray spectra for different total angular mo
menta Li = 0, 1 are very similar and the Li = 1 spectra are 
slightly shifted to higher energies in comparison with the Li = 0 
ones. However, the accuracy of recently measured ')'-ray spectra 
of 3•4Hedµ [3] is high enough to distinguish the Li = 0, 1 theoreti
cal spectra on qualitative level. For this reason, the experimental 
and t4eoretical ')'-ray spectra of these systems for the total an
gular momenta Li = 0, 1 have been compared in Fig. 4 and 5. 
From the comparison, one has to conclude that radiative transi..,. 
tions take place from the Li = 1 state-of the 3Hedµ and 4Hedµ 
molecules. One should mention that this result is the first defi
nite assignment of the total angular momentum of the 3•4Hedµ
molecules observed in experiment. 

The definite conclusion about the total angular momentum 
of the 3•4Hepµ molecules'can not be made due to the low ')'-ray 
yields and, therefore, the low relative experimental accuracy. The 
reason is the low branching ratio K for these molecules, i.e.,. the 
nonradiative decay dominates over the radiative.one. 

In conclusion one should list a number of problems with con
cerns of the HeHµ systems still waiting for more refined· inves
tigations. Bearing in mind the las~ measurements, .the reliable 
treatment of the formation probability is needed. While the prob
ability of the muon transfer via the intermedia~e formation _of 
muonic molecules exceeds the probability of the direct one, -the 
last process cannot be fully neglected for some isotopes. The ac
curate calculation of the direct transfer is desirable to clear up 
its contribution. 

As it has already been mentioned, calculation of the nucJear 
transition rates is of special importance. Probability of nuclear 
transitions are much higher from the states with L = 0 than 
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from the L\= 1 ones; In this respect, the rates of intermolecular 

', 
conversion L,

1 
l ➔ L = 0 are essential. These rates recently 

calculated in [20] are comparable with the decay rates into main 
channels. It seems that this result is riot in agreement ,vith the 
conclusion of this paper on the preferable decay mode from the 
Li= 1 state. 
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Ee.mies B.E. H "Jip. E4~96-429 
CKopocrn pacna,ri,'a 11 cneKTpb~ _ttwy•m1m1 ·HeHµ 

· 11c~ne)loBaH . · pauttau~oHHhIH , H 6e3bI3Jl)"laTeJJbllbiii pacnau 3apl!JlOBOc 

11ecHMMeTp~~Hh1x:, MoneKym1pub1x, ~ou6~ 3.4He1:2Hµ. MeTo~ · no,sepx11ocrnb1x. 
rHnepccpepw1eCKHX cpyHKUHH HCnOJib30BaH JlJlll'. paC'!eTa'. BCp~.HTIIOC~CH pacna,ua U 
cneKTpOB Y-H3Jl)"leHllll "JlJlll COCTOl!IIHH: c [JOJIHblM yrnoBblM. MOMeHTOM L = 0, l ,2. ·, 
Pacc~10Tpe11a . H30TOflH'leCKal! 3aBHCH~IOCT~. CKOpOCTeii pa~na'.o.a: Cpasuem1e . 
pacctJ·1naH11h1x· cneKTpos y-n3JIY._tJeHHll c nocn_eJlHHMH 3Kcnep11MeHTaJibHb1im JJ.aH
HhlMH HO)lTBep)l(.ll."aeT npennoJJO)KeHHe o_ pacriaue HeHµ in. C0CTOllHHii CL=· l; ' '' 

', •. • , .·•- . /·, : . I • • ~- , i, .• 

Pa6orn Bhmon11eua B Jla6op~rnpirn T~opern~ecKoii cpH3HKH HM'.H.H.Eoromo6o-
- . • . ,, , . . • , , • I ,# - ' 

Ba ·u Jia6opaTOpH11 Bbl'IHCJlHTeJJbHOH TeXH~KH' H, aB_TOMannauim OH~l1._ 
,I ,,_ i. ' 

'( 

llpenpHH; ·0m,eJ111~ett110IT! HHcmryra lUlCpHhlX ~c~eJ1oea111~i. lly611a, I 996 

\ ' 

BJiyaev V.8; ·et ~I:. ;. 
Decay' Rates and y-Ray' Spectra. of H~Hµ' Systems.· 

' . - ' ' ; . ' 

·· E4-96-429 

Rad;ati~~ and nonradiative deca~s of charge noJ~s;mmetrical m~Iecular -io.ns 
3·4He1·2Hµ

0

have b~en inves.ti~ated. Decay raterin b~thchannels and ycrny spect;a 
for the state~. of the total angular_momentumL=0,1,2 have.been cakulated•using 
the hyperspherical «surface» furicti9n_ method. Isotopic_'dependence of.'the decay 
rates is discussed. A :comparison of _the calculated y-ray' spectra with recent 
experiments confirmS- thfi assumption of the HeHµ de~·ay from theL =I· ~late. 

'.. . .. · . . ' : t: 

. , . . The investigation ·• has beell perfo·n~ed, at th~.'· Bogoiiubo"v , Laboratory of, 
Theoretical Physics. and Laboratory of. Computing Techniques and Automation, 
JINR.' ... · . . . . ' . . . . 
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