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, The contnbuuon of nucleon lsobar N' exchanges to backward , elastrc pd—
3 scatterlng is calculated on ‘the basls of deuteron 6g-model and found to. be neghglble
‘m companson w1th neutron exchange It is, shown that the pole amphtude of neutron

. plckup from the deuteron nN' -component is: favoured m the reactlon pd—) dN'
for backward gomg N (1440) and N (1710) at kmetlc energy of mcrdent proton

o 1. 5——2 GeV whereas the trlangular dlagram w1th'subprocess pp —) d1t related
to the usual pn—component of deuteron is conslderable suppressedr |




1 Introduction

An idea of preexistence of nucleon isobars in the deuteron at sho'rtvNN-distya,nces
suggested for the first time in Ref. [1] is compatible both with the meson exchange
theory [2] and 6-quark picture of the deuteron structure [3]. Backward elastic pd-
scattering, pd — dp, is one source of information on the shoft—range structure of
the deuteron. According to calculations [1] based on the Regge phenomenology .
and analysis [4] performed in the meson exchange theory‘ the contribution of the
NN™-component to the pd — dp process is essential to explain the ex;;erimental
data at energies ~ 1GeV. However, the application of the Regge;model at rather
low energées as well as considerable uncertainties in knowledge on meson’--'N — N~
vertices make these estimations quvestionable‘. Developed in last decade, the 6-quark
rnodel- of the deuteron [5]-[8] provides a new regular approach to construction of
dNN*- vertices. In this model the deuteron structure at short relative NN-distances
ryn < 1fm is determined by superposition of nonexcitated s® and excitated s?p? — °
$°2s 6-quark shell-model configurations. Presence of two-quantum excitations in
the configuration s*p? — s°2s is a reason for the phenomenological repulsive core in
the NN-interaction potential [7]. Besides, the excitated quark configuration lea&é
to an admixture of a small NN*-component in the deﬁteron wave funcfion. The
effective numbers and momentum distributions are calculated in the frame\;vork of
this approach [8, 9]. Recently the results [9] for dN N* vertices were found sufficient
[10] to explain the available experimental data on the inclusive feaction of deuteron
disintegration d + A — p(0°) 4+ X[11] within the n + N *-e};change mechanism.

In this work the contribution of N*- exchanges to pd — dp (Fig.1,a) is calculated

in the interval of incident proton kinetic energy in the labsystem of T, = 0.5—3GeV
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on the basis of the 6-quark model [8, 9] for dNN*— vertices. As is found here, this
contribution is negligible in comparison with the mechanism of neutron exchange

calculated in the Born approximation (Fig.1, b) and with account of rescatterings

“(Fig.1,c-e).
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Figure 1: The mechanisms of the pd — dp and pd — dN* processes: the one baryon
" exchange (OBE) (a - f); the neutron exchange (NE) in the Born aproximation (b,
/) and taking into account rescatterings (c - ¢); the triangular diagram of one-pion
exchange (OPE) (g).

Furthermore we investigate the reaction pd — dN* for the backward going :N*-
_ isobar in the framework of the neutron exchange (NE) pole diagram (Fig.1,f) and

triangle diagram (Fig.1,g) of one-pion exchange (OPE). The experimental investi-
gation of the pd — dN*(1440) reaction is planned at SATURNE [12]. ..+ -

If the NE-mechanism dominates, this reaction can give the direct information

on the deuteron nN*-component. The OPE amplitude involves the usual np-
component of the deuteron and masks the NN*-component. However, as will be
shown here, for the nucleon-like N*(1/2%)-states there is a kinematic region for the

pd — dN* reaction in which the OPE mechanism is considerably suppressed.

.

2 The model

The relativistic effects play an important role in the NE-mechanism at energies >
lGeV, especially for the d — p+N* channel with large binding energy, € ~ 500M eV
[13]. In order to allow for relativistic effects we use here the phenomenological
relativistic approach for the three-body problem developed in Ref. [14]. Iﬁ this
approach the amplitude of the process pd — dB, where B denotes either a .proton
(for pd — dp) or N* (for pd — dN*), in the framefork of one baryon exchange
(OBE) can be written as a direct generaiization of the pd — dp formalism of Ref.

[15]
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Here Ey = m and px are the energy and momentum of the k-th particle in
the p+d c.m.s., my is its mass; Mo = En + £+ Ep; /8 is the invariant mass of the
p+d =d + B system; W5V (W52°Y) is the deuteron wave function in the channel
d— N;n (d — N B) normalized to the effective numbef, N:N, of the corresponding

channel
1
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where pon(q) = 2e,(0)en(9)/en(a) + en(@)]; ex(a) = \/mi+ a?; o is the spin

projection of the nucleon j (j=p,B,N); A()') denotes the spin projection of ‘the

initial (ﬁnalj deuteron.. The sum over the internal states ¢y, including oy, of the



transferred baryon N (neuteron or N ‘j:is assumed in Eq. (1). Two combinator
factors v/2 are included in Eq.(1) since the 6-quark deuteron wave function is fully
antisymmetric. The arguments q and q' of the initial and final deuteron wave

functions can be written in the following form

q=p,— &p(d) + £y 7
" en(a@) + En + 6(a) + By

3)

-ep(q)+ Ep
en{q) + Ev +€p(q) + Ep

the relations py = d — pp = d’ — p, are used here which are valid in the p-+d c.m.s.

qQ=PB— (4)
[14]; d(d') is the momentum of the initial (final) deuteron. The amplitude (1) is
related to the c.m.s. cross section of pd — dB as o ‘

do 1 pp
dQ ~ 64xn?s p,

1A% ; (5)

The basis for calculation of dNN*-vertices is the fully antisymmetric 6q-wave

function of deuteron which in the resonating group method (RGM) has a form

Ty(1,...,6) = A{py(1,2,3)pn(4,5,6)x(r)}- (6)

Here ¢, and ¢, are the quark wave ‘functi‘ons of proton‘a.nd neuteron, x(r) is the
RGM distribution function for the pn component of deuteron and A is the quark
antisymmetrizer. When deriving the function x(r) one can either calculate it in
the microscopic 6q-dynamics or construct it by means of RGM-renormalization
procedure [8] for the con\;entional phenomenological weve function of deuteron in
pn-channel, like Paris or RSC. The difference between the effective numbers for
these two methods is negligible, of few percentage [8]. To describe the internal quark
motion in the baryons the translationally invariant shell model (TISM) is used. The

wave function U{?°Y for the channel d — N + B entering Eq.(1) is determined by

the overlap iﬁtegral between the G-qﬁark wave function of the deuteron, ¥4, (6)
and the product of the interna.l ‘wave functions of the baryons, oy e.nd vB, as’
YIEN = \/3,:; < LPNPBI‘I’d >. The details of the formalism and the effective
numbers for N* in the deuteron are presented in Refs. [8, 9].

Rescatterings in the initial and final states for the NE amplitude are taken into
account here in the eikonal approxima.tion on the basis of the method developed
in Ref. [16]. Asa result, besides the Born term (Fig.1, a or b), three additional
terms arise allowing for pd-rescattering at small angles in the initial state (Fig.1,c),
pp-rescattering in the final state (Fig.1, d) and rescatterings both in the initial and
final states simultaneously (Fig.1,e).

The spin-aver.a.ged squa.re'ef the NE—amplitude of the pd — dN* reaction (Fig.1,f)

takes the form

[Ans(pd — dN7)

K2 ppn(q) pan(g) [0(q) + w'(@)] By, (0), (D)

where K is the same kinematic factor as in front of the sum sign in Eq.(1), » and
w are the S- and D-components of the deuteron function in the d — pn channel,

®%,1,(9) is the momentum distribution in the channel d — nN* for the N *-isobar

with the number of internal excitation quanta Np and internal orbital momentum

Lp normalized by the condition [° ®%, LB(q)q2 dg = fo}(Zw)s. The corresponding
formula for the NE mechanism in pd'— dp follows from Eq.(7) after substitution

®X,1,(9) = v(q) + w?(q). In the framework of the NE-mechanism the tensor

~ polarization of the final deuteron in the pd — dN* reaction has a form

1 w(q)) —VBu(g) w(g)
V2w () +wi(e)

T20(‘oc.m. = 1800) = - (8)

This formula coincides the one for the pd — dp process within the NE-mechanism.



The triangular diagram OPE with the subprocess pp —+ dnt was investigated in
(16, 17] in the analysis of the pd — dp process. Generalization of the formalism from
Refs. [16, 17] to the pd — dN* reaction is quite obvious if we restrict ourselves to the
nucleon-like states of N*, JP = 1/2*. In this case the only difference between the
reactions pd — dN™ and pd —v dp is the mass inequality, m, # my.. Consequently,
the modification of the formalism from Refs. [16, 17] has a kinematic character. It

results in the following form for the spin-averaged square of the OPE amplitude

——c Ene +mpy- | S ——
Al = NP = o ) =25 TN (f+ R STAGp = R, (9)
<~ N. -~ .

where F2(k?) is the 7N N™-formfactor; for the estimation we use the monopole °

1N N-formfactor as F; according to Ref.[18], for the Roper resonance N*(1440)
the squared coupling constant 6’2/47% in the 7 N N*-vertex equals 14.7 X 0.4722;
the same value we use for the TNN*(1710) vertex in accordance with arguments
of Ref. [4]; En- and pn- are the total energy and momentum of the N*—isobar
in the labsystem; the nuclear formfactors for the S- and D- components of the
deuteron (1=0, 2) fi(pn+) are expressed via r-space integrals of the product of the
deuteron wave function 1(r) and the spherical Bessel function of the first order,
j1(pnemn-1/En-) (see details in Refs. [16, 17]). Such a form for fu{pn+) comes
* from the p-wave nature of the 7NN and 7NN*(1/2%) vertices. Owing to the
equality ji(z = 0) = 0, the formfactor fi(pn+) becomes zero at the point py. =0
and the OPE-amplitude (9) vanishes, too. The rest point in the labsystem for the
N--isobar is at T, = 1.876GeV for N*(1440), 2.75 GeV for N*(1535) and 6.86 GeV
for N*(1710). ‘
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-3 Numerical results and discussion

The numerical calculations are performed with the Paris wave function for the np-
component and its RGM-modification [9] for the N N*-component of the deuteron.
The sum over ten TISM states listed in Tabl.2 of Ref.[9], for which the eflective
numbers N&y. are not less than 10’5,'is. carried out in the Eq. (1) in calculation
of the QBE—a.mplitude of pd - dp process. The cross section of the pd — dN*

reaction is

do/dQ, mb/sr

2
To, GeV

Figure 2: The calculated cross sectlon of pd — dp at 6.,,. = 180° as a function of

kinetic energy of incident proton in the labsystem 7}, within the OBE mechanisms:

the neutron exchange (full curve, NE), the positive parity N* exchange (s (s), the
negative parity N* exchange (p), the total contribution of N*-exchanges (s+p), the
coherent sum of n + N* exchanges (s+p+NE).

calculated here under assumption that N* is a stable state to simplify the com-

.



pa;risf)n with pd — dp process. The contribution of N*- exchanges to the pd — dp

cross section is shown in Fig.2. The total contribution of V*-states of positive parity
(s-waves) and negative parity (p-waves) to the pd — dp cross section is by a factor

of > 30 smaller than the neutron exchange. In the energy interval 7, = 0.5 — 1GeV
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Figure 3: The cross section of the pd — dN* reaction at 8., = 180° calculated
within the different mechanisms as a function of T, for N*(1710) (a) and N*(1440)
(b): curvel - OPE 2 - NE. The pd — dp cross section within the NE mechanism is
shown by curve 3 ( for the diagram in Fig 1,b) and 4 (for the coherent sum of four
diagrams in Fig.1,b - e).

the p- contribution increases the OBE-cross section by a factor of ~ 1.3 due to

interference with the neutron exchange amplitude. However, the interference be-

tween the s- and p-wave amplitudes of N*-exchange is destructive. As a result,
the total contribution of N*-exchanges to the cross section and Ty of the pd — dp
process is negligible. We should note that, on the contrary, in t.h.e inclusive reac-
tion d + A — p(p°) + X the interference between s- and p-waves of N™-exchanges
does not occure [Qﬁ We found numerically that the Cross section of pd — dp at
Ocm. = 18.0", T, = 1-3GeV within the NE-mechanism decreases by a factor ~2-3
due to rescatterings and practically does not change its form as a function of T,
(Fig.3,b). The tensor polarisation T4 is modified by the rescatterings b\ not more
than 5-10%.

The small contribution of‘N*—-excha,nges to pd —. dp is mainly due to the small
effective numbers of N*-isobars in deuteron, N%y. < 1072, Unlike N™-exchanges in
the pd — dp amplitude including two dNN* vertices (Fig.1.a). the NE-amnplitude
of the pd — dN* reaction (Fig.1,f) contains only one dNN* vertex. Therefore
the modulus of this amplitude can be larger than that of the amplitude in Fig.1,a.
Moreover, there is an additional enhancement factor for the NE-mechanism of the
pd — dN* reaction in the case of s-states of relative motion in the d — n.+ N*
channel, namely, the presence of a point with zero relative momentum q = 0 (4)

in this channel. For the Roper resonance the point q = 0 lies at T, = 1.2GeV

‘and for N*(1710) at 2.2 GeV. It is easy to find that the point g = 0 arises in the

nonrelativistic kinematics, too.

For the N* isobars of negative parity the NE-amplitude is strongly suppressed
in ’the vicinity of the point q = 0 because of p-wave behaviour of the momentum
distribution in the dnN* vertex. As follows from Fig.3,a, the modulus square of the
NE—ampiitude of the pd — dN*(1710) reaction is the same order of magnitude as

that for the pd — dp process and by one order of magnitude larger than the OPE-



contribution in the energy interval of T, = 1.5 — 2GeV. For the Roper resonance
N*(1440) the NE-contribution is also comparable with that for pd — dp (Fig.3,b).

This conclus‘ion is mainly determined by the effective numbers N)”\‘,N(”m) =
6.751072 [9), N}%N(]MO) 1073 [8] and not changed after substituting the harmonic
oscillator wave function go(g) with the oscillator parameter b= 0.6fm [6] or
b = 0.8fm [9] for the RGM-modified Paris wave function [9]. Furthe‘rmore ?he
NE-mechanism of the pd — dN* reaction can be indentified by measurement of
tensor polarisation. We found from Eq.(8) that the tensor polarisation of the final
deuteron in the pd — dN* reaction at T, =1~-3GeV is Tpo ~ 0.6 — 0.7 both for
the N‘(1f140) and N*(1710) nucleon isobars. Ty is approximately constant since at
energies of T, = 1 —3GeV the argument ¢’ in Eq.(8) slowly varies in the interval of
0.7-0.8 GeV/c for N*(1440) and 0.9-1.0 GeV/c for N*(1710). Otherwise the tensor
analyzing power of this reaction in respect of the initial deuteron is zero for the
NE-mechanism, #0 = 0. In accordance with the above notes after Eq. (9), the
OPE mechanism predicts a deep minimum in the cross section of pd — dN *(1440)
at proton energy T, = 1.876GeV (Fig.3,b) which corresponds to the rest point of
N*(1440) at that energy. Thus, in conclusion, there are favourable conditions iﬁ

the interval T, = 1.5 — 2GeV to pick out the contribution of the NE-mechanism in

the pd — dN* reaction for backward going N*(1710) and N*(1440) nucleon isobars

and to search for the corresponding N N* components of the deuteron.
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