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1 Introduction 

In order to determine a physical sy;tem state, one needs a physical procedur~ which 
allows one to find the density matrix which the system had before this procedure. If the 
state is pure, then one must determine the system wave function. The state determination 
differs from the well-known quantum observable measurement. The problem and different 
approaches to its solution· have been reviewed in <1>. The paper contains references to 
Kemble {1937), Gale, Guth and Trammel (1968), Lamb (1969), d'Espagnat (1976). The 
book <2> gives additional references (the problem being called "informationaly complete 
rµeasurement"). 

The determination of a particle spin state is the simplest example. In the case of spin 
one-half one has to find two real parameters which determine the spin wave function or 
three parameters determining the density matrix. The purpose of this paper is to show 
how the initial spin state can be found. (in the case of an arbitrary spin s = 1/2, 1, ... ) 
using the Stern-Gerlach device. The device is well-known as the experimental procedure 
destined for spin observable measurement, e.g. see (3 ,4)_ 

In order to describe a spin state, one may use instead of the density matrix D the ex
pectation values (s;s; • • • sk) = Tr(s;s; · · · sk)D of products of the spin vector components 
s;, i = 1, 2, 3. This way of the spin state description is set forth in section 2 and is used 
further. 

In Section 3 we describe the model of the Stern-Gerlach device which is employed 
in this paper. Remind that the device allows one to get information on particle spin by 
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measuring the particle momentum or coordinate (3,4). For our purpose one must be able 
to measure momentum distributions which the particle had before and after the action 
of the device magnetic field. It will be shown that calculation of mixed moments of these 
distributions {the momentum expectation value being the first moment) allows one to 
find (s;s; · · · sk), i.e. the particle spin state. 

The usual treatment of the Stern-Gerlach device is based upon the entanglement of 
the spin and spatial parts of the particle wave function (3,4)_ Busch and Schroeck (5) have 
shown that this entanglement is only approximate. We show in section 4 that it is the 
corrections to this entanglement that are of particular importance for obtaining correct 
values of the moments described above. 

Some concluding remarks are given in section 5. 

2 Descript~on of the spin states by polarization ten
sors 

In the general case, the particle spin state is described by a {2s + 1) x {2s + 1) hermitian 
density {or statistical) matrix D having the unit trace TrD = 1. It is well-known·(see 
e.g. (

5
)) the the state in the cases = 1/2 can equivalently be described by the polarization 

vector f = TrsD, i.e. by expectation values of the spin operators= (s1, s2, s
3
). Indeed, if 

f is known, then D = 1/2+2'I's. This description can be generalized for the cases 2: 1 (7)_ 

But in addition to the expectation values of s1, s2, s3 , one needs then expectation values 
of their products s;s;, s;s;sk and so on. In the case s = 1/2, these products reduce 
either to the number (a multiple-of the unit matrix) or to the operators s; themselves, 
e.g. s; = (ux/2)

2 
= 1/4 and s1s2 = is3/2 = -s2s1. More exactly, the spin state 

can be described besides f by expectation values of irreducible rotation group tensors 
tq, q = 2, 3, ... 2s, constructed of the symmetrized products of s1, s2 , s3 , see e.g. (a), eq.(16) 
and (

7
), ch.III.22, example 10b. For example, the rank 2 tensor t 2 depends upon s;s; +s;s;. 

The irreducible tensor tq has 2q + 1 components lqM, M = -q,-q + 1, · · · + q which 
have expectation values 

TrtqMD = L (m2itqMlmi)(m1IDlm2) (1) 
m1m2 

To calculate (1) one may use the Wigner-Eckart theorem (e.g. see (7) or (9)) 

{m2itqMlm1) = (sltqjs)(-l)'-m2 (ssm1 - m 2jssqM) (2) 

where {ssm1 - m2lssqM) is the Clebsch-Gordan coefficient (7)_ I assume here that lqM 
transforms under rotations not as the spin wave function jqM) (or spherical function 
YqM(0, <I>)) but as the corresponding bra vector (qMj = jqM)*. In particular, t

1
M are the 

cyclic (or spherical) components of the spin vector (see (7) ch.III.App D) 

t1,-1 = (sx - is;)/V2, t1,o = Sz, li,+1 = -(sx + isy)/V2 (3) 

2 

, 

'l 

We see that TrtqMD, eq.(l), is proportional to the q°:antity 

TqM = V2s + 1 L ( -1 )•-m• {ssm1 - m2 jssqM) (m1 IDlm2) 
m1,m2 

Using the Clebsch-Gordan coefficient property 

L(s1s2m1m2ls1s2qm)(s1s2m~m~ls1s2qM) = c5m,m;c5m,,m2 
qM • 

one can verify that 

(mdDlm2) = (2s + 1)-112 LTqM(-1t•+m, (ssm1 - m2lssqM) 
qM 

(4) 

(5) 

So D can be represented by TqM, q = 0, 1, · · · 2s, M = -q, -q + 1, · · · + q. TqM are called 
the multipolar tensor parameters in <1>, other names are also used. I call TqM here the 
polarization tensors because they are generalizations of the -polarization vector, which is 
the rank 1 tensor. TqM can be constructed from the expectation values Tr(s;s; • • • sk}D. 
The number of multipliers in the product s;s; • • • Sk need not exceed 2s (if follows from 
eq.(2} that the tensors with q > 2s vanish). 

It will be shown in the next section how one can determine expectation values of 
s;s; • • • Sk measuring the momentum distribution of the particle before and after the action 
of the Stern-Gerlach magnetic field. · 

3 Polarization tensor determination by measuring 
momentum distribution 

3.1. I use the model of the Stern-Gerlach device which has been described in <10>. Initially, 
at t = 0 a neutral particle is in a state tf.,0 = </>oxo, its spatial part </>o(i) being a wave 
packet and Xo being a spin wave funct_ion. After t = 0 a magnetic field B(i) is turned 
on in the region of the packet localization. The field is turned out at t = r, and then the 
particle momentum is measured. The model Hamiltonian is 

H = p2 /2m + g(t)µs · B(i) =Ho+ H1 (6) 

Here fi = -iV x is the atom momentum operator conjugated to the atom center-of-mass 
coordinate i; µ is the particle magnetic moment; sis the spin operator. The function 
g( t) is zero outside the interval 0, T and equals approximately the unit almost everywhere 
inside it, so that J,,. g(t)dt = r. 

0 -

The inhomogeneous field B(i) is supposed to be a linear function of i: 

B(i) = .80 + b(i), b;(i) = L L;;x;, i, i = 1, 2, 3 
; 

3 
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B(i) must satisfy the equations divB = 0 and rotB = 0 because it is the magnetic field 
outside generating currents. The most general field (7) satisfying the equations is of the 
form <10> 

B(i) =Bo+ L .Ba(i · v-;,)v-;,, .81 + ,82 + ,83 = 0 (8) 
a 

where the mutually orthogonal unit vectors Va, a = 1, 2, 3, can be called eigenvectors of 
b(i). Besides them b(i) is specified by the pseudoscalars .Ba (which are field gradients 
along eigenvectors iia)- One can direct the coordinate axes along Va, so that (i · va) = x0 

and then 
Bk(i) = Bok+ ,Bkxk 

The solution of the Schroedi.nger equation 

. ia1t/J(t) =(Ho+ Hr )tjJ(t), tjJ(t = 0) = t/Jo 

(9) 

(10) 

can be represented as t/J(t) = exp(-iH0 t)t/Jr(t) where t/Jr(t) is the particle wave function 
in the interaction picture (for details see <10)) 

t/Jr(t) = U(t)t/Jr(t), t/Jr(0) = t/Jo 

U(t) = Texp[-i [ dt'Hr(t')] 

Hr(t) = exp(iHot)Hrexp(-iH0 t) = 9(t)µs.B(t) 

(11) 

(12) 

Bk(t) =Bok+ ,Bk(Xk + tpk/m) (13) 

The calculations of this section can be generalized for the case when the initial particle 
state is described by the product pD of the spatial density matrix p and spin density 
matrix D. 

The so-called "impulsive approximation" (e.g. see (3,4,5)) is not used here, i.e. we do 
not neglect Ho as compared to Hr. 

3.2. I am going to show that expectation values of the operators Pi,PiPi,PiPiPk ···in 
the state t/J(t) allow one to determine expectation values of the spin operators s; and their 
products in.the initial state which is equivalent to the initial spin state determination, see 
sect 2. 

The expectation values can be evaluated if the momentum distribution w(p1,p2,p3) 
is measured: they are equal to J d3pp;w(p1,P2,p3) and so on. Quantum mechanical 
expression (t/J(t)IOlt/J(t), 0 = p;, p;p; · · · for the expectation value can be written as the 
expectation value of the corresponding Heisenberg operator O(t) in the initial state· 

(tjJ(t)IOlt/J(t) = (e-iH01 U(t)t/JolOle-iHotu(t)lt/Jo) = 

= (t/J.IOl(t)lt/Jo) 

If O commutes with Ho (it is the case for momentum operators), one has 

O(t) = u+(t)OU(t) 
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In Appendix I present the most simple derivation of the formula which allows one to 
calculate the r.h.s. of eq.(15) in any order of the interaction Hr 

u+ou = o+ 

1
1 111 11

n-1 [ ,ii + ~ in 
O 

dt1 
0 

dt2 · · · 
0 

dtn H1(tn), [Hr(ln-d, [· · · [Hr(t1), OJ·· ·.r:J16) 

With the help of this formula and usual commutation relations [s;, s;) = it;;ksk and 
[p;,f(i)) = i8J(i)J/ax;, one obtains the following expression for the Heisenberg operator 
Pk(t) in terms of the Schroedinger operators Pk,Xk,sk: 

Pk(t) = Pk - µ,Bk91(t)sk + µ2,Bk [ dt19(t1) 111 

dt29(t2)[s x B(t2))k -

1
1 11' 11 µ3,Bk 

O 

dt19(t1) 
0 

dt29(ti) 
0 

dt39(t3){[[s x B(t3)J x B(ti))k + 

l2 - l3" 2 + -- L..., fkmnSmSn,Bn} + · · · 
m . 

(I 7) 
m,n 

I -Here 91 ( t) = J
0 

dt19( t 1 ); 91 ( t > r) = r; [s x B)k denotes the k-th component of the vector 
product [s x B); [[s x .B(t3)) x B(t2)) denotes the double vector product. The interior of 
the curly brackets in eq.(17) can be represented as the explicitly hermitian operator: 

l[ - - ] l[- - ] {· · ·} = 2 [s x B(t3)) X B(t2) + 2 B(t2) X [B(t3) X s] k + 

t2 - t3" 2 +~ L..., .Bn(smSn + Snsm) 
mn 

3.3. Now one can calculate (Pk)= (</>o!Pk(t)l</>o) fort> r 

(pk) = (pk)o - µ,8kTTk+ 

1t 11' + µ2,Bk 
O 

dt19(t1) 
0 

dt29(t2)[T X (</>olB(t2)l</>o))k-

-µ3,Bk dt 19(t1) dt29(t2) dt39(t3){-[[T x (</>olB(t3)) x B(t2)]kl</>o)+ 11 112 113 1 

0 0 0 2 

1 - - -+ 2[(</>olB(t2) x [B(t3)l</>o) x T)k+ 

t2 - l3" 2 +~ L...,fkmn.Bn(SmSn + SnSm}} + · · · 
mn 

We use the equation J; 9(t1 )dt1 = r valid fort> rand the notation 

(Pk)o = (</>olPkl</>o), 1',,. = (xolsklxo) 

(</>olBl</>o) = j d3x¢,~(i)B</>o(i) 

(s.,.sn + Sn-•m) = (xolsmSn + s,.sm lxo) 
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So the change (Pk)-(Pk)o of the momentum expectation value induced by the magnetic 
field depends upon the polarization vector f and polarization tensors of higher ranks if 
f3k i- 0 (one can show that the rank 3 tensor appears only in terms~ µ 5 ). 

In the case s = 1/2 the r.h.s. of eq.(17) depends on the operators s; only and not on 
their products. For instance, one has 

1 
SmSn + SnSm = Omn • 2 · / 

where I is the 2x2 unit matrix. So (Pk) depends on f only and eqs.(18) fork= 1,2,3 
form the system of linear equations which allows one to find f if (pk) - (Pk)o are known 
and f3k i- 0. If only terms of the orderµ are taken into account in this system (terms 
~ µ 2, µ 3 • • • are neglected), one obtains a simple expression for f 

Tk = -((Pk) - (Pk)o]/µ/3,r, k = 1,2,3 (20) 

3.4.If s 2: 1, one needs to determine the polarization tensors of higher ranks q 2: 2 
and eqs.(18) do not suffice. I suggest to add to eqs.(18) the equations for mixed moments 
(p;p;} = (<Polp;(t)p;(t)l</>o), (PiPiPk) and so on. Using eq.(17) one obtains 

(p;p;) = (p;p;)o - µg1(t)(/3;T;(p;)o + /J;T;(p;)o] + 
t t· + µ

2 
}

0 
dt1g(t1) Jo dt2g(t2){/3;(T x (<Pol.B(t2)P;l<Po)]; + 

- - 2 1 2 + /3;(T x (<PolB(t2)PMo)];} + µ 2g1 (t)/3;/Ji(s;s; + s;s;) + · · · (21) 

The system of 9 linear equations (18) and (21) allows one to determine three compo
nents Tk and six components (s;s; + s;s;) in the case s = 1. The system assumes the 
simplest form if one neglects the terms~ µ3 ,µ4, • • •. Then, one may determine at first 
T1, T2, T3 from eq.(18), insert them into the r.h.s. of eqs.(21) and calculate (s;s; + s;s;) 
(in order to calculate (<PolBp;jqlo), one needs the spatial wave function ¢0 ). 

In the case s 2: 3/2, one must determine the rank 3 polarization tensor. For this 
purpose, one must add to eqs.(18) and (21) the equations for (PiP;Pk), i,j, k = l, 2, 3. 
The simplest equations result, if one neglects the terms ~ µ4 • I shall not write out these 
combersome equations which show that (p;p;pk) depend upon symmetrized components 
(s;s;sk)-

The above presentation makes it clear how to determine polarization tensors fo arbi
trary ranks q up to q = 2s. 

4 Comparison with the usual treatment of the Stern
Gerlach device 

The purpose of this section is to show that one obtains incorrect theoretical values for the 
moments of particle momentum distribution if the so--called entanglement approximation 
is used. 
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4.1. Busch and Schroeck (5) have shown how this approximation follows from the model 
theory of the Stern-Gerlach device if one uses the correct description of the Stern-Gerlach 
field B(i) (satisfying the equation divB = 0 and rotB = 0) and employs the "impulsive" 
approach ignoring the term p2 /2m in eq.(6), see (3,4,5)_ I shall obtain approximation equa
tions which are necessary for my purpose by using instead another simplification suggested 
and discussed in <10l, sect 3: the Texp turns into the usual exponent exp(-ig1(t)µs-B(i)] 
if one replaces Bk(t) in H1(t), see eq.(13), by Bk(i) = Bok+ /Jkxk, omitting the term 
tf3kPk/m.It suffices to deal, in what follows, with the case s = 1/2. In this case, the 
latter exponent can be calculated nonperturbatively: using the equation (2.sh)2 = h2 one 
obtains for t > T 

[ . - B-(-)] ( . -h-. h ·2-h-sin h exp -irµs • x = exp -i2s J = cos + i s -h- (22) 

The notation h(i) = ½µrB(i) was introduced. So at t >Tone obtains for tPJ(t), eq.(11), 
the following approximate solution 

,PI( t) ~ exp(-i2sh)<PoXo = <Po( cos h - i2(sh) sin h/ h )xo (23) 

Our approach unlike the "impulsive" one allows one to describe the spatial propagation 
and smearing of the particle packet during and after the action of the magnetic field due 
to the equation (see sect 2) 

t/J(t) = exp(-iH0(t),h(t) 

Later we deal with the particle momentum distribution and its moments which are 
the same in the Schroedinger and interaction pictures. 

Below let us use the following particular simple choice of the field B(x): Bo is parallel 
to the unit eigenvector v3 of the inhomogeneous part b(x); see eq.(8), and ,82 is equal to 
zero. Then 

B(i) =(Bo+ /33x3)V3 + /31X1V1 

h(i) = ½µr((Bo + /33x3)2 + ,BfxW12 

(24) 

(25) 

Note that this choice does not allow to find the polarization vector component T2 but 
allows to find T1 and T3 • This will be enough for our purpose, 

In the cases = 1/2 one can expand the initial spinor Xo in the eigenfunctions X± of 
the operator Bo· s or V3 · s = si: 

(
cos~) xo = 2 _ sin ~ei¢o - A+x+ + A-x-, X+ = G), X- = G) (26) 

1 Note that in <10>, sect 3, another expansion in eigenfunctions X±(i) of (B(x)s) has been used. The 
expansion does not suit for the ensuing investigation of the corrections to the convectional "entangled" 
approximation, see eq.(34) below. Note also that the parametrization of xo used in eq.(26) corresponds 
to the related polarization vector f having the spherical angles Oo, </,o. 
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Bo 
A+ = (x+lxo) = cos 2 (27) 

Then, eq.(23) can be rewritten as 

. sinh . sinh 
1h(t > r) = ip0 {A+ cos h - iA+ Th3 - iA_-h-hdx+ + 

. sinh . sin h 
+ ip0 {A_ cos h + iA_-h-h3 - iA+-h-hiJx- (28) 

(the equation (2s3h3 + 2s1h1)X± = ±x± + h1X=f has been employed). When considering 
the Stern-Gerlach experiment, one assumes the inequalities 

Bo>> /31X1, Bo>> /33X3, X1,X3 E Support <Po(x) 

Then, one has (see eq.(24)): 

h3 ~ 1 _ fJ;xL 
h 2BJ' 

h1 ~ /31x1 (l _ /33X3 + fJfx;) 
h B0 Bo 2B0 

Neglecting the terms of the order [fJxxk/ Bo)2 one has 

,PI(t > r) = ip0 {A+e-ih(x) - iA_/3~:1 
sinh}x+ + 

+ <Po{A_e+ih(x) - iA+/3:i sinh}x

(29) 

(30) 

(31) 

The inequalities (29) allow oiie to write the following approximation for h(x), eq.(25) 

h(x) = ½µr Bo(l + /33x3/ Bo+ /3;x~/2B~) (32) 

The term /3'#,x;/ BJ was neglected, but the term fJf xU2BJ must be retained when consid
ering the case of small x 3 • We see that exp(±iµ-r/33x3 /2) in eq.(31} are proportional to 
the plane waves exp(±iµrf33x3/2) but only if x3 is not small. With this reservation one 
obtains from (31) (neglecting the terms proportional to /31x1/ Bo << 1) 

t/J1(t > r) = <Po{A+e-iµTBo/2e-itjxX+ + A_e+iµTBo/2e+iq'i'x-} 

➔ 1 /3 ➔ q = 2µ-r 3V3 

(33) 

(34) 

Eq.(33) shows that the spin-up spinor X+ is entangled with the spatial wave function 
ip

0 
exp(-iqx) and X- is entangled with <Po exp( +iifx). The consequence is that the initial 

beam separates into two beams, in the up beam the spin state being X- and in the down 
beam the spin state being x+ (the corresponding probabilities being equal to IA-1

2 
and 

IA+l3). 
The derivation of eq.(33) given above shows that there are several deviations from 

this simple picture. Busch .and Schroeck (5) have discussed at length these deviations 
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(using the "impulsive" approximation) I can add to this topic that expih(x) cannot be 
approximated by the plane wave at small x 3 • Our purpose here is to discuss the relation 
of the entanglement approximation given by eq.(33) to the calculation of the momentum 
expectation values (pk)-

4.2. The following simple argument shows that the entanglement approximation gives 
an incorrent value for (pk)- Eq.(33) means that the initial packet <Po (having the ap
proximate momentum (p)o = fio) is divided in the device into two separated pack
ets <Po exp( ±iqx) so that the probability for the particle to be in the down packet is 
IA+l2 = cos2 00 /2, see eq.(27). Then, the average momentum must be 

(p) ~ (A-12(Po +if)+ (A+l2(Po - if)= Po - if cos Bo, (35) 

The resulting vector (p') - p0 is parallel to v3 ; meanwhile according to eq.(20), it 
should have also nonzero v1 component in the particular case /32 = 0, f31 = -/33 ,jc O under 
consideration, see eq.(24) (remind that eq.(20) is valid in the first order of perturbation 
theory, so one must suppose here that µB(x) is small). 

It is possible to show that the correct value for (pk) = (t/J1(t)IPkl1h(t)) can be obtained 
if one uses a more exact eq.(31) for t/J1(t). The calculation turns out to be much more 
difficult than that of sect 3, which uses the equation (Pk) = (,J,olPk(t)l¢o). But this 
calculation shows that the value, -µr{33T3 (where T3 = ½cosBo) for (p3) - (p3)o has the 
origin described above before eq.(35). The terms A±sinhf31xi/Bo from eq. (31) do not 
contribute to (p3) - (p3)0 • But the terms give the correct nonzero value -µrf31T1 to the 
difference (p1) - (p1)o, cf. eq.(20). In this calculation one must consider h to be small 
and take into account only terms of the first order in fJk-

So one may conclude that the entanglement approximation is inadmissible for the (Pk) 
calculation, i.e. for the determination of the initial spin state. 

5 Conclusion 

The Stern-Gerlach device is known as a way to measure neutral particle spin observables. 
It is shown here how to use it for the determination of the particle initial spin state. This 
allows one to achieve the "determinative" purpose of the spin observable measurement: if 
one knows the initial spin state, one can calculate probabilities of eigenvalues of any spin 
observable. One need not to measure for this purpose either the usual spin observables 
or any its generalizations ("unsharp" observables or POV measures, e.g. see (2,5>). But 
this is another, "preparatory" purpose of quantum measurement: it allows one to prepare 
the physical system in a known state. It has been shown in !2,5) that. the Stern-Gerlach 
device can realize this purpose only approximately. So one may conclude that the device 
suits rather for the determination of the initial spin state than for t.he spin obsrrvablr 
measurement. 

Appendix. Derivation of equation (16) 

9 



The interaction picture evolution operator U(t), see eq.(12), and its hermitian conju
gate u+(t) satisfy the equations 

81U(t) = -iH1(t)U(t), atu+(t) = w+(t)H1(t) 

Following Schwinger's approach {ll) let us use the identity 

Eqs.(A.l) give 

So one has 

L
t d 

u+(t)OU(t) = 0 + dti -d [U+(ti)OU(ti)J 
0 ti 

d
d [U+(ti)OU(ti)J = iU+(ti)[H1(ti),OJU(ti) 
ti 

u+(t)OU(t) = o + [ dtiiu+(ti)[H1(ti)OJU(ti) 

Further use again the identity analogous to (A.2) 

Lt d 
u+(ti)[H1(ti), OJU(ti) = [H1(ti), OJ+ dt2-d {U+(t2)[H1(ti), OJU(t2)} = 

O t2 

r = [H1(ti), OJ+ lo dt2iU+(t;)[H1(t2), [H1(ti), O)]u+(t2) 

The infinite repetition of this procedure gives eq.(16). 
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