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1 Introduction

In order to determine a physical syétem state, one needs a physical procedure which
allows one to find the density matrix which the system had before this procedure. If the
state is pure, then one must determine the system wave function. The state determination
differs from the well-known quantum observable measurement. The problem and different
approaches to its solution have been reviewed in (). The paper contains references to
Kemble ( 1937) Gale, Guth and Trammel (1968), Lamb (1969), d’Espagnat (1976). The
book (?) gives additional references (the problem being called "informationaly complete
measurement”).

The determination of a particle spin state is the simplest example. In the case of spin
one-half one has to find two real parameters which determine the spin wave function or
three parameters determining the density matrix. The purpose of this paper is to show
how the initial spin state can be found (in the case of an arbitrary spin s = 1/2,1,...)
using the Stern~Gerlach device. The device is well-known as the experimental procedure
destined for spin observable measurement, e.g. see G4,

In order to describe a spin state, one may use instead of the density matrix D the ex-
pectatlon values (s;s; - - si) = Tr(s 85 -+ 5&)D of products of the spin vector components
s;,t = 1,2,3. This way of the spin state description is set forth in section 2 and is used
further.

In Section 3 we describe the model of the Stern-Gerlach device which is employed
in this paper. Remind that the device allows one to get information on particle spin by
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measuring the particle momentum or coordinate 34). For our purpose one must be able
to measure momentum distributions which the particle had before and after the action
of the device magnetic field. It will be shown that calculation of mixed moments of these
distributions (the momentum expectation value being the first moment) allows one to
find (s;s; - - - s4), i.e. the particle spin state.

The usual treatment of the Stern-Gerlach device is based upon the entanglement of
the spin and spatial parts of the particle wave function (). Busch and Schroeck () have
shown that this entanglement is only approximate. We show in section 4 that it is the
corrections to this entanglement that are of particular importance for obtaining correct
values of the moments described above.

Some concluding remarks are given in section 5.

2 Description of the spin states by polarization ten-

sSOors

In the general case, the particle spin state is described by a (2s +1) x (25 + 1) hermitian
‘density (or statistical) matrix D having the unit trace TrD = 1. It is well-known "(see
e.g. () the the state in the case s = 1/2 can equivalently be described by the polarization
vector T = TrsD, i.e. by expectation values of the spin operator § = (s1, 53, 3). Indeed, if
Tis known, then D = 1/2 +2T'5. This description can be generalized for the case s >10),
But in addition to the expectation values of sy, s,, 53, one needs then expectation values
of their products s;s;, s;8;5; and so on. In the case s = 1/2, these products reduce
either to the number (a multiple-of the unit matrix) or to the operators s; themselves,
eg 52 = (0:/2)* = 1/4 and s15; = is3/2 = —s35,. More exactly, the spin state
can be described besides T by expectation values of irreducible rotation group tensors
tg:q = 2,3,...25, constructed of the symmetrized products of S1, S2, 83, see e.g. (&), eq.(16)
and (), ch.I11.22, example 10b. For example, the rank 2 tensor ¢, depends upon s;s; +s;s;.

The irreducible tensor ¢, has 2¢ + 1 components typ, M = —g,~q +1,--- 4 ¢ which
have expectation values

TriguD = ) (maltom|ma)(m; | Dlmy) (1)

mimg
To calculate (1) one may use the Wigner—Eckart theorem (e.g- see ) or )
(maltemima) = (sltols)(=1)*"" (ssmy — malssqM) (2

where (ssm; — m;|ssqM) is the Clebsch—-Gordan coefficient (7). I assume here that tom
transforms under rotations not as the spin wave function lgM) (or spherical function
Yom(0O, @)) but as the corresponding bra vector (gM| = [¢M)*. In particular, 1,5 are the
cyclic (or spherical) components of the spin vector (see (" ch.III.App D)

1= (s: —18)/V2, ho=s,, tr = —(s: +18,)/vV2 (3)

We see that Trt,um D, eq.(1), is proportional to the qu'a.ntity

Tom =v2s+1 Z (=1)*"™2(ssmy — my|ssqM){m1|D|ms) 4)

m;,mz

Using the Clebsch-Gordan coefficient property

Z(slsgmlmg|5152qm)(5152m'1m'2|slsng) =>5,,,1,,,;5m,,,,.;
M N

one can verify that

(ma|Dlma) = (25 +1)72 Y " Typr(—1)""*" (ssmy — ma|ssqM) (5)
M

So D can be represented by Tynr, ¢ =0,1,---2s, M = —q,—q+1,--- + q. Tyar are called
the multipolar tensor parameters in ('), other names are also used. .I call Tynmr her'e th'e
polarization tensors because they are generalizations of the polarization vector, which is
the rank 1 tensor. Tym can be constructed from the expectation values T'r(s;s; - - - sg)D.
The number of multipliers in the product s;s;--- s need not exceed 2s (if follows from

€q.(2) that the tensors with ¢ > 2s vanish). ) ] .
It will be shown in the next section how one can determine expectation va]ues‘ of
sis; - - + 84 measuring the momentum distribution of the particle before and after the action .

of the Stern-Gerlach magnetic field.

3 Polarization tensor determination by measuring
momentum distribution

3.1. I use the model of the Stern—-Gerlach device which has been described in (!9). Initially,
at t = 0 a neutral particle is in a state o = ¢oxo, its spatial part ¢0(5:')_‘being a wave
packet and xo being a spin wave function. After ¢ = 0 a magnetic field B(£) is turned
on in the region of the packet localization. The field is turned out at ¢ = 7, and then the
particle momentum is measured. The model Hamiltonian is

H = p*/2m + g(t)u5 - B(Z) = Ho + H; " (6)

Here p= —iV, is the atom momentum operator conjugated to the atom center—of—m.ass
coordinate Z; p is the particle magnetic moment; § is the spin ope.rator. The function
g(1) is zero outside the interval 0,7 and equals approximately the unit almost everywhere
inside it, so that [ g(¢)dt = T : )

The inhomogeneous field B(Z) is supposed to be a linear function of z:

B@) =B +8®, b@=Y Lyz;, i,i=123 (1)

b



B(E) must satisfy the equations divB = 0 and rotB = 0 because it is the magnetic field
outside generating currents. The most general field (7) satisfying the equations is of the
form (10)

B(@)=Bo+)_Bu(@-vila, Bri+PatBs=0 (8)

where the mutually q‘rthogonal unit vectors v,, a = 1,2,3, can be called eigenvectors of
b(Z). Besides them b(Z) is specified by the pseudoscalars 8, (which are field gradients
along eigenvectors 7,). One can direct the coordinate axes along s, so that (£ - 7,) = z4
and then

By (%) = Box + Brz 9

The solution of the Schroedinger equation

i0p(t) = (Ho+ Hi)p(t), (t=0)=1v6 (10)

can be represented as (1) = exp(—iHot)1s(t) where (t) is the particle wave function
in the interaction picture (for details see (1°))

$i(t) = U()i(t),  1(0) = 4o : (11)

U(t) = Texp [—i /0 t dt’H,(t’)] (12)
(

Hi(t) = exp(iHot)H exp(—iHot) = g(t)usB(t)
Bi(t) = Box + Bi(zi + tpe/m) (13)

The calculations of this section can be generalized for the case when the initial particle
state is described by the product pD of the spatial density matrix p and spin density
matrix D.

The so-called "impulsive approximation” (e.g. see $4#}) is not used here, i.e. we do
not neglect Hy as compared to Hj. : '

3.2. I am going to show that expectation values of the operators p;,pip;, pip;px - - - in
the state 1(t) allow one to determine expectation values of the spin operators s; and their
products in the initial state which is equivalent to the initial spin state determination, see
sect 2.

The expectation values can be evaluated if the momentum distribution w(p,, pa, p3)
is measured: they are equal to [ d®pp;w(p1,ps,pa) and so on. Quantum mechanical
expression (¥(t)|0]¥(t), O = pi, pip;j--- for the expectation value can be written as the
expectation value of the corresponding Heisenberg operator O(t) in the initial state '

BOIOR(E) = (e U(t)polOle™ U (1)) =
= (|0](#)Io) (14)
If O commutes with Ho-(it is the case for momentum operators), one has
o(t) = Ur(1)ou (1) (15)

In Appendix I present the most simple derivation of the formula which allows one to
calculate the r.h.s. of eq.(15) in any order of the interaction H;

Utou = 0O+ .z . . -
\ Zin/ dt‘/‘dh‘_,/"" dt“[Hl(tn),[H,(t,,_l),[...[H,(tl),O]...ﬂIG)

With the help of this formula and usual commutation relations [siy ;] = iteijese and
[pi, f(£)] = i8 f(Z)]/dz:, one obtains the following expression for the Heisenberg operator
pk(t) in terms of the Schroedinger operators pg, Tk, Sk:

P — uBrar(t)s + 1B / dtg(ty) / " dtag(12)[5 x B(t2)ls —
W [ dtg(ty) / " dtaglta) [ dsstes) 15 Bieal x Bea +

t2—t3 2 17
—_— mnomoniMy +-- ( )
™ ,,.E,.Ek's 500}

I

px(t)

!

Here g:(t) = fot diyg(t); it > 7Yy =75 [s % Bl denotes the k-th component of the vector

product [§ x BJ; [[§ % B(t3)] x B(t;)] denotes the double vector product. The interior of
the curly brackets in eq.(17) can be represented as the explicitly hermitian operator:

()= %[[g x B(ts)] x B’(t,)] + %[E(tz) x [B(ts) x si]k+

ta — 13

+Tn“_ ; ﬂ:(smsn + snsm)

3.3. Now one can calculate (px) = (do|pk(t)|do) fort > 7
(px) = (pr)o — BT Tit

1B / “dtag(ty) / * dtag ()T x (ol B(t)Ido) e (18)

0

2 [ dtoten) [ duagen) [ ool GIUT x (ol Be) Bt +

+§l<¢olﬁ(tz) x [B(ts)ldo) x Tlit

=y 2 cimf(omsa + susm)} -
We use the equation f; g(t1)dt; = 7 valid for ¢ > 7 and the notation
‘ (Px)o = {(dolpxido), Tk = (xolskixo)
(GolBlo) = [ 283 Bl

(8m5n + 8nSm) = (XolSmSn + 5n5m|Xo0) (19)



So the change (pi) —(px)o of the momentum expectation value induced by the magnetic
field depends upon the polarization vector T and polarization tensors of higher ranks if
Bk # 0 (one can show that the rank 3 tensor appears only in terms ~ p°).

In the case s = 1/2 the r.h.s. of eq.(17) depends on the operators s; only and not on
their products. For instance, one has

SnSn + SnSm =6,,.,,'l-1

2

where I is the 2x2 unit matrix. So (ps) depends on T only and eqs.(18) for k = 1,2,3
form the system of linear equations which allows one to find T if {px) — (px)o are known
and B¢ # 0. Hf only terms of the order u are taken into account in this system (terms
~ p?, p®-- - are neglected), one obtains a simple expression for T

T = —[(pe) — (pe)ol/pBer, k= 1,2,3 (20)

3.4.1f s > 1, one needs to determine the polarization tensors of higher ranks ¢ > 2
and eqs.(18) do not suffice. I suggest to add to egs.(18) the equations for mixed moments

(pipj) = (dolpi(t)p;(t)|éo}, {piPipx} and so on. Using eq.(17) one obtains
(pipi) = (pipsdo — ngr ()[BTi(p;)o + B;Ti(pi)o] +
#2/0 dtlg(tl)/o dtzg(tz){ﬂ.’[f X (¢0|§(t2)Pj|¢0)]i +

+ BT x (¢ol B(t2)pildo)l;} + #Z%gf(t)ﬁ,ﬂ,-(s,-s,- +sis)+ - (21)

+

- The system of 9 linear equations (18) and (21) allows one to determine three compo-
nents T; and six components (s;s; + s;s;) in the case s = 1. The system assumes the
simplest form if one neglects the terms ~ u3, 4%, --.. Then, one may determine at first
11, T3, Ts from eq.(18), insert them into the r.h.s. of eqs.(21) and calculate (s;s; + s;s;)
(in order to calculate (¢0|§p;|¢o), one needs the spatial wave function ¢g).

In the case s > 3/2, one must determine the rank 3 polarization tensor. For this
purpose, one must add to eqs.(18) and (21) the equations for (pipjps), 1,7,k = 1,2,3.
The simplest equations result, if one neglects the terms ~ u? . I shall not write out these
combersome equations which show that (p;p;ps) depend upon symmetrized components
(s.-sjsk).

The above presentation makes it clear how to determine polarization tensors fo arbi-
trary ranks q up to ¢ = 2s.

4 Comparison with the usual treatment of the Stern—
Gerlach device

The purpose of this section is to show that one obtains incorrect theoretical values for the
moments of particle momentum distribution if the so-called entanglement approximation
is used.

< —— —

4.1. Busch and Schroeck (*) have shown how this approximation follows from the model
theory of the Stern—Gerlach device if one uses the correct description of the Stern-Gerlach
field B(Z) (satisfying the equation divB = 0 and rot B = 0) and employs the "impulsive”
approach ignoring the term p?/2m in eq.(6), see 3®), I shall obtain approximation equa-
tions which are necessary for my purpose by using instead another simplification suggested
and discussed in (19, sect 3: the Texp turns into the usual exponent exp[—ig;(t)us- E(f)]
if one replaces Ek(t) in Hi(t), see eq.(13), by Bi(Z) = Box + Bxzk, omitting the term
tBcpi/m.It suffices to deal, in what follows, with the case s = 1/2. In this case, the
latter exponent can be calculated nonperturbatively: using the equation (25%)? = A2 one
obtains for ¢t >

= : . o Sinh
exp|—iTus - B(Z)] = exp|—i25h] = cos h + 125h s

(22)

The notation i_;(:i:') = %prﬁ(i:') was introduced. So at t > 7 one obtains for ¥(t), eq.(11),
the following approximate solution

¥1(t) = exp(—i25%)doxo = dol(cos h — i2(5%) sin h/h)xa (23)

Our approach unlike the "impulsive” one allows one to describe the spatial propagation
and smearing of the particle packet during and after the action of the magnetic field due
to the equation (see sect 2)
Y(t) = exp(—tHo(t)1()

Later we deal with the particle momentum distribution and its moments which are
the same in the Schroedinger and interaction pictures. ~ .

Below let us use the following particular simple choice of the field E(i:'): By is parallel
to the unit eigenvector v3 of the inhomogeneous part E(f), see eq.(8), and B; is equal to

zero. Then . v
B(Z) = (B, + Bsz3)s + fizath (24)

h(@) = gurl(Bo + Bsws) + Bl (25)

Note that this choice does not allow to find the polarization vector component T3 but
allows to find T} and T3. This will be enough for our purpose, ,
In the case s = 1/2 one can expand the initial spinor xo in the eigenfunctions x+ of

the operator By - §or U3 - § = s3':

cos & 1\ 0
— 2 — — —
Xo = (si ‘flﬂe"%) =Aix++ A-x-y X+ = (0>, X-= (l) (26)

Note that in (19), sect 3, another expansion in eigenfunctions x.+(Z) of (B(£)5) has been used. The
expansion does not suit for the ensuing investigation of the corrections to the convectional ”entangled”
approximation, see eq.(34) below. Note also that the parametrization of xq used in €q.(26) corresponds
to the related polarization vector T having the spherical angles 8y, ¢g.




6,
Ay = (X+|x0) = cos Eo (27)
Then, eq..(23) can be rewritten as

sin h sinh

‘l,b[(t>T) = ¢o{A+COSh—iA+ A ha—‘iA_ h hl}x++
in b ., sinh
+ ¢0{A_cosh+iA_s“’1 h3—zA+s";1 hi}x- (28)

(the equation (2ssha + 2s1h1)xz = X+ + hixz has been employed). When considering
the Stern-Gerlach experiment, one assumes the inequalities

Bo >> piz1, Bo>> Bszs, 1,73 € Support ¢o(Z) o (29)

Then, one has (see eq.(24)):

hs g Bizi. b P (1- Bazs 13129:?) (30)

h 2B’ h B Bo | 2B?

Neglecting the terms of the order [B-zx/ Bo]? one has

511
Bo

1L1

+ ¢O{A_e+ih(:) _ iA+ﬂ
By

brt >7) = do{Ave™ M) —iA_—Lsinh}xs +

sinh}x- (31)
The inequalities (29) allow one to write the following approximation for h(Z), eq.(25)
‘ . ;

h(Z) = Gur Bo(l + Bsz3/Bo + Biz3/2Bj}) (32)

The term f2z2/B2 was neglected, but the term B2z /2B2 must be retained when. consid-
ering the case of small z;. We see that exp(iutfsz3/2) in eq.(31) are proportl.onal to
the plane waves exp(+iutfszs/2) but only if z3 is not small. With this reservation one
obtains from (31) (neglecting the terms proportional to f1z1/Bo << 1)

I»bl(t > T) = ¢O{A+e—im'Bo/2e—iq‘2x+ + A_e+|'urBo/2e+iq'fx_} (33)
1 o
qE 5[1Tﬂ31}3 ! (34)

Eq.(33) shows that the spin-up spinor x is entangled with the spatial wave fuI.le.if)n
doexp(—igZ) and x- is entangled with ¢o exp(+:4%). The consequence 13 tha:t the initial
beam separates into two beams, in the up beam the spin state being X~ and in the ;iown
beam the spin state being x4 (the corresponding probabilities being equal to |A_[* and
A+ | -

The derivation of eq.(33) given above shows that there are several deviations from

this simple picture. Busch.and Schroeck (5) have discussed at length these deviations

(using the "impulsive” approximation) I can add to this topic that expih(z) cannot be
approximated by the plane wave at small z3. Our purpose here is to discuss the relation
of the entanglement approximation given by eq.(33) to the calculation of the momentum
expectation values (pi).

4.2. The following simple argument shows that the entanglement approximation gives
an incorrent value for (pr). Eq.(33) means that the initial packet ¢o (having the ap-
proximate momentum (p)o = po) is divided in the device into two separated pack-
ets ¢goexp(£igT) so that the probability for the particle to be in the down packet is
[A4]? = cos?0y/2, sec eq.(27). Then, the average momentum must be

() 2 (A- (o + ) + (A+[*(Fo — §) = o — Geos o, (35)

The resulting vector (p) — po is parallel to ¥3; meanwhile according to eq.(20), it
should have also nonzero #; component in the particular case §2 = 0, §; = —f3 # 0 under
consideration, see eq.(24) (remind that eq.(20) is valid in the first order of perturbation
theory, so one must suppose here that pB(Z) is small).

1t is possible to show that the correct value for {pi) = (¥:(2)|p«|¥1(2)} can be obtained
if one uses a more exact eq.(31) for ¥;(t). The calculation turns out to be much more
difficult than that of sect 3, which uses the equation {pi) = (olpx(t)jtho). But this
calculation shows that the value, —pu783T; (where T3 = %cos o) for (p3) — (pa)o has the
origin described above before eq.(35). The terms Ay sin hf z2/Bo from eq. (31) do not
contribute to {p3) — (ps)o. But the terms give the correct nonzero value —u78T; to the
difference (p1) — (p1)o, cf. €q.(20). In this calculation one must consider k to be small
and take into account only terms of the first order in .

So one may conclude that the entanglement approximation is inadmissible for the (p;)
calculation, i.e. for the determination of the initial spin state.

5 Conclusion

The Stern-Gerlach device is known as a way to measure neutral particle spin observables.
It is shown here how to use it for the determination of the particle initial spin state. This
allows one to achieve the ”determinative” purpose of the spin observable measurement: if
one knows the initial spin state, one can calculate probabilities of eigenvalues of any spin
observable. One need not to measure for this purpose either the usual spin observables
or any its generalizations ("unsharp” observables or POV measurcs, e.g. see (3%)). But
this is another, "preparatory” purpose of quantum measurement: it allows one to prepare
the physical system in a known state. 1t has been shown in % that the Stern-Gerlach
device can realize this purpose only approximately. So one may conclude that the device
suits rather for the determination of the initial spin state than for the spin observable
measurement.

Appendix. Derivation of equation (16)



The interaction picture evolution operator U(t), see eq.(12), and its hermitian conju-
gate U*(t) satisfy the equations

AU(t) = ~iHi(U(E), aU*(t) = iU*(8)Hy(t) (A1)
Following Schwinger’s approach (1!} let us use the identity
Ut ou@t) =0+ /0t dh%[U*(t,)OU(tl)] (A2)
Eqs.(A.1) give
AU )0V (n)] = iU () i), 01U (1) (4.3)

So one has

UH(t)OU(t) =0 + /' dtiU* (4)[H1(8)O)U (1)
0

Further use again the identity analogous to (A.2)

Ut(t)[Hi(t), OlU(t) = [Hi(t), O] +/0t dtzﬁ;{Uﬂtz)[H,(tl),O]U(tz)} =

= [Hi(t1), O] 4’/01l dtziU* (t2) [Hi(t:2), [Hi(t1), O]|U* (t2)

The infinite repetition of this procedure gives eq.(16).
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