

0БЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

E4-96-374

Yu.N.Uzikov*

ROLE OF DEUTERON $N N^{*}$-COMPONENTS
 IN PROCESSES $p d \rightarrow d p$ AND $p d \rightarrow d N^{*}$

Submitted to «Physics Letters B»

[^0]
Узиков Ю.Н.

Роль $N N^{*}$-компонент в дейтроне в процессах $p d \rightarrow d p$ и $p d \rightarrow d N^{*}$
Вычислен вклад обмена нуклонными изобарами N^{*} в упругое $p d$-рассеяние назад на основе шестикварковой модели цейтрона и установлено, что он пренебрежимо мал по сравнению с обменом нейтроном. Показано, что полюсная амплитуда подхвата нейтрона из $n N^{*}$ компоненты дейтрона выделена в реакции $p d \rightarrow d N^{*}$ при, вылете назад изобар $N^{*}(1440)$ и $N^{*}(1710)$ при кинетической энергии начального протона в л-системе $1,5-2$ ГэВ, в то время, как ампитуда треупольной диаграммы с подпроцессом $p p \rightarrow d \pi^{+}$, опирающаяся на обычную pn-компоненту дейтрона, существенно подавлена.

Ра́бота выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного ннститута ядерных исследований. Дубна, 1996

Uzikov Yu.N.
E4-96-374
Role of Deuteron $N N^{*}$-Components
in Processes $p d \rightarrow d p$ and $p d \rightarrow d N^{*}$
The contribution of nucleon isobar N^{*} exchanges to backward elastic $p d$ scattering is calculated on the basis of deuteron 6 q -model and found to be negligible in comparison with neutron exchange. It is shown that the pole amplitude of neutron pickup from the deuteron $n N^{*}$-component is favoured in the reaction $p d \rightarrow d N^{*}$ for backward going $N^{*}(1440)$ and $N^{*}(1710)$ at kinetic energy of incident proton of $1.5-2 \mathrm{GeV}$ whereas the triangular diagram with subprocess $p p \rightarrow d \pi^{+}$related to the usual $p n$-component of deuteron is considerable suppressed.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

1 Introduction

An idea of preexistence of nucleon isobars in the deuteron at short NN -distances suggested for the first time in Ref. [1] is compatible both with the meson exchange theory [2] and 6-quark picture of the deuteron structure [3]. Backward elastic pdscattering, $p d \rightarrow d p$, is one source of information on the short-range structure of the deuteron. According to calculations [1] based on the Regge phenomenology and analysis [4] performed in the meson exchange theory the contribution of the $N N^{*}$-component to the $p d \rightarrow d p$.process is essential to explain the experimental data at energies $\sim 1 \mathrm{GeV}$. However, the application of the Regge-model at rather low energies as well as considerable uncertainties in knowledge on meson $-N-N^{*}$ vertices make these estimations questionable. Developed in last decade, the 6 -quark model of the deuteron [5]-[8] provides a new regular approach to construction of $d N N^{*}$ - vertices. In this model the deuteron structure at short relative NN-distances $r_{N N} \leq 1 \mathrm{fm}$ is determined by superposition of nonexcitated s^{6} and excitated $s^{4} p^{2}-$ $s^{5} 2 s 6$-quark shell-model configurations. Presence of two-quantum excitations in the configuration $s^{4} p^{2}-s^{5} 2 s$ is a reason for the phenomenological repulsive core in the NN -interaction potential [7]. Besides, the excitated quark configuration leads to an admixture of a small $N N^{*}$-component in the deuteron wave function. The effective numbers and momentum distributions are calculated in the framework of this approach $[8,9]$. Recently the results [9] for $d N N^{*}$ vertices were found sufficient [10] to explain the available experimental data on the inclusive reaction of deuteron disintegration $d+A \rightarrow p\left(0^{\circ}\right)+X[11]$ within the $n+N^{*}$-exchange mechanism.

In this work the contribution of N^{*} - exchanges to $p d \rightarrow d p$ (Fig.1,a) is calculated in the interval of incident proton kinetic energy in the labsystem of $T_{p}=0.5-3 \mathrm{GeV}$
on the basis of the 6 -quark model $[8,9]$ for $d N N^{*}$ - vertices. As is found here, this contribution is negligible in comparison with the mechanism of neutron exchange calculated in the Born approximation (Fig.1, b) and with account of rescatterings (Fig.1,c-e).

a

b

c

e

f

g

Figure 1: The mechanisms of the $p d \rightarrow d p$ and $p d \rightarrow d N^{*}$ processes: the one baryon exchange (OBE) ($a-f$); the neutron exchange (NE) in the Born aproximation (b, f) and taking into account rescatterings ($c-e$); the triangular diagram of one-pion exchange (OPE) (g).

Furthermore we investigate the reaction $p d \rightarrow d N^{*}$ for the backward going N^{*} isobar in the framework of the neutron exchange (NE) pole diagram (Fig.1,f) and triangle diagram (Fig.1,g) of one-pion exchange (OPE). The experimental investigation of the $p d \rightarrow d N^{*}(1440)$ reaction is planned at SATURNE [12]:

If the NE-mechanism dominates, this reaction can give the direct information
on the deuteron $n N^{*}$-component. The OPE amplitude involves the usual $n p$ component of the deuteron and masks the $N N^{*}$-component. However, as will be shown here, for the nucleon-like $N^{*}\left(1 / 2^{+}\right)$-states there is a kinematic region for the $p d \rightarrow d N^{*}$ reaction in which the OPE mechanism is considerably suppressed.

2 The model

The relativistic effects play an important role in the NE-mechanism at energies \geq $1 G e V$, especially for the $d \rightarrow p+N^{*}$ channel with large binding energy, $\varepsilon \sim 500 \mathrm{MeV}$ [13]. In order to allow for relativistic effects we use here the phenomenological relativistic approach for the three-body problem developed in Ref. [14]. In this approach the amplitude of the process $p d \rightarrow d B$, where B denotes either a proton (for $p d \rightarrow d p$) or N^{*} (for $p d \rightarrow d N^{*}$), in the framefork of one baryon exchange (OBE) can be written as a direct generalization of the $p d \rightarrow d p$ formalism of Ref. [15]

$$
A_{O B E}=4 \sqrt{E_{d}\left(E_{p}+E_{N}\right) E_{d^{\prime}}\left(E_{B}^{\prime}+E_{N}\right)} \frac{\sqrt{s}-M_{0}}{E_{N}} \sum_{\{N\rangle}\left\{\Psi_{\lambda^{\prime}}^{\sigma_{p} \sigma_{N}}\left(\mathbf{q}^{\prime}\right)\right\}^{+} \Psi_{\lambda}^{\sigma_{B} \sigma_{N}}(\mathbf{q})
$$

Here $E_{k}=\sqrt{m_{k}^{2}+\mathbf{p}_{k}^{2}}$ and p_{k} are the energy and momentum of the k -th particle in the $\mathrm{p}+\mathrm{d}$ c.m.s., m_{k} is its mass; $M_{0}=E_{N}+E_{p}+E_{B} ; \sqrt{s}$ is the invariant mass of the $p+d=d+B$ system; $\Psi_{\lambda^{\prime}}^{\sigma_{p} \sigma_{N}}\left(\Psi_{\lambda}^{\sigma_{B} \sigma_{N}}\right)$ is the deuteron wave function in the channel $d \rightarrow N p(d \rightarrow N B)$ normalized to the effective number, $N_{p N}^{d}$, of the corresponding channel

$$
\begin{equation*}
\frac{1}{2 J_{d .}+1} \sum_{\lambda, \sigma_{p}, \sigma_{N}} \int\left|\Psi_{\lambda}^{\sigma_{p}, \sigma_{N}}(\mathbf{q})\right|^{2} \rho_{p N}^{-1}(q) \frac{d^{3} q}{(2 \pi)^{3}}=N_{p N}^{d} \tag{2}
\end{equation*}
$$

where $\rho_{p N}(q)=2 \varepsilon_{p}(q) \varepsilon_{N}(q) /\left[\varepsilon_{p}(q)+\varepsilon_{N}(q)\right] ; \varepsilon_{k}(\mathbf{q})=\sqrt{m_{k}^{2}+\mathbf{q}_{k}^{2}} ; \sigma_{j}$ is the spin projection of the nucleon $j(j=\mathrm{p}, \mathrm{B}, \mathrm{N}) ; \lambda\left(\lambda^{\prime}\right)$ denotes the spin projection of the initial (final) deuteron. The sum over the internal states φ_{N}, including σ_{N}, of the
transferred baryon N (neuteron or N^{*}) is assumed in Eq. (1). Two combinator factors $\sqrt{2}$ are included in Eq. (1) since the 6 -quark deuteron wave function is fully antisymmetric. The arguments q and \mathbf{q}^{\prime} of the initial and final deuteron wave functions can be written in the following form

$$
\begin{align*}
& \mathbf{q}^{\prime}=\mathbf{p}_{p}-\frac{\varepsilon_{p}\left(\mathbf{q}^{\prime}\right)+E_{p}^{\prime}}{\varepsilon_{N}\left(\mathbf{q}^{\prime}\right)+E_{N}+\varepsilon_{p}\left(\mathbf{q}^{\prime}\right)+E_{p}} \mathbf{d}^{\prime} \tag{3}\\
& \mathbf{q}=\mathbf{p}_{B}-\frac{\varepsilon_{B}(\mathbf{q})+E_{B}^{\prime}}{\varepsilon_{N}(\mathbf{q})+E_{N}+\varepsilon_{B}(\mathbf{q})+E_{B}} \mathbf{d} \tag{4}
\end{align*}
$$

the relations $p_{N}=d-p_{B}=d^{\prime}-p_{p}$ are used here which are valid in the $p+d$ c.m.s. [14]; $d\left(d^{\prime}\right)$ is the momentum of the initial (final) deuteron. The amplitude (1) is related to the c.m.s. cross section of $p d \rightarrow d B$ as

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \frac{p_{B}}{p_{p}} \overline{|A|^{2}} \tag{5}
\end{equation*}
$$

The basis for calculation of $d N N^{*}$-vertices is the fully antisymmetric 6 q -wave function of deuteron which in the resonating group method (RGM) has a form

$$
\begin{equation*}
\Psi_{d}(1, \ldots, 6)=\hat{A}\left\{\varphi_{p}(1,2,3) \varphi_{n}(4,5,6) \chi(\mathbf{r})\right\} \tag{6}
\end{equation*}
$$

Here φ_{p} and φ_{n} are the quark wave functions of proton and neuteron, $\chi(\mathbf{r})$ is the RGM distribution function for the $p n$ component of deuteron and \hat{A} is the quark antisymmetrizer. When deriving the function $\chi(\mathbf{r})$ one can either calculate it in the microscopic 6 q -dynamics or construct it by means of RGM-renormalization procedure $[8]$ for the conventional phenomenological wave function of deuteron in pn-channel, like Paris or RSC. The difference between the effective numbers for these two methods is negligible, of few percentage [8]. To describe the internal quark motion in the baryons the translationally invariant shell model (TISM) is used. The wave function $\Psi_{\lambda}^{\sigma_{B} \sigma_{N}}$ for the channel $d \rightarrow N+B$ entering Eq.(1) is determined by
the overlap integral between the 6 -quark wave function of the deuteron, $\Psi_{d},(6)$ and the product of the internal wave functions of the baryons, φ_{N} and φ_{B}, as $\left.\Psi_{\lambda}^{\sigma_{B} \sigma_{N}}=\sqrt{\frac{6!}{3!3!2}}<\varphi_{N} \varphi_{B} \right\rvert\, \Psi_{d}>$. The details of the formalism and the effective numbers for \dot{N}^{*} in the deuteron are presented in Refs. [8, 9].

Rescatterings in the initial and final states for the NE amplitude are taken into account here in the eikonal approximation on the basis of the method developed in Ref. [16]. As a result, besides the Born term (Fig.1, a or b), three additional terms arise allowing for pd-rescattering at small angles in the initial state (Fig.1,c), pp-rescattering in the final state (Fig.1, d) and rescatterings both in the initial and final states simultaneously (Fig.1,e).

The spin-averaged square of the NE-amplitude of the $p d \rightarrow d N^{*}$ reaction (Fig. $1, \mathrm{f}$) takes the form

$$
\begin{equation*}
\overline{\left|A_{N E}\left(p d \rightarrow d N^{*}\right)\right|^{2}}=\frac{3}{64 \pi^{2}} K^{2} \rho_{p n}\left(q^{\prime}\right) \rho_{n B}(q)\left[u^{2}\left(q^{\prime}\right)+w^{2}\left(q^{\prime}\right)\right] \Phi_{N_{B} L_{B}}^{2}(q) \tag{7}
\end{equation*}
$$

where K is the same kinematic factor as in front of the sum sign in Eq.(1), u and w are the S - and D-components of the deuteron function in the $d \rightarrow p n$ channel, $\Phi_{N_{B} L_{B}}^{2}(q)$ is the momentum distribution in the channel $d \rightarrow n N^{*}$ for the N^{*}-isobar with the number of internal excitation quanta N_{B} and internal orbital momenturn L_{B} normalized by the condition $\int_{o}^{\infty} \Phi_{N_{B} L_{B}}^{2}(q) q^{2} d q=N_{e f f}^{n B}(2 \pi)^{3}$. The corresponding formula for the NE mechanism in $p d \rightarrow d p$ follows from Eq.(7) after substitution $\Phi_{N_{B} L_{B}}^{2}(q) \rightarrow u^{2}(q)+w^{2}(q)$. In the framework of the NE-mechanism the tensor polarization of the final deuteron in the $p d \rightarrow d N^{*}$ reaction has a form

$$
\begin{equation*}
T_{20}\left(\theta_{c . m .}=180^{\circ}\right)=-\frac{1}{\sqrt{2}} \frac{w^{2}\left(q^{\prime}\right)-\sqrt{8} u\left(q^{\prime}\right) \dot{w}\left(q^{\prime}\right)}{u^{2}\left(q^{\prime}\right)+w^{2}\left(q^{\prime}\right)} \tag{8}
\end{equation*}
$$

This formula coincides the one for the $p d \rightarrow d p$ process within the NE-mechanism.

The triangular diagram OPE with the subprocess $p p \rightarrow d \pi^{+}$was investigated in $[16,17]$ in the analysis of the $p d \rightarrow d p$ process. Generalization of the formalism from Refs. $[16,17]$ to the $p d \rightarrow d N^{*}$ reaction is quite obvious if we restrict ourselves to the nucleon-like states of $N^{*}, J^{P}=1 / 2^{+}$. In this case the only difference between the reactions $p d \rightarrow d N^{*}$ and $p d \rightarrow d p$ is the mass inequality, $m_{p} \neq m_{N^{*}}$. Consequently, the modification of the formalism from Refs. $[16,17]$ has a kinematic character. It results in the following form for the spin-averaged square of the OPE amplitude

$$
\begin{equation*}
\overline{\left|A\left(p d \rightarrow d N^{*}\right)\right|^{2}}=\frac{3}{2} \frac{\tilde{G}^{2}}{4 \pi} \tilde{F}^{2}\left(k^{2}\right) \frac{E_{N^{*}}+m_{N^{*}}}{E_{N^{*}}^{2}}\left(f_{01}^{2}+f_{21}^{2}\right) \frac{3}{2} \overline{\left|A\left(p p \rightarrow d \pi^{+}\right)\right|^{2}} \tag{9}
\end{equation*}
$$

where $\tilde{F}^{2}\left(k^{2}\right)$ is the $\pi N N^{*}$-formfactor; for the estimation we use the monopole $\pi N N$-formfactor as \tilde{F}; according to Ref.[18], for the Roper resonance $N^{*}(1440)$ the squared coupling constant $\tilde{G}^{2} / 4 \pi$ in the $\pi N N^{*}$-vertex equals 14.7×0.472^{2}; the same value we use for the $\pi N N^{*}(1710)$ vertex in accordance with arguments of Ref. [4]; $E_{N^{*}}$ and $p_{N^{*}}$ are the total energy and momentum of the N^{*}-isobar in the labsystem; the nuclear formfactors for the S - and D - components of the deuteron $(\mathrm{l}=0,2) f_{n}\left(p_{N^{*}}\right)$ are expressed via r-space integrals of the product of the deuteron wave function $\psi_{l}(r)$ and the spherical Bessel function of the first order, $j_{1}\left(p_{N^{*}} m_{N^{*}} r / E_{N^{*}}\right)$ (see details in Refs. $[16,17]$). Such a form for $f_{i 1}\left(p_{N^{*}}\right)$ comes from the p -wave nature of the $\pi N N$ and $\pi N N^{*}\left(1 / 2^{+}\right)$vertices. Owing to the equality $j_{1}(x=0)=0$, the formfactor $f_{l 1}\left(p_{N^{*}}\right)$ becomes zero at the point $p_{N^{*}}=0$ and the OPE-amplitude (9) vanishes, too. The rest point in the labsystem for the N^{*}-isobar is at $T_{p}=1.876 \mathrm{GeV}$ for $N^{*}(1440), 2.75 \mathrm{GeV}$ for $N^{*}(1535)$ and 6.86 GeV for $N^{*}(1710)$.

3 Numerical results and discussion

The numerical calculations are performed with the Paris wave function for the npcomponent and its_RGM-modification [9] for the $N N^{*}$-component of the deuteron. The sum over ten TISM states listed in Tabl. 2 of Ref.[9], for which the effective numbers $N_{N N^{*}}^{d}$ are not less than 10^{-5}, is carried out in the Eq. (1) in calculation of the OBE-amplitude of $p d \rightarrow d p$ process. The cross section of the $p d \rightarrow d N^{*}$ reaction is

Figure 2: The calculated cross section of $p d \rightarrow d p$ at $\theta_{c . m .}=180^{\circ}$ as a function of kinetic energy of incident proton in the labsystem T_{p} within the OBE mechanisms: the neutron exchange (full curve, NE), the positive parity N^{*} exchange (s), the negative parity N^{*} exchange (p), the total contribution of N^{*}-exchanges $(s+p)$, the coherent sum of $n+N^{*}$ exchanges ($s+p+\mathrm{NE}$).
calculated here under assumption that N^{*} is a stable state to simplify the com-
parison with $p d \rightarrow d p$ process. The contribution of N^{*} - exchanges to the $p d \rightarrow d p$ cross section is shown in Fig.2. The total contribution of N^{*}-states of positive parity (s-waves) and negative parity (p -waves) to the $p d \rightarrow d p$ cross section is by a factor of >30 smaller than the neutron exchange. In the energy interval $T_{p}=0.5-1 \mathrm{GeV}$

Figure 3: The cross section of the $p d \rightarrow d N^{*}$. reaction at $\theta_{\text {c.m. }}=180^{\circ}$ calculated within the different mechanisms as a function of T_{p} for $N^{*}(1710)(a)$ and $N^{*}(1440)$ (b): curve 1 - OPE, 2 - NE. The $p d \rightarrow d p$ cross section within the NE mechanism is shown by curve 3 (for the diagram in Fig 1,b) and 4 (for the coherent sum of four diagrams in Fig.1,b-e).
the p - contribution increases the OBE-cross section by a factor of ~ 1.3 due to interference with the neutron exchange amplitude. However, the interference be-
tween the s- and p-wave amplitudes of N^{*}-exchange is destructive. As a result, the total contribution of N^{*}-exchanges to the cross section and T_{20} of the $p d \rightarrow d p$ process is negligible. We should note that, on the contrary, in the inclusive reaction $d+A \rightarrow p\left(p^{\circ}\right)+X$ the interference between s- and p-waves of N^{*}-exchanges does not occure [9]. We found numerically that the cross section of $p d \rightarrow d p$ at $\theta_{\text {c.m. }}=180^{\circ}, T_{p}=1-3 \mathrm{GeV}$ within the NE-mechanism decreases by a factor $\sim 2-3$ due to rescatterings and practically does not change its form as a function of $T_{p}{ }^{\text { }}$ (Fig.3,b). The tensor polarisation T_{20} is modified by the rescatterings by not more than 5-10\%.

The small contribution of N^{*}-exchanges to $p d \rightarrow d p$ is mainly due to the small effective numbers of N^{*}-isobars in deuteron, $N_{N N^{*}}^{d}<10^{-2}$. Unlike N^{*}-exchanges in the $p d \rightarrow d p$ amplitude including two $d N N^{*}$ vertices (Fig.I, a), the NE-amplitude of the $p d \rightarrow d N^{*}$ reaction (Fig. $1, \mathrm{f}$) contains only one $d N N^{*}$ vertex. Therefore the modulus of this amplitude can be larger than that of the amplitude in Fig.1,a. Moreover, there is an additional enhancement factor for the NE-mechanism of the $p d \rightarrow d N^{*}$ reaction in the case of s-states of relative motion in the $d \rightarrow n+N^{*}$ channel, namely, the presence of a point with zero relative momentum $\mathbf{q}=0$ (4) in this channel. For the Roper resonance the point $\mathbf{q}=0$ lies at $T_{p}=1.2 \mathrm{GeV}$ and for $N^{*}(1710)$ at 2.2 GeV . It is easy to find that the point $\mathbf{q}=0$ arises in the nonrelativistic kinematics, too.

For the N^{*} isobars of negative parity the NE-amplitude is strongly suppressed in the vicinity of the point $\mathbf{q}=0$ because of p-wave belaviour of the momentum distribution in the $d n N^{*}$ vertex. As follows from Fig.3,a, the modulus square of the NE-amplitude of the $p d \rightarrow d N^{*}(1710)$ reaction is the same order of magnitude as that for the $p d \rightarrow d p$ process and by one order of magnitude larger than the OPE-
contribution in the energy interval of $T_{p}=1.5-2 \mathrm{GeV}$. For the Roper resonance $N^{*}(1440)$ the NE-contribution is also comparable with that for $p d \rightarrow d p$ (Fig.3,b).

This conclusion is mainly determined by the effective numbers $N_{N N(1710)}^{d}=$ $6.7510^{-3}[9], N_{N N(1440)}^{d}=10^{-3}[8]$ and not changed after substituting the harmonic oscillator wave function $\varphi_{00}(q)$ with the oscillator parameter $b=0.6 \mathrm{fm}$ [6] or $b=0.8 \mathrm{fm}$ [9] for the RGM-modified Paris wave function [9]. Furthermore the NE-mechanism of the $p d \rightarrow d N^{*}$ reaction can be indentified by measurement of tensor polarisation. We found from Eq.(8) that the tensor polarisation of the final deuteron in the $p d \rightarrow d N^{*}$ reaction at $T_{p}=1-3 \mathrm{GeV}$ is $T_{20} \sim 0.6-0.7$ both for the $N^{*}(1440)$ and $N^{*}(1710)$ nucleon isobars. T_{20} is approximately constant since at energies of $T_{p}=1-3 \mathrm{GeV}$ the argument q^{\prime} in Eq.(8) slowly varies in the interval of $0.7-0.8 \mathrm{GeV} / \mathrm{c}$ for $N^{*}(1440)$ and $0.9-1.0 \mathrm{GeV} / \mathrm{c}$ for $N^{*}(1710)$. Otherwise the tensor analyzing power of this reaction in respect of the initial deuteron is zero for the NE-mechanism, $t_{20}=0$. In accordance with the above notes after Eq. (9), the OPE mechanism predicts a deep minimum in the cross section of $p d \rightarrow d N^{*}(1440)$ at proton energy $T_{p}=1.876 \mathrm{GeV}$ (Fig.3,b) which corresponds to the rest point of $N^{*}(1440)$ at that energy. Thus, in conclusion, there are favourable conditions in the interval $T_{p}=1.5-2 G e V$ to pick out the contribution of the NE-mechanism in the $p d \rightarrow d N^{*}$ reaction for backward going $N^{*}(1710)$ and $N^{*}(1440)$ nucleon isobars and to search for the corresponding $N N^{*}$ components of the deuteron.

Acknowledgments

The author is grateful to V.I. Komarov, A.P.. Kobuchkin and I.T. Obukhovsky for helpful discussions. This work was supported in part by the Russian Foundation for Basic Research (grants No 96-02-17458 and No 96-02-17215)

References

[1] A.K.Kerman and L.S.Kisslindger, Phys. Rev. 180 (1969) 1483.
[2] H. Arenhövel, M. Danos and H.T. Williams, Nucl. Phys. A162 (1971) 12; N.R. Nath, H.J. Weber and P.K. Kabir, Phys. Rev. Lett. 22 (1971) 1404.
[3] Yu.F. Smirnov and Yu. M. Tchuvilsky, J.Phys.G: Nucl.Phys., 4 (1978) L1.
[4] L.S.Sharma, Y.S: Bhasin and A.N.Mitra, Nucl.Phys. B35 (1971) 466; J.S. Sharma and A.N. Mitra, Phys. Rev. D9 (1974) 2547.
[5] A.M. Kusainov, V.G. Neudatchin and I.T. Obukhovsky, Phys.Rev. C44 (1991)2343;
[6] L.Ya. Glozman, V.G. Neudatchin and I.T. Obukhovsky, Phys. Rev. C48 (1993) 389.
[7] V.G. Neudatchin, I.T. Obukhovsky, V.I. Kukulin and N.F. Golovanova, Phys.Rev. C11 (1975) 128; A. Feassler, F. Fernandez, G. Lübek, K.Shimizu, Nucl.Phys. A402 (1983) 555.
[8] L.Ya.Glozman and E.I. Kuchina, Phys. Rev. C49 (1994) 1149.
[9] A.P.Kobushkin, A.I. Syamtonov and L.Ya.Glozman, Yad. Fiz. 59 (1996) 833.
[10] A.P. Kobushkin, Talk at XIII Int. Symp. on Realtivistic Nuclear Physics and QCD (2-7 September, 1996) Dubna, Russia.
[11] A.G. Ableev et al., Pis'ma ZHETF 47 (1988) 558.
[12] Experiment LNS 278C. Spokesmen E.A. Strokovsky and R. Kunne.
[13] Yu. N. Uzikov, Sov. J. Nucl. Phys. 55 (1992) 1319.
[14] B.L.G. Bakker, L.A. Kondratyuk and M.V. Terentjev, Nucl.Phys. Bi58 (1979) 497.
[15] L.A. Kondratyuk, F.M. Lev and L.V. Shevchenko, Yad. Fiz. 23 (1981) 1208.
[16] L.D. Blokhintsev, A.V. Lado, Yu.N. Uzikov, Nucl. Phys. A597 (1996) 487.
[17] V.M. Kolybasov and N.Ya. Smorodiuskya, Phys.Lett. 37B(1971) 272; Yad.Fiz. 17 (1973) 1211.
[18] L.Vegh, J. Phys. G: Nucl.Phys. 8 (1979) L121.
[19] S. Hirenzaki, P.Fernandez de Cordoba and E. Oset. Phys.Rev. C53 (1996) 277.

[^0]: *E-mail address: uzikov@nusun.jinr.dubna.su

