


1 Introduction

The method for the description of nuclear collective motion using the Wigner function
moments (WFM) has been suggested in 1981 [1]. It was applied su‘ccessively’ to- study
isoscalar and isovector giant multipole resonances and low-lying collective modes of ro-
tating and nonrotating nuclei with different realistic forces [2]. Their energies, excitation
probabilities and widths were described. However, all the calculations were performed in
the small amplitude approximation. .

In this paper the simple model of a harmonic oscillator with separable quadrupole-
quadrupole residual interaction is used to demonstrate the possibilities of the WFM
method in the description of large amplitude motion. The interest in the investigations
of collective motions going beyond the usual RPA (small amplitude approach) has been
renewed by the experimental discovery of high-energy structures in heavy ion grazing col-
lisions and their interpretation in terms of multiphorion excitations of giant quadrupole
resonances [3]. In the past the problem of large a.mplitixde collective vibrations has been

treated along various lines. The ones most known are the boson expansion method, an

extended review of which can be found in [4], the generator coordinate method [5] and =

the time-dependent Hartree-Fock (TDHF) method [5] together with its adiabatic version
- ATDHF 6, 7). -

The practical value of the latter two methods depends in essence on the possibility of -
selecting a small number of collective degrees of freedom coupled weakly with all other
remaining degrees of freedom. Selection of proper collectivé variables is certainly a great
problem and requires some physical intuition. Naturally, such kind of problem exists in
our approach also. It can be formulated as follows. We derive (in the TDHF frame)
the dynamical equations for the phase space cartesian tensors of different ranks. In the
general case of an arbitrary interaction the equations for tensors of all ranks are coupled
and the problem arises how to separate the dynamics of the lower rank tensors from that
of the higher rank tensors. The only exceptidq is the case of the harmonic oscillator, where
the equations for tensors of different ranks are independent. Hence, in a general case the
degree of the mutual inﬂuencev of the dynamics of different rank tensors is determined by
the difference of tHe realistic mean field V4 from the harmonic oscillator potential VH'

Expending the difference V4(r) — Vi (r) in a Taylor series with respect to the coordinates
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one can develope a procedure of taking successively into account the influence of higher
rank tensors on the dynamics of lower rank tensors. This program was realized in [2, §]
in a small a.mplitude approximation.

- The first step of such a program for large amplitude motion is presented in this paper.
Wfa use the method of Wigner function moments in the frame of TDHF theory with the
simple Hamiltonian of separable forces to derive a set of nonlinear dynamical equations
for the quadrupole and monopole moments of nucleus. This model is attractive, because
it allows to write down exact equations, which can be solved exactly. Furthermore, it can

be generalized such that it becomes rather realistic.

2 Equations of motion

2.1 Formulation of the method

The basis of our method of describing collective nuclear dynamics‘ is the equation for the

one-body density matrix p(ry,r;,t) =< ri|p(t)|rs > :

in _ [H ,s]
ot ’ ' )
where H is the one-body Hamiltonian depending implicitly on the density matrix, Equa-
tion (1) with a precise definition of the one-body Hamiltonian appears in the Hartree-Fock
theory; it is currently used also within the so called energy-functional a.ppro;.ch leaving
more possibilities for the choice of the one-body Hamiltonian and in addition giving some
grounds t.0 believe equation (1) to be rather general [9].

It is convenient to reformulate equation (1) by introducing the Wigner transformations

of the density matrix [10]

f(r ,p,t) = /ds exp(—ip - s/h)p(r+ 2r— % 1). (2)
and of the Hamiltoman '
HY(r,p) = /ds exp(~ip-s/h)(x + 5 3 |i[r=3). 3)
Usmg (2, 3) one arrives at [11]- i
8f 2. (h,_u
%t = 7 5o (§(Vr Vi -vE. v{)) HY§, (4)
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where the upper index of nabla shows the function which this operator acts on. If the
Hamiltonian is a sum of a kinetic energy and a local potential V'(r), its Wigner transfor-

mation is just the classical version of the same Hamiltonian:

W _ om + V(x). 5)

Then equation (4) becomes: .
af h_y
—a—{ + —-p Vef= —sm (EV, . V£> Vf. v (6)

The generalization for non-local potentla.ls is stra.ightforward and can be found in [12].

2.2 Wigner function moments

Now we apply the method of Wigner function moments to derive the closed system of the
dynamical equations for cartesian tensors ‘of second ra;'lk. This method was suggested in
(1, 13] and is described in detail in reference [2]. Its idea is based on the virial theorems of
Chandrasekhar and Lebovitz [14]. It is shown in [2], that integraiing equation (6) over the
phase space {p,r} with the weights z; =i, ... z;,pi,,, - .- Pi,_, Pin, Where k runs from 0 to
n, one can obtain a closed finite subsystem of dynamical equat:ions for multipole moments
and other integral characteristics of a nucleus. Taking different values of n (0,1,2,3 and
so on) one gets subsystems for different multipoles.

Here we will consider the case n = 2. Integrating equation (6) over the phase space

{r,p} with the weights z;z;, PiZj, Pip; e get:
/dr Iinan(r »t) /d a(n(r ;)u,(r,t)) 0, 0
m/ dr z,a (n(r,t)u;(r,8)) + /dr n(r,t)z; 57— aV /dr a:,a Ay(r,t) =0, . (8)
-—-/dr Ai(r, t) + /drn(r,t) [u,(r t)a J]., + /dr Ayii(r,t) =0, 9)

where [. . .];; means that the quantity in brackets is symmetrized with respect to the indices
t and j ([a:b;}i; = a:b; + a;b;) and summation over repeated indices is assumed. Here we

have introduced the notations:

n(r,t) = 4 / @—i‘;?f(r,pjt),



mn(r, t)ui(r,t) = /;—EPPJ(T’PJ)’

i

o - dp
Aiyiy...ir (1, 1) m! k/mpnpiz“'mf(l‘, P, t).

By definition n(r,t) is the nucleon density, u(r,t) is the mean velocity of nucleons,

A;j(r,t) is the kinetic energy tensor (or pressure tensor). Integrating by parts the last

terms in (7)-(9) and introducing the notations

, J;J'(t) = /dr z;zjn(r, t)
for the inertia tensor, |
L;;(t)= /dr z;ui(r, t)n(r,t)
for the mixed momentum-position tensor and A
() = [ dr Aur,t)

for the integral kinetic energy tensor we have:

d 1 ‘ ' '
?Jﬁ(t) ~ i+ Ljg) =0, (10)
— . o av
Sli+ / drzin(r, 05~ Tlg(0) = 0, (11)
ap NI

s+ [ (e [ui(l‘,t)gx—j] =0 )

The last integral of the equation (9) with the third rank tensor Asi; has disappeared
due to the evident boundary condition Asij(r,t) — 0 at r — oo, which follows from the
boundary condition for the Wigner function f(r,p,t) > 0 at r — co. So, one want to
say that we have derived the system of three dynamical equations for three collective
variables Ji;(t), L; j(t) and II;;(t). To make this statement true one must represent the
integrals containing derivatives of the potential V(‘r)‘in terms of these three varia.bles.
This problem can be solved exactly only in the case of a harxﬁonic oscillator potential
(that is the subject of this paper). For a realistic potential some approximations are
needed.

We suggest the following procedure. Considering the harmonic oscillator potential Vy; .

as the zero approximation to the realistic potential Vi we expand the difference Vg — Vy

in a Taylor series and truncate it on the term proportional to r*. The integration of
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the potential will generate the tensors of different ranks from 1 up to n. Hence, to have
the closed system of equations we are forced to write down the subsystems of dynamical
equations for tensors of all ranks from 1 u;; to n, these subsystems being coupled. The
rﬁore terms of the Taylor series are taken into account, the higher rank tensors must be
included in the calculations. So, the compulsory minimal rank of tensors is determined
by the measure of deviation of the realistic potential from the harmonic oscillator one.
The desired maximum rank is determined by l:he physics of the phenomenon studied: the
more detailed information is required, the higher rank tensors must bé involved in the
consideration. .

The equations (10) and (12) are.evidently symmetrical with respect to indexes ¢,j
whereas eq. (11) has no definite symmetry. We can construct easily the symmetrical and

antisymmetrical equations by evident combinations of (11) with different indices:

d v

E(L,’_j + L_.,",') + /dl‘ n(r,t) [Ij—al'i]ij - ZH;J-(t) =0, (13)
d ov oV ,

S Lii = Lis) = /dl' n(r,t) {I:gg - x:‘a} . (14)

By definition the left-hand side of the equation (14) is the angular momentum:
M;,J‘ = L,',J' - L.‘i.i = m/ dr n(r,t) {zju,-(r, t) - :z:;u_.,-(r, t)} .

When V(r,t) is a self-consistent potential, the right-hand side of (14) is equal to zero and
this equation express the angular momentum conservation law.
The model potential we will consider here is a harmonic oscillator with a quadrupole-

quadrupole residual interaction. The corresponding mean field can be written as

2
V(r,t)= %m wir 4+ A Z Qzﬂ(t)q;“(r), ©(15)

p=-2

where the quadrupole moment Q,(t) is defined by the relation
. dp '
Qau(t) = trgau p=4 [ dr @iy q24(r) f(r, P, 1)
with g, = 44/7/5 r?Y,, and

onqgo = (Ju+Jaz- 2-]33)(:12? + 23~ 2z3),
QZlqgl + Qz-lng = 12(Jisz123 + J3Z223),
Quah + Qazgt_, = 3(Ju — Ja2)(a} — 23) + 12 Jya21 22,
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For this potential

av av
/dr n(r,t) {x,a —z; j} = 2Q20(6iy — ;1 + biy — 852 — 26i3 + 26;3)J;;
+12J13(18i8 — Jibjs + Jaibin — J5ibj1) + 12J35(Jajbis — Jibj3 + Ja;ia — Jaiia)
+6(J11 — Jz2) (b1 — b1 — bz + b52) s + 12J12(J15652 — Jribsp + J2i80 — J2ibj1).

With the help of this expression it is easy to show that 11'11'2 = Mm =M3=0 , Where
dot means the time derivative. Hence our model conserves the angular momentum.
Let us further note an interesting observation. With the model potential (15) our

system of the dynamical equations (10), (12),(13) for the variables

/dr/(;%‘h’)sx.-xjf(r,p, {),/dr/(éir—z)g,pfpjf(f, P, t),/dr/@—i%)‘s[ﬂpi]ﬁ flr,p,t)

becomes identical to the system (65) derived in the paper of Schuck [15] for the va.ria.nces;

covariances

D(ziz;) =< (& — z{)(2 ‘—I,)> D(pip;) =< (5 i = (B — pf) >,

D(zipi) = 2D(pjz) =< (& ~ 25)(8; - )], >,

where £;, p; are quantum operators and z{, p; are their classical counterparts. The identity
of these systems is not very surprising because, being written for principally the same
variables, they don’t contain any approximations in the case of the model potential (15).

To simplify the following formulae we will use eq. (10) to get rid off the symmetrical

combination (L;; + L;,) everywhere. We introduce also the notation
Jo=Ju—Jy

for the measure of a non-axiality of a nucleus. Putting now the expression (15) for the

potential into the equations (13), (12) we get finally the following system of the equations

of motion for the collective variables Ji; and II;;:

m -

5 Ji + mw? Jyy + 2) {6J% + 6J% + 3J_Jy;, + JuQx} — 1, =0,
m

7 Jag + mw? Jpp + 2) {672+ 6J% —3J_Japs + J22Q20} — I, = 0,
m -~

2 J3+mw Js3 + 2A {67 + 6J% — 2J33Q0} ~ Mgy = 0,

M -

7 Ji2 + mw 2Dz + 23 {J1a(4daz + 43 — 2J53) + 6J13J35} = iz =

6

% Jiz + mw? Jis + 2X {J1a(4d33 + 4J11 — 2J52) + 6Jy3J23) — i3 =0,
% Jas + muw? Jag + 2A {Jaa(4a3 + 42 — 2J11) + 6J12J13} = I3 = 0,
Iy, + mw? Jiy + 2) {6J12(J12 + My 2) + 6013(J1s + My 3)
+3LJu+ onJu}
oz + mw? Jaz + 2 {6J12(J12 — Mi2) + 6Ja(oa + Mag)
' 30 Jn+ Quin} =0,
{610(J1a = Mig) + 6Jaa(Jzs = M3 3) ~ 2Qa0ds} =0,
T2 + muw? Jig + 2) {:sJu(J'll + Jz) + 3J13(Jas + Myy3) '
+ 3-]23(j13 + M 3) —3J_My2 + onju} =0,
s + mw? Jis + A {6J1a(Jzs = Mag) +6J15(Js + ) + 6.z + M 2)
+ 3J~(jla -~ M) — Q-zo(jls + 3M1,3)} =0,
lgg + ma® Jos + A {GJu(J'ls — My 3) + 6Qa(J1a — M) + 6J23(Ja3 + Jig)
— 3J_(Jzs ~ Mas) ~ Quolrs +3M3g) } = 0, (16)

ﬁaa + mw? j33 +2X

Here we did not write out the time dependence of tensors for simplicity.
It is known [16] that a cartesian tensor of second rank may be represented by a sum of
irreducible tensors - one zero rank tensor (monopole moment), one first rank pseudotensor

(angular momentum) and one second rank tensor (quadrupole moment):
ﬂj = TOO+T1;‘+TZ;L‘

Taking the evident combinations of egs. (16) we can rewrite this system in terms of the

irreducible tensors

Qo = Ju+Jn+Js

Qo = Ju+Jxn—2Jx

Q1 = FVB(Jis LiJz)

Ques = V3[2(Jn1 — Joa £ 2iJ13)
Koo = Iy +IIz2 + Il
Ko = Iy + Iz —20ls3

Kan = FV6(Iit i\st)

Kotz = +/3/2(Tn ~ Mz £ 2iT0,5)
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Due to the conservation of the angular momentum the variables M;; do not depend on
time and are determined by the initial conditions. We take M;; = 0.

Generally speaking all equations (16) are coupled. HoWever, by a proper choice of
the inii‘.ia.l conditions the system (16) can be reduced to three cases, which correspond
(in the limit of a small amplitude approximation) to the components p = 0,2,1 of the
qu‘adrupole moment and are known as #-mode, 7-mode and the transverse-shear mode

(we will call it a-mode).

2.2.1 fB-mode

It is easy to notice that one of the possible solutions of the syétem (16) is:
J_(t) = 0, le(t) = J13(t) = J23(t) = 0,

Hn(t) - Hzg(t) = 0, H];(t) == H13(t) = Hzg(t) = 0 .

with all remaining variables different from zero. This solution conserves the axial and

triplanar symmetry of a nucleus. In this case the system (16) is transformed into

m = .

?Qoo + mw?Qoo + 221 Q% — Koo = 0,

m . 2 ‘

Eon +mw' Q2 + 22 Q20(2 Qoo — Qz0) — K20 = 0,
Koo + mw?Qoo + 2\ Q20Q20 = 0,

)tzo + mwzon + 2)\'Qm(? Qo_o - on) =0. . (17
The third equation of this system gives the integral of motion
Koo + mw?Qos + A ng = const , (18)

whose physical meanmg is the Hartree-Fock energy correspondmg to the Hamiltonian (5),
when the potential (15) contains only the 1 = 0 term. It is easy to see that (17) has the
particular solution Q20 = K30 = 0 corresponding to the simple harmonic oscillator and

' describing a pure monopole vibrations with the frequency Q = 2w.

2.2.2 y-mode

Taking
Jn(t) = J13(t) = Jga(t) - 0, H];(t) = ng(t) = H23(t) =' 0
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we find a second solution of the system (16), which éonserves the triplanar symme'try of
a nucleus but destroys its axial symmetry. The corresponding set of equations is
Qo0+ m 5 Qoo + 24 (Qho +3J2) =~ Koo =0,
%on +mw?Qao + 2 {Q20(2 Qoo — Q20) +3J2} — K20 =0,
%J’_ + mw?J_ +4AJ_(Qoo+ Qo) — I =0,
Koo+ mw?Qoo + 22 (Q20Q20 +3J-J-) =0,
Ko +mew*Qao+2) {Qao(2 Qo0 — Qo) + 3J-J_} =0.
-+ ma?J + 2 {J-(2Q00 + Qo) + QuJ-} =0, (19)
where J_ = Ji1 — Jaz2 = (Q22 + Q2-2)/V/6 and II_ = Mgy — Mgz = (K22 + K2-2)/ V6. The
fourth equation gives the integral of motion:

ICOO + mw?Qoo + A (Q% + 3J%) = const, (20)

whose physmal meaning is the same as that of (18) but for the case when the potential
(15) contains two terms: with g =0 and g = 2.

Analyzing this system of equations one can find three particular solutions. For the
first one J_{t) = II_(t) = 0 and the system (19) is reduced to the system (17). The
other two solutions have J_(t) = +Qa0(t), I_(t) = £Ka0(t). The equality J_ = Qs
means that Jz; = Jz3 and the equality J_ = —Qy leads to Ji1 = Ja. Hence, these
particular solutions describe vibrations conserving the axial symmetry along the first and
the second axes correspondingly. The same kind of motion (with the third symmetry
axes) is described by thg system (17). From the physical point of view all three axes are
equivalent, so the corresponding systems of equations must coincide. Really, Vtaking in
(19) J- = £Q20, 1. = £K3o and changing the variables 2Q 40, 2K20 by —Q20, —K 29 one
reduces this system to (I7). '

Formally there exists one more solution of the systems (17) and (19).with Q(t) =
Qoo(t), Ko(t) = Koo(t). However, it has not much physical meaning because the equality

Q20 = Qoo means that J33 = 0, i.e. we are dealing with a two-dimensional object.

2.2.3 a-mode

The most complicated solution is found, when .
Ti2(t) = Jaa(t) = 0, Mpp(t) = Haa(t) = 0,
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with all remaining variables different from zero. It destroys the triplanar and axial sym-

metry conserving only the symmetry with respect to the reflection in the plane z; = 0.

The corresponding system of equations is

%Qoo + mwQoo + 2M(Q% + 12J% + 3J%) — Koo = 0,
%on +mw' Qa0+ 2 X {Q20(2 Qoo — Qz0) — 6% + 3J2} — Ky =0,
FI- MW+ 40 {J_(Qoo + Quo) + 3Th) - T =0,
%z-fla +mwJiz +2AJ13(2 Qoo — Qa0 + 3J_) — I3 =0,
Koo+ mw?Qoo + 2 (Qa0Q20 + 3J_J_ + 12J1313) = 0,
- Kzo +mw?Quo +2 ) {Q20(2 Qoo — Q20) +3J_J_ — 6J13j13} =0.
-+ ma?J_ + 22 {J_(2 Q0 + Qu) + Quad + 61315} =0,

’ fIla + mw2j13 +A {J13(3j¢',— on + 4Qoo) + j13(3J- - on)} =0, (21)

where J13 = (QZ—I o QZI)/m and H13 = (K2~1 - K:gl)/m The fifth equa.tion gives

the integral of motion:

Koo + mwQoo + A (Q3, + 3J2 + 12J%) = const. ' (22)

Its physical meaning is the same as that of (18) and (20) but for the case when the

potential (15) contains all three terms: ‘with £=0,pg=1and p=2.
From the mathematical point of view one nontrivial particular solution exists here:
J_(t) = ~Quo(t), [I_(t) = ~Kao(2). However, we know that the equality J_ = —Q,

leads to Jy; = J33. From the physical point of view the inevitable consequence of the last

equality is Ji3 =0, i.e. we return to the f-mode.

3 Analysis of the equations of motion

3.1 Stationary solution

Investigating the stationa.ry solutions of the systems (17, 19,21) we can draw some con-

clusions about the equilibrium shape of nuclei. Let us investigate the most complicated
system which is (21).

By definition the variables of the stationary solution (o‘r equilibrium state) do not

depend on time. Supposing the time derivatives in (21) equal to zero one gets four
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relations:

mw?Qoo + 21 (Q% + 1§J33 +3J%) = Koo, (23)

mw? Qo+ 2 A {Q20(2 Qoo — @20) — 65 + 3J2} = Kao, (24)
| mwtJ_ +4) {J-(Qoo+ Q) +3J55} =1L, (25)
mw? iz + 2 A J13(2 Qoo — Q20 +3J-) = I, (26)

We will call them equations of equilibrium. The first equation is known as the virial
theorem saying, that the average potential energy of the system is equal to its average
kinetic energy if the potential has a quadratic dependence on the coordinates [17]. All
the remaining equations give relations between parameters of nuclear deformation in co-
ordinate space and corresponding ones of Fermi Surface (FS) deformation (momentum
space). Very interesting conclusion can be derived from these relations. It turns out that
it is impossible to have a static quadrupole deformation (Qz0 # 0, Jis # 0, J- # 0)
without FS deformation (Ko # 0, Ihs # 0, Il # 0) and vice versa [18]. To show it we
transform equations (24-26) using the self-consistent value of the force constant {15, 19]
2

—muw

_—mw (7).
4A<r?>

A = ABohr =

Taking into account the relation Qoo = A < r2 > we can rewrite (27) in the form

mw? + 4A\Qoo = 0, which allows one to simplify the equations (24-26) very much:

2X (372 — Q% — 6J%) = Kao, , (28)
4NJ-Q20 + 3JEh) =11, (29)
22 J13(3J- — Qo) = r’Im, | (30)

Let us suppose I3 =II_ = K20 = 0. As a consequence we have from (30): 3J_ = ‘leo.
Using this result in (29) we arrive to the relation Q3, + 9J% = 0 which can be satisfied
only by Jiz = Q20 = J- = 0. So, the Bohr self-consistency condition - the shape of
the potential well follows the shape of the density - can be reformulated as: any cha.nge
of the density shape leads inevitably to the change of FS shape. We do not say "one
shape follows another” because they can be deformed "in phase” or "out of phase”. One
can show it analyzing eqs. (28-30). Let us consnder axially symmetrical nucleus w1th

Jis = J- = 0. In this case eq. (30) gives I;3 = 0 and eq. (29) gives II_ = 0 (i.e.
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I = Ilg). Reinembering that A < 0 we find from (28) ,—that Kyp>0 ’(i.e. I, > Mas)
independently of the sign of Q2. So, a nucleus can have proléte or oblate density shape
but its FS always will be oblate. This statement does not contradict to the well known
fact that FS deformation in adiabatic processes is small [5]. Formula (28) demonstrates
very well that FS deformation, being a second order effect with respect to a density

déforrnation, really must be small.

3.2 Small amplitude approximation

Let us consider the system (21) in the small amplitude approximation. Taking the vari-

a.tions Q,\o(t) = Q,\Q(O) + 6Q,\0(t), J_(t) = J_(O) + 61]_(75),*]13(15) = J13(0) + 6;]13(15),.

K,\o(t) = K,\Q(O) + 6K,\0(t), H_(t) = H_(O) + 6H_.(t), H13(t) = ng(O) + 6H13(t) and ne-
glecting the terms quadratic in 6, one obtains four independent systems. One of them is
the system for the monopole tensors -
m -
-5'6Q00 + mw26Qoo -~ 6K:00 = 0, (31)
6K-:00 + mw26Q00 =0
and the remaining ones are the 'systerns for the components of the quadrupole tensors
with ¢ = 0,1,2. All three have the same structure. For exax\nple:
m -
5 6020 + (mw® + 4 X Qoo(0)) Q20 — 6K 50 = 0, (32)
" 6K + mw?6Qz0 = 0.
We consider spherical ground state nuclei in this paper, 50 we put everywhere Q29(0) =
0, J13(0) .= 0, J_(0) = 0. Supposing the time dependence €™ for all variables one

can easily find the corresponding collective eigenfrequencies. The first system gives the

.frequency of monopole vibrations:
QO =2w. (33)

The systems describing quadrupole vibrations give

% =21/ + 22 Qu(0). (34)

Using here the expression (27) for the force constant one obtains the well known (15, 19)

result for the quadrupole eigenfrequency:
0 = Vow. (35)
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The energies Eo = hflp and E; = kY, are in qualitative agreement with the experimental
values of the energies of the monopole (GMR) and quadrupole (GQR) giant resonances -
(for hw = 41412 MeV).

So, in the small amplitude approximation our model gives only two frequences for
spherical ground state nuclei, which can be~interpreted as giant 0% and degenerate 2+

resonances. This is true also for the calculations with more realistic interactions [12].

3.3 Numerical solution and Fourier analysis

A principally different situation is observed in the general case, when the systems (17,19,21)
are solved without any restriction. We solve them numerically with the help of Runge-
Kutta procedure. Most of the talculations are done for 2°®Pb.

The solutions depend strongly on the Initial Conditions (IC). By definition Q,,(0) =
K2,(0) = 0. For the monopole moment we take Qoo(0) = 2RZA, with Ry = 1.18A1/3.
The initial value of Koo(0) is fixed by the relation (23). The time derivatives Q»,(0) are
arbitrary. .

The most detailed analysis has been done for the f-mode. The typical time-dependence
of the function Q3o(t) is demonstrated in fig.1. As one can see, it oscillates quite irreg-
ularly. The maximum period of oscillations 7, (when the curve begins to repeat itself)
depends very much on IC. For this figure 7, = 457.4 MeV~! (7 = t/h). The pictures for
other cases are more or less similar. Having the periods of oscillations one can perform
’the Fourier analysis of the curves and represent all the functions by a series

Qg

ft) = 5+ (a; coswit + b;sin w;t).

s

1l

The results of such calculations are demonstrated in the tables 1,2, where the cigen-

frequencies hw; and the corresponding coefficients a; and b; of the functions Q20 and Qoo

~ are shown for two variants of IC. Let us analyse the first table in detail. As one can sec

there are about 30 eigenfrequencies having the diapason of amplitudes a;, b; from 10-2 to
10%, half of them having this diapason from 1 to 10%. All these frequencies correspond
to transitions between various levels E, of the nucleus, i.e. they can be represented as
differences hw,, = E, — E,. So, it is necessary to.do some combinatorial analysis to

find the eigenvalues E,. Of course the energies of GQR and GMR can be recognized
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immediately without any combinatorics. They are very close to their values in the small
amplitude approximation: E; (fiws) became 9.54 MeV instead of 9.78 MeV and Ep (hwi2)
became 13.28 MeV instead of 13.84 MeV. So, we confirmed the well known fact, that
giant resonances are described very well in the small amplitude appréxima.tion.

| It is very interesfing to discover the multiphonon states. One can find two- and three-
phonon states, corresponding to GQR. Their energies are huws = 2 - By = 19.07 MeV
and hwqq =3 - E; = 28.61 MeV. There is two-phonon state corresponding to GMR with
the energy hwys = 2 - Eg = 26.56 MeV. One two-phonon state consists of the quadrupole
and monopole phonons (its energy hws = E; + Eg = 22.81 MeV). It is not so difficult to
show, that all remaining %w; are just the combinations of two basic eﬁergies: E; and E,.
The results of the combinatorial analysis are shown in the third columns of the tables.

The comparison- of the tables 1 and 2 shows that the strengths of all the states are

very sensitive to 1C, what is evident. Not so evident is the appreciable dependence of the -

energies on 1C. From the mathematical point of view this result is absolutely correct - any
textbook illustrates such dependence by an example of a nonlinear pendulum (20}, [17] (See
alse the section 4 of the paper). But what does mean this result from the physical point
of view? We interpret it as a manifestation of a nucleus dynamical deformation. Really,
due toa large amplitude of vibrations one has the grounds to treat a vibrating nucleu_s. as
a deformed one, because the most part of time it has a rather large deformation (dynamic

deformation). And the dependence of energies on deformation is known very well. To

know the order of magnitude of the deformation attained during the vibrations one needs

the expression for the quadrupole moment Qy in terms of the deformation parameter 3.

We derive it in the approximation of the sharp edge of a niicleus. By definition

R(6,¢)
Q20(h) = no(ﬂ)/dd)/dﬂ sin @ /
. o 0

0

2n kg

drr?(z} + 23 — 222).

(36)

Here R(0,¢) = Ro(1 + BY2(8,9)), 22 + 22 — 222 = —4\/_?7'2)/20(0, ¢) and the density
no(f) is defined as - .

™ on R(0,6) -
no(ﬂ)=A{/d¢/dosino / drr2} .

0 0 0
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Performing simple but tedious calculations we get:
Qu(p) = 4 Ena( S {ﬂ SNEW . B
+-17070\/(4_75r;ﬂ4 + 77??:;(54:;)2[35}’ - 87
no(B) = 3% {.471’ +36% + %\/;i:ﬂa}_l .

The calculations show that the limit of maximum possible amplitudes is achieved at

Qoo(0) = 0, Q20(0)) =~ 28000(in Mev fm?/% units): the maximum positive value of Qa0 is
~ 2700 and the maximum negative value is ~ 3800. With the help of (37) we find, that
the vibrations with the maximum amplitude correspond to the change of 8 frqm ~ 0.42
to ~ —0.42. So, the shape of the nucleus changes during the vibrations from oblate to
prolate. Further increé.sing of QZO(O) leads to instability: the amplitudes begin to grow
indefinitely. The amplitudes presented on fig.1 correspond to 8 ~ 0.25.

The limit of small amplitudes is achieved practically for Qoo(0) = 0, Q2(0)) = 1000,
when only GQR and GMR have appreciable amplitudes and theirkenergies are exactly
equal to v2hw and 2hw. ' i}

As it was expected the solution of the system (19) gives three. basic energies. For
example, with IC Qoo = 6100, @y = 10%, J_ = 10° we have: Ey = 13.66 Mev (GMR),
Ep = 9.5 Mev (f-mode of GQR) and Eg = 9.75 Mev (y-mode). The difference AE =
Eq — Ep = 0.25 Mev represents the splitting of GQR in the spherical nucleus due to the

large amplitude vibrations which create the dynamical deformation.

. 3.4 Radiation probability

The radiation probability can be calculated with the help of the classical formula for the
intensity of the quadrupole Tadiation [21):

1 3 ) .
Int =18065 "21;1 Dk,l’ (38)

. ‘
where Dy = eZ/A(3Ji — 611 Y J,e). Using the relations 6J3; = 2Qo0 + Q20+3J-, 6J22 =
s=1

2Q00+Q20—3J_, 3J33 = Qouo— Q20 one can rewrite this expression in terms of our variables.
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For example, in the case of the a-mode we have:

eZ 2 1 ) 2 -2 39)
Int = (—Aj‘> W(on +3 J_ +12 Jp,). (

The formulae for 4- and f-modes are obtained by neglecting here Jy3 and Jis, J_ cor-
gespondingly. For the sake of simplicity the following formulae will be written for the

B:mode only. Taking Ji3 = J_ = 0 and inserting into (39) the Fourier expansion for ()3

we get after averaging over the greatest period of oscillations:

CIni= (€2 ool + b “" =3 Int;. (40)
nt= (7) e Z =2

Dividing I;;,- by hw; we obtain the radiation probability W;. Taking into account the
relation between W; and the reduced probability {5] we find:

2 2. 12 .
eZ\? 5 2, g2y _Z_ 125ai+b‘B "
B(B2); = (71‘) oar (% TH) = (A) T TR (41)
where Bw is the Weisskopf unit. The generalization for 4- and a-modes is elementary.

Using here the values of a; and b; from the table 1 we can calculate the B(E2)-factors

for GQR and multiphonon states in the case of f-excitation:

B(E2,GQR) = 176.3 By,
B(E2,2xGQR) = 0.29 By = 1.7-107B(E2, GQR).

Taking the results from the table 2 we get:

B(E2,GQR) = 259.2 By,
B(E2,2xGQR) = 0.63 By = 2.4- 107°B(E2, GQR).

So, the B(E2)-factor of the two-phonon GQR is approximately three orders of mag-
nitude less than that of the usual one-phonon GQR. This, however, depends appreciably
on the initial conditions. The B(E2)-factor for the three-phonon state is six orders of
magnitude less than that of the GQR. - ‘

The authors of the paper [22] calculated the deexcitation probabilities of the one- and
two-phonon GQR by a microscopic approach with Skyrme forces. The calculations were
done for °Ca only. Their results are:

W(GQR) =0.6-10"%s71,
W(2xGQR) =0.26-10"s7! o~ — W(GQR)
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We also did the calculations for **Ca. Choosing the initial conditions on = 500, Qoo =

0 to reproduce (approximately) their result for W(GQR) we have:
W(GQR) =0.9-10" 57", W(2xGQR) = 0.26 - 10** s~1.

As it is seen our result for W (2xGQR) is an order of magnitude less than that of the paper
[22] so it would be interesting to repeat their calculations for the harmonic oscillator with
Q-Q residual interaction. To have an idea on the upper bound for the discussed quantities
we have performed the calculations with the initial conditions Q20 = 2800, Qg0 = 0

corresponding to the vibrations with the maximum possible amplitudes:
W(GQR) = 14 .10 571,
1
W(2xGQR) =10.3- 10" 57! v T W(GQR).

The radiation probabilities here are an order of magnitude larger than the ones of [22]

though the ratio W(2)/W(1) is very close to their result.

4 One-dimensional model

4.1 Equations of motion

Solving nonlinear equations of motion one expects (in accordance with the quantum me-
chanical results) to find anharmonicity effects. We have observed already the main effect
of the anharmonicity - the two-phonon states with the energies equal exactly the dou-
ble of the one-phonon ones, However, this result is in contradiction with the practice
of quantum mechanical calculations, where one has usually some deviation from precise
doubling, the deviation being a measure of the anharmonicity of 'the spectrum.

For understanding this problem it will be useful to consider lere the classical and quan-
tum mechanical aspects of the exactly soluble one-dimensional model [23] of a harmonic
oscillator with a monopole- monopole residual interaction

= ZF(E,-)F (z;),

i#s
where F(z;) = 2% - xo/A 1ts solution was found previously by Reinhardt and Schulz [24]
choosing a rather different derivation. With the help of our method the solution becomes

very simple.
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The average field of the model (in the notations of [24]) Vis

V(z,t) = zmwiz? + (< 2 > —z2)(z® — 73/ A), (42)

N W

y ; 25— 2 i
where in correspondence with our notations wo = w, < 2% >= Ju(t), =3 = Ju(0)

Following the rules described in the section 2.2 one can derive the system of equations

md +2J [mw? + 2x(J — Jo)] — 2l =0, (43)

I+ J [mw? +2x(J — Jo)] =0

with J = Jy(t), Jo = Ju(0), I = I;;. The second equation of this system gives the
Ywasa T b .

i.ntegral of motion
I + mw?J + £J? — 2xJoJ = co, ‘ (44)
where co is an arbitrary constant.lts value can be fixed by the conditions of equilibrium.

In the state of equilibrium J = Jo, Il = M, and one has from (43) and (44):

omuidy — o =0, - ' (45)

o + mw?Jdo — £JE = co.
Combining these two equations one finds:

c = 2mw?Jy — IC.]g (46)

and as a result
II= mw’(?Jo — J) - IC(J - Jo)z. (47)
Using (47) and introducing the new variable y = J — Jo one reduces the system (43) to
the single equation
mj+ay+by* =0, (48)
. o
with @ = 4mw?(1 + &), b=06k, K = Lt
The authors of [24] have studied the collective variable r(t) which is connected with
our variable y(t) by the relation y = Jo(r? — 1) (formula (3.28) of (24]). Their dynamical

eqﬁation for r(t) reads (formulae (3.17), (3.29)):

2
F— L—‘% +w? [r + 28 (r® — r)] =0. (49)
r
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Multiplying (49) by 7 one gets the integral of motion
1 .
4wl [-73 o N (e 1)2] = ¢y, (50)

which allows to prove the equivalence of the equations (48) and (49). Really, putting
y = Jo(r? — 1) and § = 2Jo(r7 + ?) into (48) and eliminating the term proportional to
72 with the help of the relation (50) one gets: .

1 a b
.2 2 =02 1)2 2 _ 2 _1y2 -
T —w [r2 +r*+ ;c‘(r 1) ] -f—cz + 3 -1+ 5 Jo(r*=1)*=0. (51)

This equation becomes equivalent to equation (49) if to take ¢c; = 2w?. With such a value

of c; the integral of motion (50) will coincide with that of Reinhardt and Schulz (formula

(3.30)) only in the case when Eyp = Eo. By the way, this requirement follows natura.llhy
from their condition of self-consistency (see the bottom of the section 3.2 in their paper).
4.2 Analysis of the solution

Neglecting the last term of the equation (48) one finds its solution in the small amplitude

approximation. The corresponding eigenfrequency
Q=2wV1+E& ’ (52)

reproduces the RPA result.

Searching for the exact solution we multiply (48) by g to transform it to

d [m(d\* b, a, ‘
5{3 (z) HEEE (53)
demonstrating the existence of the integral of motion (analogous to (50))
m (dy\® b 3 G 4, i
2 (dt) tay+gy=qa (54)

which express the energy conservation. The constant c; is determined by initial conditions.

Having in mind, that y(0) = 0, one finds ¢; = 2(3(0))?. The solution of the equation

(54) can be expressed in terms of the Jacobian elliptic function [25]. For & > 0 (this case

was studied in [24]) we have exactly the same result as in [24]:

y(t) = 11+ (ma — m)sn?(@t). | (55)
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Here @ = wy/&(n3 — m)/Jo, 7 are the roots of the polynomial

3a 3c
— 3 2 _ 56
P)=v’+5v" — 4 (56)

and 7y < 72 < 73.The function sn(¢) is a periodical one with the period A¢ = 4K where

K= [t (57)
J V1- E?sin? ¢ _ :

is the complete elliptic integral of the first kind witlnk? = %l There is an analytical
3=
expression for the Fourier expansion of this function [26]:

2 e n—~1/2 . Ay d
@t = — l sin(2n — 1) ‘;?

—_— t.
kK n=1 1- ([2"_1

Here ¢ = exp(—#K'/K), K'(k) = K(k'), ¥ = /1= k2. This formula contains only
frequencies proportional to odd numbers of the basic frequency Q = % "(by the way, its
dependence on initial conditions follows from: the dependence of the roots of the poly-
nomial (56) on ¢, ‘which is determined by $(0)). It is evident,.that sn® will contain
frequencies n{) with even n only. So, the Fourier expansion of the function y(t) will con-
tain only one basic frequency 20 and its satellites 4(2, 62 and so on. Numerically the
frequency 2Q = ‘I% is very close to the result of the solution of the harmonic problem
(52). So, the effect of including the anharmonic term by*(t) into equation (48) is a small
change of the basic frequency Y] — 20 and the appearence of satellites n2Q}, which are
interpreted (using the ‘quantum mechanical language) as the levels’of multiphonon states.
The equidistance of such spectrum is evident. It is clear that using the Fourier expansion
one ca.n‘not obtain another result.

in the case of our two dimensional problem of coupled dynamics of monopole and
quadrupole moments it is natural to expect the existence of two (for #-mode) basic fre-
quencies {1, {1; and their satellites. Due to coupling there must be a.lot of linear combi-
nations of these frequencies: n,£2; & n;Q;. For the yfa) -mode there must be three (four)

basic frequences with corresponding satellites. As we have seen, such a picture really

takes place.
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4.3 Quantization

The quantization of the one dimensional model (equation (48)) is achieved immediately
if we rémember that the integral of motion c; (equation (54)) is the energy of vibrations.
Choosing ¢ = y and p = my as the canonically conjugated variables one can write the

Hamiltonian in the form

H= oo + V() )

, .
with V(q) = ng + §q3. It is easy to see that equation (48) coincides with one of the
oH 0H

Hamilton equations of motion ¢ = Fp—’ p= -a—q, that confirms the correctness of our
choice of canonical variables. The quantum Hamiltonian is obtained by putting into the
expression (58) the operators p = —ihdiq and § = q instead of p and ¢q. The potential
energy V(q) is anharmonic so one can hope to observe the anharmonic effects in the
spectrum. The analysis of the spectrum can be done with the help of Bohr-Sommerfeld

quantization rule:

1

[ P@da=natna ), (59)

where P(q) = \/2m(E — V), q; and g; are the classical turning points. We calculate the
integral (59) numerically. The shape of the potential well depends strongly on &. Three
regions of & values must be considered separately [24]: 8 >0, —1 <k < 0 and & < —1.
The potential wells corresponding to each region are shown in the fig.2.

Let us consider the first case: & > 0. The anharmonicity must be maximum when the

barrier height Vi is minimum. The next formula is true for the & dependence of Vy:
_ 8 N3
Va(g) = ﬁngwz(l +&)3/R2 (60)

It is easy to see that Vp has its minimum at & = 2 and Vg — oo when &£ — oo or & — 0.
Hence the anharmonicity is maximum at % = 2. The calculations with & = 2 show that
the levels E, are equidistant with good accuracy up to very large n. For example tho\‘ .
difference E, —~ Ey coincides exactly Qith Erpa = 23.971 Mev and Eyop — Fo = 2397.072
Mev =~ 100Egp4. So it is not surprising that the authors of [24] had not found any
traces of anharmonicity at n = 2. Very small anharmonicity can be noticed at n 22 1000,
The difference Ejo0; — E100p = 24.160 Mev slightly differs from Egp 4, démonstrating the
existence of the anharmonicity Anh(n = 1001) = (Ejp01 ~ Ero00 — Enrpa)/ Erpa = 0.8%.
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Table 1 Fourier coefficients and energies for Qm(O) =0, on(O) = 18000

hw; Qoo Q20

i | Mev bi | & bi | m

0|l 0.00 0.00 | 202.47 0.00 | -481.45
1| 1.69(3M-4Q |l -0.00| 0.02 024 | -0.84
2|l 205(3Q2M| 310| -039| -1532| 1.72
31 3.74| M-Q | -6.68| -0.01]| 196.11| 32.15
4] 580 | 2Q-M || -0.28| 27.83 3.46 | -68.38
5| 748 | 2M-2Q | 1.04| -3.68| -7.16| 21.24
6| 7.85(5Q3M | -0.16 | 0.03 0.09 | -0.00
7l 917 5M6Q| 005( 002 -0.01| 0.02
8l 954 Q |-83.83| -12.37 || 1727.16 | 373.68
9|l 9.90{8Q-5M || -0.06 | 0.01 0.00| 0.03
10 || 11.22 | 3M-3Q || 0.05| 0.06 237 125
11 1159 | 4Q-2M || -0.12| 483 -0.68| 6.70
121328 M 64.72 | -222.54 || 25.33 | -64.26
13 | 13.64 | 7G-4M | 0.00| -02p 0.01| -0.00
14 || 14.97 | 4M-4Q || -0.04 | -0.02 001 | -0.02
15 11533 | 3Q-M || 2742 420 -9.05| -2.44
16 || 17.02 | 2M-Q || -2481 -1.15 427 | 255
17 [ 17.39 || 6Q-3M || 5.01| 0.02 0.01 | -0.05
18 1907 2¢ [[-30.12 | 99.72 || 29.42 | -64.80
19 | 2076 || 3M-2Q || -0.19 | 0.32 0.05| -0.06
20 || 21.13 | 5Q-2M || -0.60 | -0.09 028 | 0.09
21 | 2281 || Q+M | 4.52| 2.08 6.07| 405
22 ((24.87 4Q-M | 0.16| -050( -0.86] 1.67
2326560 2M | -0.11| 0.8 042 | -0.45
24 || 28.61 | 3Q 208 098§ _433| -3.22
25 || 30.66 Jf 6Q-2M || -0.01 0.02 0.02 | -0.04
2 || 3235 | 2Q4M || 085 | 0.8 0.04 | -0.04
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Table 2 Fourier coefficients and energies for Qoo(0) = 0, Q20(0) = 25000

hw; Qoo Q20

i || MeV b; l aj b; a;

0] 0.00 0.00 | 378.83 0.00 | -787.69
1] 022} 7Q-5M 132 -0.08| -21.26 | 1.31
2|l 170 | 3M-4Q || -0.17 2.14 7.09 | -88.25
3 1.92]3Q2M || 39.95 1.12 || -318:53 | -5.95
4| 3.396M8Q| -0.26 1.62 3.92 | -24.25
5| 3621 M-Q | -6769| -6.72) 785.15| 77.094
6| 553 | 2Q-M || -16.15| 136.67 | 43.90 | -371.48
7| 575 9Q-6M || -11.29| -0.64 | 34.09 1.92
81 70011 7M-9Q | -1.31| -035| 12.65 3.35
9| 723 | 2M-2Q ft 14.97| -74.64 (. -74.15 | 369.79
10| 745 5Q-3M || -18.08| -2.48| 31.82 4.37
11 ]| 893 | 5M-6Q 5.38'| -18.85 || -37.80 | 132.43
12 9.15 Q 157.77 | -34.71 || 2092.70°| 460.45
13 )| 9.37 |l 8Q-5M 088 -5.62( -17.96| 114.87
14 | 10.85 || 3M-3Q || -20.76 | -6.35 ) 120.68 | 36.92
15 1 11.07 | 4Q-2M || -21.13 | 88.14 | -43.78 | 182.65
16 |[12.76 |- M [ '177.67 | -544.27 | 113.80 | -348.64
17 1 12.98 || 7Q-4M || 15.84 4.11 14.76 3.83
18 || 14.46 || 4AM-4Q || -13.89 | 33.26 4.01| -9.60
19 | 14.68 | 3Q-M || 202.16 | 70.20 | -62.13 | -21.58
20 | 16.38 || 2M-Q || -59.05 | -25.98 §f 66.71| 29.35
21 16.60 | 6Q-3M || -5.03 | 13.65 3.05| -828
22 11 18.08 || 5M-5Q || -24.21 | -13.06 || 14.38 7.76
23 |[18.30 | 2Q -67.25 | 145.42 || 44.50 | -96.22.
24 111852 || 9Q-5M || -15.51| -6.05| 10.67 4.16
2511 19.99 || 3M-2Q || -11.69 | 20.73 5.06 | -8.98
26 | 20.21 (| 5Q-2M || -21.15| -1026 || 13.53 6.57
27 [121:91 | Q+M || 31.04| 18.28 2.67| .1.57
28 |[ 23.83 | 4Q-M 121 -1.97 2965 15.71
29 |1 25.53 | 2M -1.77 2.43 6.18 | -8.45
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The second case (—1 < k < 0) is more interesting, because here the barrier height can
be arbitrarily small (when &.— —1) and consequently the anharmonicity can be arbitrarily
large. For example at & = —0.9 it becomes appreciable already for n =100 : E; — Ep =
4.376 Mev = Erpa, Eio1 — Ero0 = 4.19 Mev, Anh(n = 101) = 4.3%. For & = ~0.99 there
are no bound states. ' ‘

The third case (& < —1) is similar to the second one. The anharmonicity, being
arbitrary large in the vicinity of ¥ = —1 decreases quickly when ¥ —» —c0 because}the
depth of the potential well grows together with || (it is seen from the formula (60) -which
gives the depth of the well when & < —1).

By the way, the authors of the paper {24] had not noticed tHe possibility of the e.xistence
of bound states at & < —1 and had not analyzed this case (their figure 1 for & < —1 is

incorrect).

5 Conclusion

Let us enumerate the main results of the paper. Tile set of nonlinear dynamical equations
for quadrupole @z and monopole Qg momenfs of nuclei is derived from the TDHF
equation with the help of the method of Wigner function moments. It allows one to
describe the large amplitude vibrations of Qg9 and Qgo. Due to the simplicity of the
used Hamiltonian all the derivations are performed exactly, without any approximations.
These equations are solved numerically for ?3Pb and “°Ca. It is found, that the functions
Q20(t) and Qoo(t) oscillate irregularly. Their Fourier analysis yields the giant quadrupole
and monopole resonances and multiphonon states constructed of them. It is shown that
the radiation probability of the two-phonon giant-quadrupole resonance is one.or two
orders of magnitude less than that of the one-phonon GQR, being strongly dependent on
initial conditions. ' ' ’

The maximum vibration amplitudes amount the value corresponding to the deforma-
tion parameter § =~ 0.42. The essential features of the large amplitude motion manifest
itself by the coupling of GMR and GQR in spherical nuclei, the last one being splitted,
and by the dependence of resonance energies on initial conditions which in their turn are
determined by the strength of the external field. . . ‘

The classical and quantum aspects of the analytically solvable one- dimensional model -
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are studied to show that the anharmonicity of the collective spectrum, being the property
of quantum systems, can’t be observed in classical ones. The quantization of the two-

dimensional model (equations (17)), being more complicate problem, will be done in the

next paper.
The theory can be modified to take into account spin and isospin degrees of freedom.
Then it will be possible to study spin and isovector collective modes for the case of large

amplitude motion. The extension to the description of excitations of higher multipolarities

is straightforward.
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! set of nonhnear dynamrcal equatrons for quadrupole and monopole moments
f nucle1 is: denved fromithe TDHF equatlon w1th thc help of the s0- called ngner
functron moments ‘It al'lows the. descrrptron of coupled Iarge amphtude monopole

and quadrupole vrbratlons These equatrons are solved numencally' for 208Pb

and ..... Ca in.a model wrth separable forces Thc glant quadrupole and monopole
resonances are reproduced very “well: Howcver the essentlal fe ure-of the large
. *amphtude motlon is the ex1stence of multlphonon states. They are analyzed in detail.
The classrcal and quantum aspects of the analytlcally solvable one- dlmensronal purc

monopole model care; studred to_clanfy the problem of 'the anharmomcrtr
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