


1 Introduction

There are many quantum mechanical systems that are described by axially symmetrical
potentials. Such a system as atoms in a constant magnetic field, the Zeeman effect, was
one of the carliest problems studied in quantum mechanics [1]. Although many numerical
and analytical investigations of this system have been reported in the literature [2], there
is still today considerable interest in its detailed properties, especially in strong magnetic
fields. The main motivation comes from astrophysics [3], where very strong magnetic fields
are needed to understand the physics of neutron star surfaces and white dwarf stars.

The cnergies and eigenfunctions of deformed nuclei [4] and the electronic shell structure
eflects in metallic clusters [5] are described by the Schrédinger equation with axially
symmetrical potentials.

Most quantum systems described by the Schrédinger equation with an axially sym-
metrical potential cannot be solved analytically. Thus, the solution of the Schrédinger
equation with suficiently arbitrary potentials of this type represents the main mathemat-
ical problem. Many approximate analytical and numerical methods have been worked
out. Great progress in the development of computer techniques and effective algorithms
for a numerical solution of differential equations enables us to obtain numerical solutions
for the cnergy spectrum and wave functions with quite a high accuracy although practical
calculations are usually very laborious and require powerful computers. The main purpose
of thesc investigations is in the majority the construction of highly accurate numerical
solutions of the Schrédinger equation for the hydrogen atom in the uniform magnetic-
field as well as the energies and eigenfunctions of deformed nuclei and the electronic shell
structure effects in metallic clusters. '

Nevertheless, the development of analytical methods is very important because only
analytical methods permit us to investigate qualitative features of quantum physical sys-
tems and indicate effective ways for improvement of numerical algorithms.

In this paper, the oscillator representation method(ORM) [6] will be formulated in the
parabolic system of coordinates for the calculation of the energy spectrum of the hydrogen
atom in external fields. )

This paper is organized as follows. In section 2, the method of oscillator representation
for the axially symmetric potential is formulated and used to consider the linear and
quadratic Stark effect. In section 3, we considered the hydrogen atom perturbed and
unperturbed by the van der Waals interactions with the conducting wall. In the Appendix
some details of the calculations are given.

2 The oscillator representation method in the
parabolic system of coordinates.

In the papers [6],[7] we formulated the ORM for the axial symmetric potential in the spher-
ical system of coordinate. However, to determine an energy spectrum for some physical
systems, it is convement to use the parabolic system of coordinates. In this section, we
considere somc physical examples for the demonstration of the oscillator representation
method in the parabolic system of coordinates.
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The Schriodinger equation in the parabolic system. We consider the Schrodinger
equation for the Coulomb potential

L%A—ﬂ¢m=éwa-~ (21)

Sbubstituting the variables f1]

z=+Encos¢, y=+(Ensing,

and taking into account the azimuthal symmetry of the problem, after some transforma-
-tions, from (2.1) we get for the Schrédinger equation in the parabolic system

1 62 1 a 771,2 E [3]
[ 2(('56’+£'5f—?1?)‘1_§]¢1(€)=0,» (2.3)
1/ 1 8 m? E B ,
[ 2 (anﬁn'a_,,‘zﬁ)—z—g;]%(n)ﬂ,
where §; are the separation Pa'rameters satisfying the identity

Br+P2=1 - (2.4)

The wave function initial system can be represented as

= 5E-n), (22)

(2.5)

e:’m¢
)= —- . .
Our problem is formulated in the following way. Using the method of oscillator represen-
“tation from (2.3) we determine the values of separate parameters §; and the corresponding
wave functions t;. The desired energies E of the initial equations (2.1) are defined from
(2-4). According to the ORM, we substitute (for details see ref.[6] )

£=¢, 0 =hild’) — d™eu(e?), . (2:6)
and after some transformation, from (2.3) we have 7
1/0* d-1 9 ‘

where d = 2 + 2|m] .
Now we can identify the operator

7 d-1 0
A= 42—~ 2
’ (3q2 * q 3q)
with the Laplacian in the auxiliary space R?.

We shall solve Eq. (2.7) by using the ORM. The oscillator canonica;l variables (p, q)
can be written in the form :

1 ‘ w a;—al’
R + - . —_ J .
4% =7 (e +aj) W—Vg'i”J=Lw~m (2.8)

The operators a; and a} are called annihilation and creation operators. The Hamiltonian
(2.7) in the oscillator representation [6]-[8] looks like

H = HQ+60+H[ (29)
with
1o = w(afaj) , =0,
dw * dE
= — — — 206 .
eo(B1) 4 2w A

The condition of the oscillator representation [6] can be written as
(') .
T—Eo(ﬁl) =0 (210)
Ow

and from this equation for the oscillator frequency we get
w=v-2[. ’ (2.11)

From (2.7) we sce that the magnetic quantum number m is absorbed in the dimensions of
the auxiliary space R?. The parabolic quantum numbers ny, and n, are defined as radial

excitations, i.c.
o I(d/2 +n)
= C,, (a¥af)™ 772 = 9l 2.12
inl) (/nl (aJ aJ |0) ) (‘n 2 n I‘(d/2) ’ ‘ ( )
where |0) is the vacuum state i.e., a;|0) = 0 and (0[0) = 1.
The energy spectrum [6] with radial excitation in the lowest approximation of OR is
defined as ) ‘
d dE
E[]"l](ﬂ]) = (m|ln,) = (Z +2nl) w5 26, . (2.13)

According to (2.7), the parameter 8; with the radial excitation is defined by the equations
Mgy =0. (2.14)

Taking into account (2.11) and (2.13), from (2.14) we get ( the sccond equation represented
in (2.3) can be calculated analogously)

| .
1
By = é- (2d + 8ng) - vV -2k .

Taking into account (2.15) for the desired energies I, of the initial equation (2.1) of the
ground and radial excited states from (2.4} we have
1

DR 2.16
I, = W (2.16}



where n = 1 4+ ny 4+ nz + |m| is the principal quantum number.

The hydrogen atom in the uniform electric field. To describe low-order split-
ting of the hydrogen atom levels in the electric field is an earliest quantum-mechanical
problem [1]. The Schrédinger equation for the hydrogen atom in the uniform electric[1]
field has the form

[_%A—%+w~z] ,p(%);Ezpm, (2.17)

where w is the electric field oriented along the z-axis.- We consider the weak clectric
field limits, i.c., the asymptotic behaviour of the wave functions for the large distance
are Coulomb functions. In this case, taking into account (2.6), after some transformation
from (2.17) we have for the modified Schrodinger cquations
: 1(9* d-1 8 1 '
HUO®, = V-2 — a2~ . Y _ jpg? - owat 2y —
1 AR » Eq" =2 +5 wg'| ¢i(g) =0 (2.18)

°7 Q 0Q
with d = 24 2|m|, and ¢; , Q; are vectors in the space /%. Let us use the ORM and from

(2.18) we determine the parameters f;. According to (2.9), the Hamiltonian is represented
in the form

1 92 d—1 J
HOp, = [—5 < 41 ) - BQ 2B~ 1 wQ‘] Q%) =0,

WO = B+ 1+ 05,3,

where
0 E} 4 1 2w 8w2 ) y ( . )
and for the interaction Hamiltonian we have ) N
1 .
H}’) =5 w: g, (2.20)

where : * : is the symbol of the normal ordering. In this approximation limit, taking into

account (2.19) and from the condition of the OR, i.e. (2.10) we get for the frequency w *

d+2 3 (d+2)

2?2 8§ v
where v = v/=2E. In the second approximation [6] of the OR, the energy spectrum is
- defined as :

e (B, B1) = e (B, fr) + 2mao B, B1) + () H ) )
1

—(r] (1Y = () H D ny) ) - A(HD = (0| HPny)) |n

( D)) T gy (A0 = el ) )
where n; is radial quantum number in the parabolic system. Taking into account (2;22),
from (2.14) we obtaine for the parameter 8, A
_d- dE  wd(d +2)
=g vt e

1
gt (4 = (11 )n,)) -

w=v+uw w2 + O(w®) k (2.21)

- 1
+mw(E, ) + §(n,|ﬂ;",n,) (2.23)

t
A HDY — () H PO )) )
T ooy (= ) )

The calculation details of the matrix elements (n1|H;l)[n1) and the second corrections are

given in the Appendix.
The parameter f; is determinedina similarly way. Finally we get

3(ny — .
l=B+B=nv+ ~—————(nl 2::)71 od : ’ (2.24)
w2 -n 2 2 2 3
_16 5 [1771 + 51(711 —nz) —9Im* + 19] + O(w ) ’
Y] . .

where n = 1 +n; +ny + |m|. From (2.24) for the desired energies E, of the initial system
we have

-3 wint o 2 2 3
E, = + —wn(m — TL2) - "—16"- [1771 - 3(711 - nz) —9m” + 19]+ O(w ) . (225)

Top2 T 2

So the dipole moment [1] in the normal state (n; = ny) looks like

1 6E nt 2
=== — - [1Tn* = 9m* +19] . 2.26
d, = 5w~ B [17n% —9m® + ] . (2.26)

Let us consider the Stark effect in the case of the strong electric field. The Schrodinger
equation in the parabolic system coordinates can be written as

"T1/8* 1 8 m? E B 2w _
[_§<5?+E.3—£_Z£_2)_Z_E+E"8]%({)—.0 (?-27)

1 32 1 a mz E ﬁQ 2 w]
Lfoe Lo _my_Z2_ B 2 =0.
[ 2<6n’+n p 47]2) g ¥a(n) |

In the strong electric field case we assume that the asymptotic behaviour of the wave
functions at large distances must define those terms of the potential which are proportional
to w. From (2.27) we see that the asymptotic behaviour of the functions %; at large
distances are Gaussian. However, in this case transition to the modified Schrédinger
equation from (2.27) is realized by the following substitutions :

E=q, hi(©) =l dFhid) (2.28)
and the modified Schrodinger equation has the form
. 1/0* d-1-0 E B w
Mgy = |t — =) == +¢ = =0 2.29
I (e = R T ) (229)
1 62 d—1 6 E -,Bz w ’
(2) PN D B e-—" T XN_Z=_ £ 2.2 2 =0,
A= 3 (st S5 5) 13 © 2] 4@

with d = 2 + |m]. We shall solve equation (2.29) by using the ORM. According to (2.9),

the Hamiltonian HY) can be represented in the form

HO = HO 4+ D)+ HD . (2.30)



with
H = wafa;,,  H" = ﬂ“/_ a0,
dw E  wd _ﬂlfF(( -1)/2)

0
B =T - 7T+% " 2 1@p)

. d
T m

where e;* = ¢7* — 1 — z — 22 /2. From the condition of the oscillator representation, i.c.
(2.10), we define the separation parameters

2 T((d+2)/2) w

b= Vo T(d-1)/2) (“’*4w) : (2:31)
According to (2.14), in the lowest approximation OR the equation for the oscillator fre-
quency w looks like '

(o) B ] o,

The second equation represented in (2.29) can be calculated analogously. The desired
energy E of the initial system is determined from (2.4).

Now calculate the displacement of the frequency [9] Av for the component (718) of
the line H, of the hydrogen atom. In this case for the parameters 3; we have

2 w . 2 w
ﬂl_ﬁ-(w—.zu—)), ﬁzzﬁ.(snm). (2.33)
For the oscillator frequencies w and  at the values of the parabolic quantum numbers
n1 =0 and n; =1 from (2.32) we get

VET{12-w-E _ VE{2T w+E

w=YT T P2 0=
6

v

; (2.34)

In the case ny = 4 for ) we have

VE?+32(3+2-5¢) - w+E
32 B 7

where 54 = 3.52789 and the calculational details are given in Appendix. Taking into ac-
count (2.34) and (2.35) from (2.4) we determined the desired Energy E or the displacement
of frequency [9] Av at the values of field strength w = 108v/cm

Av =1052.69 e~ . (2.36)

-

(2.35)

From (2.36) we see that our results are in good agreement with the exact [9] values.

The correct choice the asymptotic behaviour of the wave functions-at large distances
gives a possibility to take into account the effect which is connected with the strong electric
field. Our results are equivalent to the results of effectivel summing of the perturbation
series.

3 The hydrogen atom with the van der Waals inter-
actions

The problem of a hydrogen atom in the generalized. van der Waals ficld [10]-[12]
) 1
AV(z,y,z) = 57 (1:2 +y2+ ,szz) 3.1)

(where y > 0 and § arc constants) is of much interest in physics. A large number of recent
publications dcal with different aspects of the well-known particular case, 8 = 0, of the
problem of quadratic Zeeman cffect {1]. The case g = V2 corresponds to the instancous
van der Waals interaction between an atom and metal surfaces [13] and is a subject of
extensive discussions so far [14].

The present section is devoted to solving the three-dimensional Schrédinger equation
for the electron of the hydrogen atom in the external van der Waals field in a particular
case, # = 2 and a general case of arbitrary values of this parameter. To solve a three-
dimensional problem, we use the ORM suggested by us in carlier papers [6]-[8]. This
approach lias been applied to calculate the energy spectrum of the Schrédinger equation
with the spherical symmetric potential [8]. :

Let us consider the three-dimensional Schrodinger equation for the hydrogen atom

with the van der Waals interaction

e &L oy ]
2\ 0z Gy* 0z

After some transformation in the parabolic system of coordinates, from (3.2) we have

1/702 1 8 m*\ E B 3 .
[-§<@+E'&_Z§)—T_—E+E ]‘/’1(&)—0 (3.3)

92 a m? E /32 2 7
[ (()l} +7_.%_41]2)‘—4— 2 t 1 ¥an) =

where §; is the separatc parameter and satisfaction the equation (2.4). To determine
the energy spectrum B of the initial system we first of all define the parameters 3; from
(3.3).

We consider the case when the external feld is weak i.c. 7 << 1. In this limit. take
into account (2.6) and after some simplification from (3.3) we have

) (e d-l a) . ] . X
- ¢—[ (dq+ q Oq E¢ =28+ éi(g") =0, (34

+2 (s ﬂ?;?)] U=EV. (3.2)

withd =2+ 2|m| According 1o (2.9) the Hamiltonian is represented in the form

Y = 1§ + () + u“’

where
o dI i(d +2)(d+14 .
)= g, ¢ 2ULEAER) ey (3.5)
w 8w -
3v(d + 1 .
,,,:_v(f_);_):,ﬂ:ﬂ:q(,: .
1



Taking into account (2.13), (2.14) and (3.5), from (2.4) we get for the energy spectrum
initial system

1 2
E=—— + 1% 522

57t g ~3m? +7+15(n; — n2)*] + 0(v%) , (3.6)

with n = 1 4+ n; + n, + |m]. In this case, the oscillator frequency equals

" 3(d+421))£d+4)’+ 0(+%) , (3.7)

w=v

where v = V-2KE.

Now consider the non-perturbation behaviour of, hydrogcn atomn in the van der Waals
ficld. We assumne that the external field is strong, i.c. 4 > 1 and the asymptotic behaviour
of the wave functions at large distances is Gaussian. Taking into account (2.28) and after
some transformations, from (3.3) we have for the modified Schrédinger equation

Mg = —l(—a2 A1 ON_E By 2 04

11?¢1—[ slagt 7 5) T gt $i(¢) =0, (3.8)
@y — _1(3_2 d_-—_l.i)_ﬁ__ﬁz 2.

" ¢2—[ 2\srt 0 ag) 1 2Q+Q 1| #(@)=0,

with d = 2+}m]|. This system of equations is solved analogously to the system of equations
represented in (2.29). According to (2.33) for the separate parameter we have

2 v\ T((d+2)/2)
= |wj - | 5 3.9
b= (9-a5) mEh (39)
In this approximation, the oscillator frequf;ncy looks like for the case n; =0
VE*+6dy - E
e (3.10)
and for the case n; > 0
E? 164D, f; + £
v, WDili+E (3.11)
8D;
where
d 3d 3d .
Dj:2nj-z-—§-5,.l, fj:~4—(2+5,.]), j=1,2.

The calculational details of the parameter S; are given in the Appendix. Taking into
account (3.9), (3.10) and (3.11), from (2.4) we determine the energy spectrum and wave
functions of the hydrogen atom in the strong van der Waals field.

Let us consider the hydrogen atom in the generalized van der Waals field. We assume

that the external field is weak. Taking into account (2.2), (2.6) and (3.1) we have for the

modified Schrodinger equation

1/9* d-1 8 1/ 8 d—1 0
{“5(@*7'&)"5(@*7%)“2 312)
—E- (¢ + Q")+ A(¢ +Q°) + BaQ* (¢ + Q°) }‘P(tf, Q) =0,
where d = 2 + 2|m] ,
a=tgr, Biy(1-E
- 47 3 =7 - 4 .
According to (3.5) the Hamiltonian is represented in the correct form
H=Ho+eo+ Hy, (3.13)
where
Ho = w(afa;) + QAf A;) ,
Lode,d0 B _ap
°T Ty w20
dd+2)(d+4) (1 1 Ld+2) (1 1 ,
A= \&te)tP s \stw) o)
3(d+4) /1 1
H=A- [——( +4) (—EII4 +—1Q4:)+ q6:+:‘Q6:]
2 w
(d+2) d 2. 4 2.4 J
+B - | +— Th— 4 gt it igt @
(22 Q@ b0
After some transformation, for the energy spectrum of the initial system we have
1 'yﬂ n?
E=-5+ - [5n? —3m? + 7+ 15(#1 —m2)’] | (3.14)
1 .
+§'yn2 (1 - %—) . [371'2 —-m?41-3(n; — nz)2] +0(%) .
The oscillator frequency equals
d+2)(d+4 3d d + 2
UADELY 4 HED pyom, (3.15)

where v = /=2FE.

The dipole transitions. Let us consider the dipole transitions from the ground state
(1s) to the excited state. In ORM the wave functions are defined in the d-dimensional
auxiliary space and are Gaussian. To establish relations between 3- and d-dimensional
wave functions, we consider the following equality:

7 S N eié(m—m‘)
1= @9) =V [ [dnde [ a2+ )" m o Obmn)bmer) (316



where N is the normalization constant. Taking into account (2.6) and after some trans-
formations from (3.17) we get

1 = NZ/dqqdl
1]

0
N? [(nﬂq [ra) + (na]Q? |n2)] >

where |n) is the radial excitation in OR (2.12), and

(o]

Q@+ (¢ + Q%) thn, Y7, bna b, (3.17)

\.

I

\/— Ll.)d/4 /21
— hid . p—wnl2g
10 = V21 ¢

is the normalized vacuum state. The calculational details of the matrix elements (n, |q2']n1)
are given in Ref. [8] and equal

d 2
(mlg?m) = o=+ =+ .

Thus, for the normalization constant we have

N=1/'2%’ n=1+n;+n,+|m|. ' (3.18)

The wave functions in the 3-dimensional spac‘e have the form

eim¢

) \Ilﬂxﬂ'zm = ﬁ ) 'é_:l' . d)m (£)¢n1(n) . (319)

The matrix element dipole transitions in the general case look like
' ninym’ . _ , Wnnt l
MEET = (\Il,,,“mz\ll o L N (3.20)
[t / 4G (4 @) i (Vs @ @)
‘o ) :

We consider the dipole transition from the ground state to the excited one. After some
transformations, from (3.20) we have

M&;"Zm _ zd— (wlwn)(d+l)/2 . \/I‘(n, + d/2)F(n2 + d/2) : (wl ——wn)ﬂ1+n2
: n

nyIny'T2(d/2) (wy + wy )dHmtm
mlm=1) o m m4d2 (mtdm+1+d/2)]
{ [(“’1 —wp)? (Wi —wn) (Wi +wn) (wr + wn)? ] (3.21)
B [nz(n; 1) o nme natd2 | (ma4d/Q(mat 1+ d/2)] ,
(Wi — wy)? (wy — wn) (wi +wn) (wr + wn)2 ’
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Let us consider a particular case. For Coulomb interactions the oscillator frequency equals
wyp, = 1/n, and from (3.21) for the matrix element of dipole transitions we have standard
results (9]
24(n - 1)11—3
(n+ 1)+ )
In conclusion we would like to note that
i) The correctly chose asymptotic behaviour of the wave functions at large distances
gives the possibility to investigate the problem of perturbative and non-perturbative be-
haviour of the system. This effect is most cvidently developed for the energy spectrum of
a hydrogen atom in the external uniform electric field and van der Waals field with # = 2.
ii) Our method gives the perturbation formulas (3.14) for the analytic spectrum of a
hydrogen atom in the generalized van der Waals field, i.e.,arbitrary values of the parameter
B in the entire region 0 < 3 € 2.
ili) The relative oscillator strengths (dipole transition probabilities
Woam™ = 3{WoomZ Wnynyml|’) are given for B = 2 and f = /2, for 4 from both per-
turbative and non-perturbative region. According to (3.15), (3.19) and (3.21), we can
determine the dependence of oscillator strengths on AE for any values of quantum num-
ber n, m and the parameter 3. Fig.1 represents the oscillator strengths for transitions
from the ground state to the perturbed manifold n = 10 m = 0, a) the case f§ = 2 and
b) the van der Waals casc 8 = /2.
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n? (ny ~ng) . , (3.22)
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Appendix

Let us give some calculational details for the matrices (n,|H/|n,). First of all, the vari-
ables ¢27, where 1 is arbitrary, is represented in the normal form. Let 7 =1, 2, 3, ..,;
then taking into account (2.8) we have

d . .
potip (r1)
w
dd+2) d+2
¢'= (4 3 b
w w .
d(d+2)(d+4)  3(d+2)(d+4) 3(d+4)
6 __ a2, K B .8
qg = B0’ + 1 .q.+——-—2w L Y M

If 7 <0, we use the following representation:

T do T 1 e-rhed)
12 = / Tg_(,:'"](:—qz" :/ ‘da ar—l / (ﬂ) - e—dzn— : e—2|qn: (AZ)
@~ ) 1) J () Vi) o

For the calenlation matrices {n,[l{;|n,) we used thefollowing relations:

7 it igat ikq (R
(.zknclpa — ¢4 ctka(3 {kp) , (Ar;)

12

Taking into account (2.12) and (A.3) we have

2n,

(nr]:q" : In,) =

n, .
(el g s Ine) = = [d +6n, 4],

(nel:q%:|n,) = %

(A.4)

(34 +10n, — 8] .

According to (2.30) for the matrix (nll_hgl)lnl) we have

T d d - ; '
(Al = / \} ( \}) A I P T O (A.5)

- Taking into account (A.3) and after some transformation we get

(n]:e; —'B(a*n)~tB(ﬂn) i) = c? g Z(Bz %y (01+ﬂ 40:»3)’1
=2 ]'

*dandfgn i+d/2
ardp —4apy a0
so, that from (A.5) we have
(R, = 3 [(d/2-1/2)
() = G e e
where
4I‘(1 + n) (=1)*T(k +1/2)
S =
E F(k +d/2) “ Ni(n,d) ,
and
. ~ 2P *D(kn—
Nk(n,d)=z (k+n p-{-d/2)2
p=o (0 = P)'(2p — k)1 ((k - p)!)
In a particular case, n = 1, and n = 2 for S, we have
2 4 19
S ==, Sy = ———u. —| .
1T d T dd+2) [‘” 8]
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: ,‘?Meron'ocuunnnropnoro npencraanednn chopmynnpOBar /B napaﬁonnqecxou
~cncrer: Koopnnnar ‘M HUCTIONB30BAH: s Bblqucnenmr sneprernqecxoro ‘crexkTpa’
fpucreM CBA3AHHBIX cocrommu OnHCblBaeMle axcnanbno cummerpuqubm noTeHun-
.anoM, B qacrnocru MCTOII npumenen uis naxomennn 3Hepruii: ocnanoro " BO3-
“Gymenuoro cocronnuu 'aTOMa * BOLOPOJA B - [IOCTOSITHOM - anexrpuqecxom none
.M B mone cn.n BaH’ nep Baanbca “I'lonyqenoananuruqecxoe Bblpaxenue s anep-
‘rernquKoro cneKTpa aroma * Bonopona B oﬁoﬁmennom none BaH ep Baa.nbca
B ﬂpHGﬂH)I\CllHH Teopnn Bo:myutenuu Onpenenena cn.na s uunnnropa JJ.rm nepexona
3’ ocnanoro cocrosnmn B Bo36y>Kuennoe cn= :

Dmeykhan M ,‘
Oscrllator Representatlon '

: 3 ca]]ed the oscnl]ator frepresentatlon is extended to calcu]ate\

s,he energy xpectrum of bound state” descnbed by axially” symmemcal potentla]s
in the, parabollc system coordmates In partlcu]ar the method i is apphed to_calculate .
the enérgy of the ground and excned states  of the: hydrooen atom in the unlform
“€lectric field and van der. Waals ﬂeld The: method ‘gives. | the: perturbatlon formu]as
for the analytlc spectrum of the hydrogen atom in: the generahzed ‘van der Waals
freld and deﬁned oscnllator strengths »for transmons from the ground state
to the perturbed mamfold n=10,/m=0.:" i




